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1. Introduction

The Bernoulli polynomials Bn(x), which are usually defined by the exponential generating function

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π

)
, (1.1)

play an important role in different areas of mathematics, including number theory and the theory of finite differences. Since
they satisfy the well-known relation

d

dx
Bn(x) = nBn−1(x) (1.2)

(for all n � 1), which follows easily from (1.1), it is to be expected that integrals figure prominently in the study of these
polynomials. The most immediate integral formula is obtained by integrating (1.2):

Bn+1(x) = (n + 1)

x∫
0

Bn(t)dt + Bn+1, (1.3)

with the Bernoulli numbers Bn , n = 0,1,2, . . . , defined by Bn = Bn(0) or, equivalently, by the exponential generating func-
tion

t

et − 1
=

∞∑
n=0

Bn
tn

n!
(|t| < 2π

)
. (1.4)
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Numerous identities in the literature are concerned with writing Bernoulli numbers or polynomials as integrals of other
functions. However, relatively fewer publications deal with integrals having Bernoulli polynomials as integrands. Some such
results can be found in papers of Mikolás [7] and Mordell [8], and the following interesting integral for a product of two
Bernoulli polynomials appears in the book by Nörlund [10, p. 31]: For all k + m � 2,

1∫
0

Bk(t)Bm(t)dt = (−1)k−1 k!m!
(k + m)! Bk+m. (1.5)

This was extended by Carlitz [3] to integrals of products of three and four Bernoulli polynomials, and later Wilson [11]
evaluated the integral

1∫
0

Bk(ax)Bm(bx)Bn(cx)dx,

where Bn(x) is the periodic extension of Bn(x) on [0,1), and a,b, c are pairwise coprime integers. For a = b = c = 1 this
reduces to Carlitz’s result. More recently similar integral evaluations were used by Espinosa and Moll [5] in their study of
Tornheim’s double sum.

While all these integrals have fixed limits of integration, our approach in this paper will be to consider integrals of prod-
ucts of Bernoulli polynomials, with upper limit of integration a variable x. As consequences we obtain certain convolution
identities for Bernoulli polynomials. In Section 2 we will do this for products of two Bernoulli polynomials, and in Section 3
for products of three. Finally, in Section 4 we derive some further consequences.

2. Products of two Bernoulli polynomials

As mentioned in the Introduction, the idea is to take the integral on the left of (1.5) from 0 to some x (instead of 1). In
particular, we will prove

Proposition 1. For all k,m � 0 we have

x∫
0

Bk(t)Bm(t)dt = k!m!
(k + m + 1)!

k∑
j=0

(−1) j
(

k + m + 1

k − j

)(
Bk− j(x)Bm+ j+1(x) − Bk− j Bm+ j+1

)
. (2.1)

Before proving this, we consider the special case x = 1. For this we need the following special value of the Bernoulli
polynomials:

Bn(1) =
{

Bn for n �= 1,

−B1 = 1
2 for n = 1.

(2.2)

This follows from the facts that Bn(0) = Bn and B2 j+1 = 0 for j � 1, and from the reflection identity

Bn(1 − x) = (−1)n Bn(x), (2.3)

which itself can be obtained by easy manipulations of (1.1).
Now, by (2.2) we have

B1(1)Bm+k(1) − B1 Bm+k = Bm+k,

Bk− j(1)Bm+ j+1(1) = Bk− j Bm+ j+1 if j �= k − 1.

Therefore almost all the terms in the sum on the right of (2.1) disappear, with only (−1)k+1(k +m + 1)Bk+m remaining. This
immediately gives (1.5).

Proof of Proposition 1. We use integration by parts which, along with (1.2), gives

x∫
0

Bk(t)Bm(t)dt = 1

m + 1

(
Bk(x)Bm+1(x) − Bk Bm+1

) − k

m + 1

x∫
0

Bk−1(t)Bm+1(t)dt. (2.4)

If we set

Ia,b :=
x∫

Ba(t)Bb(t)dt, Ca,b := Ba(x)Bb(x) − Ba Bb, (2.5)
0
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then (2.4) becomes

Ik,m = 1

m + 1
Ck,m+1 − k

m + 1
Ik−1,m+1,

and similarly we have for all j = 0,1, . . . ,k − 1,

Ik− j,m+ j = 1

m + 1 + j
Ck− j,m+1+ j − k − j

m + 1 + j
Ik−1− j,m+1+ j (2.6)

and also, by (1.3),

I0,m+k = 1

m + k + 1
C0,m+k+1. (2.7)

We now substitute (2.7) into (2.6) for j = k − 1, then this into (2.6) for j = k − 2, etc.; then we get

In,m =
k∑

j=0

(−1) j k(k − 1) · · · (k − j + 1)

(m + j + 1)(m + j) · · · (m + 1)
Ck− j,m+ j+1

=
k∑

j=0

(−1) j k!m!
(m + j + 1)!(k − j)!Ck− j,m+ j+1,

and with (2.5) this is exactly (2.1). �
If we now interchange the parameters k and m in (2.1), we immediately obtain, for all k,m � 0,

k∑
j=0

(−1) j
(

k + m + 1

k − j

)(
Bk− j(x)Bm+ j+1(x) − Bk− j Bm+ j+1

)
=

m∑
j=0

(−1) j
(

m + k + 1

m − j

)(
Bm− j(x)Bk+ j+1(x) − Bm− j Bk+ j+1

)
. (2.8)

Next we evaluate the sums of products of Bernoulli numbers that occur in the two sums. We have the following summation
formula.

Lemma 1. For all k,m � 0 we have

k∑
j=0

(−1) j
(

k + m + 1

k − j

)
Bk− j Bm+ j+1 −

m∑
j=0

(−1) j
(

m + k + 1

m − j

)
Bm− j Bk+ j+1 = (−1)m(k + m)Bk+m+1. (2.9)

Proof. We rewrite (2.9) as

k∑
j=0

(−1)k− j
(

k + m + 1

j

)
B j Bm+k+1− j −

m∑
j=0

(−1)m− j
(

m + k + 1

j

)
B j Bm+k+1− j = (−1)m(k + m)Bk+m+1. (2.10)

First let k + m be even. In this case always one of j,m + k + 1 − j is odd, so that B j Bm+k+1− j = 0, with the exception
of B1 Bm+k , but this gets canceled. On the right-hand side we have Bk+m+1 = 0 for k + m > 0, and when k + m = 0, the
right-hand side vanished trivially.

Now let k + m be odd. Then we have (−1)m− j = −(−1)k− j . Without loss of generality we may assume that k > m; in
this case we take the sum from 0 to m out of the first summation on the left-hand side of (2.10) and rewrite it as

m∑
j=0

(−1)k− j
(

k + m + 1

j

)
B j Bm+k+1− j =

m+k+1∑
j=k+1

(−1) j−m−1
(

k + m + 1

j

)
Bm+k+1− j B j,

having switched the direction of the summation. Now we note that (−1) j−m−1 = (−1)k− j , and thus the left-hand side
of (2.10) becomes(

k∑
+

m+k+1∑
+

m∑)
(−1)k− j

(
k + m + 1

j

)
B j Bm+k+1− j. (2.11)
j=m+1 j=k+1 j=0
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But these three sums cover the whole range of summation, and this can be easily evaluated using the well-known convolu-
tion identity

n∑
j=0

(
n

j

)
B j(y)Bn− j(x) = n(x + y − 1)Bn−1(x + y) − (n − 1)Bn(x + y); (2.12)

see, e.g., [6, (50.11.2)]. Indeed, if we take y = 1 and x = 0, then (2.12) becomes, with (2.3) and the fact that Bn(0) = Bn ,

n∑
j=0

(−1) j
(

n

j

)
B j Bn− j = −(n − 1)(−1)n Bn.

This, applied to (2.11) with n = k + m + 1, immediately gives (2.10). �
It is now clear that (2.9) and (2.8) combined give the following reciprocity relation for sums of products of Bernoulli

polynomials:

Proposition 2. For all k,m � 0 we have

k∑
j=0

(−1) j
(

k + m + 1

k − j

)
Bk− j(x)Bm+ j+1(x)

−
m∑

j=0

(−1) j
(

m + k + 1

m − j

)
Bm− j(x)Bk+ j+1(x) = (−1)m(k + m)Bk+m+1. (2.13)

Remarks: 1. Lemma 1 is of a similar nature to two reciprocity relations given in [2]. As its proof showed, the identity (2.9)
is basically equivalent to a special case of (2.12), which can also be seen as an alternating version of the well-known Euler’s
formula

n∑
j=0

(
n

j

)
B j Bn− j = −nBn−1 − (n − 1)Bn (n � 1);

(2.9) was obtained by a simple rearrangement of the summands. For a different family of extensions of Euler’s formula,
see [1].

2. Proposition 2 can be proved in the following alternative way, without the use of integrals. When k + m is odd, proceed
exactly as in the proof of Lemma 1 for that case. In the end we use (2.12) again, this time with y = 1 − x. Then the
right-hand side evaluates to −(n − 1)(−1)n Bn again.

Now let k + m be even. After first rewriting (2.13) in a form analogous to (2.10), we assume, without loss of generality,
that k > m. Then, since (−1)m− j = (−1)k− j in this case, the left-hand side reduces to

I :=
k∑

j=m+1

(−1)k− j
(

k + m + 1

j

)
B j(x)Bm+k+1− j(x),

while the right-hand side is always 0. Now, changing the direction of the summation in I , we get

I =
k∑

j=m+1

(−1)m+1− j
(

k + m + 1

k + m + 1 − j

)
Bm+k+1− j(x)B j(x) = −I,

since m and k have the same parity. Thus I = 0, and we are done.

3. An important tool in Carlitz’s paper [3] and in other papers in this area is the following identity which goes back to at
least Nielsen [9, p. 75]:

Bk(x)Bm(x) =
� k+m

2 �∑
j=0

[(
k

2 j

)
m +

(
m

2 j

)
k

]
B2 j Bk+m−2 j(x)

k + m − 2 j
+ (−1)k+1 k!m!

(k + m)! Bk+m (2.14)

(valid for k + m � 2). Using this, one can easily obtain a different sum for the integral in (2.1); this was done by Carlitz [3]
for the corresponding integral from 0 to 1. However, the point here has been to obtain the identity in Proposition 2.



14 T. Agoh, K. Dilcher / J. Math. Anal. Appl. 381 (2011) 10–16
3. Products of three Bernoulli polynomials

To deal with integrals of products of three Bernoulli polynomials, we adopt notation similar to that in Section 2. Once
again suppressing the variable x for simplicity, we set

In,m,k :=
x∫

0

Bn(t)Bm(t)Bk(t)dt, (3.1)

Ca,b,c := Ba(x)Bb(x)Bc(x) − Ba Bb Bc . (3.2)

Using integration by parts, along with (1.2), we get

In,m,k = 1

k + 1

x∫
0

Bn(t)Bm(t)
d

dt
Bk+1(t)dt

= 1

k + 1

[
Bn(t)Bm(t)Bk+1(t)

]x
0 − 1

k + 1

x∫
0

d

dt

(
Bn(t)Bm(t)

)
Bk+1(t)dt

= 1

k + 1
Cn,m,k+1 − n

k + 1

x∫
0

Bn−1(t)Bm(t)Bk+1(t)dt − m

k + 1

x∫
0

Bn(t)Bm−1(t)Bk+1(t)dt,

and thus

In,m,k = 1

k + 1
Cn,m,k+1 − 1

k + 1
{nIn−1,m,k+1 + mIn,m−1,k+1}. (3.3)

We also see that it is a reasonable convention to set

In,m,k = 0 when min{n,m,k} < 0.

It will be convenient to deal with

Ĩn,m,k := 1

n!m!k! In,m,k, C̃n,m,k := 1

n!m!k! Cn,m,k. (3.4)

Then it is easily seen that (3.3) becomes

Ĩn,m,k = C̃n,m,k+1 − Ĩn−1,m,k+1 − Ĩn,m−1,k+1. (3.5)

Now we claim that for any μ � 1 we have

Ĩn,m,k =
μ−1∑
a=0

(−1)a
a∑

i=0

(
a

i

)
C̃n−a+i,m−i,k+a+1 + (−1)μ

μ∑
i=0

(
μ

i

)̃
In−μ+i,m−i,k+μ. (3.6)

This is best proved by induction. For μ = 1 it just reduces to (3.5). Now assume that (3.6) holds for some μ � 1, and let S
be the second sum in (3.6). Then by (3.5) we have

S =
μ∑

i=0

(
μ

i

)
C̃n−μ+i,m−i,k+μ+1 −

μ∑
i=0

(
μ

i

)̃
In−μ+i−1,m−i,k+μ+1 −

μ∑
i=0

(
μ

i

)̃
In−μ+i,m−i−1,k+μ+1

=
μ∑

i=0

(
μ

i

)
C̃n−μ+i,m−i,k+μ+1 −

μ∑
i=0

(
μ

i

)̃
In−(μ+1)+i,m−i,k+(μ+1) −

μ+1∑
i=1

(
μ

i − 1

)̃
In−(μ+1)+i,m−i,k+(μ+1).

The first of the three sums in this last expression adds the case a = μ to the double sum in (3.6), while the second and
third sums above combine, and we have exactly (3.6) with μ + 1 in place of μ. This completes the proof by induction.

Now we set μ = n + m + 1 in (3.6). Then each of the terms Ĩn−μ+i,m−i,k+μ vanishes since one of n − μ + i and m − i is
always negative. Thus the second sum in (3.6) vanishes, and with (3.4) and (3.6) we obtain the following evaluation of the
integral in (3.1).

Proposition 3. For all n,m,k � 0 we have

In,m,k

n!m!k! =
n+m∑
a=0

(−1)a
a∑

i=0

(
a

i

)
Cn−a+i,m−i,k+a+1

(n − a + i)!(m − i)!(k + a + 1)! . (3.7)
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Once again we note that a different type of evaluation is easily possible by an iterated use of the identity (2.14). We now
use (3.7) to obtain the known evaluation of the integral from 0 to 1 which we denote by In,m,k(1). To simplify notation we
set, in analogy to (3.4),

B̃n := 1

n! Bn.

This notation was also used in [5].

Corollary 1. (See Carlitz [3].) For all n,m,k � 1 we have

In,m,k(1) = (−1)k+1n!m!k!
n+m∑
a=0

[(
a

m − 1

)
+

(
a

n − 1

)]
B̃k+a+1 B̃n+m−a−1. (3.8)

Proof. With (3.2) and (2.3) we have for x = 1,

Cn−a+i,m−i,k+a+1 = (
(−1)n+m+k+1 − 1

)
Bn−a+i Bm−i Bk+a+1. (3.9)

So, clearly In,m,k(1) = 0 when n + m + k is odd, and this is consistent with the right-hand side of (3.8). On the other hand,
when n + m + k is even, then we get with (3.7),

In,m,k(1)

n!m!k! = 2
n+m∑
a=0

(−1)a+1 B̃k+a+1

a∑
i=0

(
a

i

)
B̃n−a+i B̃m−i . (3.10)

Now we use the fact that B1 = −1/2 and B2 j+1 = 0 for j � 1. If k is even, then a must be odd, and since n and m must
have the same parity, one of n − a + i and m − i is always odd. Similarly, if k is odd, then a must be even, and since n and
m must have different parities, again n − a + i or m − i is odd. The only nonzero terms therefore occur when i = m − 1 and
when i = a + 1 − n, which corresponds to the terms

−1

2

(
a

m − 1

)
B̃n+m−a−1 and

−1

2

(
a

a + 1 − n

)
B̃n+m−a−1

respectively, as only nonzero terms from the inner sum in (3.10). Hence the right-hand side of (3.10) has reduced to

n+m∑
a=0

(−1)a
[(

a

m − 1

)
+

(
a

n − 1

)]
B̃k+a+1 B̃n+m−a−1.

Finally, since n,m,k � 1, we need k + a + 1 even to get nonzero contributions to the sum, so we may replace (−1)a by
(−1)k+1. This completes the proof. �
Remark. The right-hand side of (3.10) differs from Carlitz’s result, but the two are equivalent. One could also sum over
every second value of a; however, we left the sum in the form (3.10) for greater simplicity and symmetry.

4. Some further consequences

We will now derive a few further easy consequences of Proposition 3. The following is obvious from the definition of
the integral In,m,k .

Corollary 2. Let Tn,m,k(x) be the right-hand side of (3.7), and let σ ∈ S3 , where S3 is the symmetric group of degree 3. Then for all
n,m,k � 0,

Tn,m,k(x) = Tσ (n),σ (m),σ (k)(x).

In some cases we obtain the following simpler statement.

Proposition 4. For n,m,k � 1 with n + m + k even, let

Un,m,k(x) :=
n+m∑
a=0

(−1)a Bk+a+1(x)

(k + a + 1)!
a∑

i=0

(
a

i

)
Bn−a+i(x)

(n + a + 1)!
Bm−i(x)

(m − i)! . (4.1)

Then for any σ ∈ S3 we have

Un,m,k(x) = Uσ (n),σ (m),σ (k)(x).
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Proof. Using the definition (3.2), we separate the Bernoulli numbers from the Bernoulli polynomials in (3.7). By (3.9)
and (3.10) the Bernoulli numbers add up to − 1

2 In,m,k(1)/(n!m!k!), and this sum is therefore independent of any permutation
of {n,m,k}. We can therefore delete the Bernoulli numbers component and rewrite the double sum with the remaining
Bernoulli polynomials in the same form as the right-hand side of (3.10). After dividing by −2 we get the expression in (4.1).
The result then follows from Corollary 2. �
Remark. As can be seen by (3.9), when n + m + k is odd, a connection between the double sum of Bernoulli numbers and
the integral In,m,k(1) cannot be established. In fact, examples show that the corresponding sum of Bernoulli numbers is not
invariant under all permutations. (However, the inner sum on the right of (3.10) shows that n and m can be interchanged.)
Accordingly, Proposition 4 is in general not true when n + m + k is odd.

Example.

7!U1,2,3(x) = 105B4(x)B2(x)B1(x) − 42B5(x)B1(x)2 − 21B5(x)B2(x) + 21B6(x)B1(x) − 3B7(x),

7!U3,1,2(x) = 140B3(x)2 B1(x) − 105B4(x)B2(x)B1(x) − 35B4(x)B3(x)

+ 42B5(x)B1(x)2 + 42B5(x)B2(x) − 28B6(x)B1(x) + 4B7(x).

By equating the two, simplifying, and dividing by 7, we obtain the cubic recurrence relation

B7(x) = −20B3(x)2 B1(x) + 30B4(x)B2(x)B1(x) + 5B4(x)B3(x) − 12B5(x)B1(x)2 − 9B5(x)B2(x) + 7B6(x)B1(x).

As this example shows, Proposition 4 is of a quite different nature from identities for sums of products of a fixed number
of Bernoulli polynomials that were obtained in [4].
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