Geoscience Frontiers 6 (2015) 605—615

Contents lists available at ScienceDirect

HOSTED BY

GEOSCIENCE
FRONTIERS

China University of Geosciences (Beijing)

Geoscience Frontiers

journal homepage: www.elsevier.com/locate/gsf

Research paper

Changing provenance of late Cenozoic sediments in the Jianghan Basin

A
@ CrossMark

Lei Shao*", Shengyuan Yuan ™€, Chang’an Li”>%*, Chunguo Kang¢, Wenjing Zhu',
Yindi Liu®, Jietao Wang "

2Wuhan Center of Geological Survey, China Geological Survey, Wuhan 430205, China

b Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China

€ College of Urban Planning & Environment Science, Xuchang University, Xuchang 461000, China
d State Key Laboratory of Biogeology and Environmental Geology, Wuhan 430074, China

€ Institute of Geophysics & Geomatics, China University of Geosciences, Wuhan 430074, China
fHubei Institute of Geological Sciences, Wuhan 430034, China

ARTICLE INFO ABSTRACT

Article history:

Received 13 November 2013
Received in revised form

2 April 2014

Accepted 17 April 2014
Available online 23 May 2014

The Yangtze River is one of the most important components of the East Asia river system. In this study,
sediments in the Jianghan Basin, middle Yangtze River, were selected for trace element and rare earth
element (REE) measurements, in order to decipher information on the change of sediment provenance
and evolution of the Yangtze River. According to the elemental variations, the late Cenozoic sediments
of the Jianghan Basin could be divided into four parts. During 2.68—2.28 Ma and 1.25—0 Ma, prove-
nance of the sediments was consistent, whereas sediments were derived from variable sources during
2.28—1.25 Ma. Comparison of the elemental compositions between the Pliocene and Quaternary
sediments revealed a change in sediment source from a more felsic source area to a more basic source
Jianghan Basin area around the Pliocene—Quaternary boundary. Input from the Emeishan LIP should account for this
Trace element provenance change. Based on the provenance analysis of sediments in the Jianghan Basin, we infer that
REE the Yangtze River developed into a large river with its drainage basin extended to the Emeishan LIP no
Provenance later than the Pliocene—Quaternary boundary.
© 2015, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. All rights reserved.
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1. Introduction originate. The process of orogeny is proposed to profoundly affect

the global climate system (An et al., 2001). So reconstructing the

Research of large rivers has been highlighted in recent years,
especially the rivers draining the southeastern Tibetan Plateau
(Brookfield, 1998; Clark et al., 2004; Clift et al., 2006, 20084, b; Yang
et al., 2006, 2007a; Liang et al., 2008; Kong et al., 2009; Shao et al,,
2012). These large rivers transport large amount of terrestrial ma-
terials to the marginal seas and thus are considered as important
linkage between the continents and oceans (Clift et al., 2004; Zheng
and Jia, 2009). Evolution of these large rivers can be correlated to
the uplift of the mountains and plateaus where these large rivers
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“Source to Sink” process of sediments from these rivers plays an
important role in understanding the global change and its regional
response.

The Yangtze River (Fig. 1) is typical not only because of its large
drainage area but also the complicated geological background. Its
drainage basin consists of complex strata from Archean to Qua-
ternary. The Emeishan Large Igneous Province is the typical basic
source in the upper Yangtze especially in the Jinshajiang valley.
Quaternary loose sediments and Paleozoic sedimentary rocks
widely outcrop in the middle—lower reaches of the Yangtze River
(Fig. 2). The Emeishan Large Igneous Province widely distributes at
the west margin of the Yangtze Craton. It occupies an area over
250,000 km? and is one of the most important igneous provinces in
the world (Xiao et al., 2004). As pointed by Yang et al. (2007a), it is
suffered strongly chemical weathering under the influence of hu-
mid and warm climate and thus should have much influence on the
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Figure 1. The Yangtze drainage basin and location of the Jianghan Basin and the Core Zhoulao (modified after Yang et al., 2007a; Zhang et al., 2008). A: The Yangtze drainage basin

with the location of the Sichuan Basin and Jianghan Basin. SC and JH denote the Sichuan Basin and Jianghan Basin respectively. B: A sketch of Chinese tectonic units. C: Simplified

geochemical composition of the river sediments. Thus, the
Emeishan LIP is important for discussing the provenance of the core
sediments in the Jianghan Basin and the evolution of the Yangtze
River. Study of the evolution of the Yangtze River has a long history
of more than 100 years (Willis and Blackwelder, 1907; Li, 1933; Li
and Zhang, 1997; Brookfield, 1998; Li et al., 2001; Yang and Li,
2001; Clark et al., 2004; Fan et al., 2005; Clift et al., 2006, 2008b;
Yang et al., 2006; Xiang et al, 2007; Huang et al., 2009; Kang

et al., 2009; Kong et al., 2009; van Hoang et al., 2009; Jia et al.,
2010; Richardson et al., 2010; Shao et al., 2012). Clark et al.
(2004) proposed that the Yangtze River was once the tributary of
the so called “paleo-Red River” draining into the South China Sea
and reorganized by sequential river capture and reversal events.
The Nd evolution in the Hanoi Basin showed that the middle
Yangtze (downstream of the first bend) was once important source
to the paleo-Red River and was lost from the paleo-Red River
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Figure 2. Regional geological map of the Yangtze River drainage basin (modified after Kang et al., 2009). It showed the complicated compositions of lithology in the Yangtze
drainage and the location of the largely distributed Emeishan basalts.
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between 37 and 24 Ma (Clift et al., 2006). Nd, Pb data and U-Pb
dating and Hf isotope analysis of zircons support the paleo-
drainage pattern that the Songpan-Garze terrain once belonged
to the paleo-Red drainage basin and was gone before 12 Ma or
maybe much earlier (Clift et al., 2006, 2008b; van Hoang et al.,
2009). However no compelling evidence for the connection be-
tween the upper Yangtze (upstream of the first bend) and the
paleo-Red River were found, but their data do not preclude this
possibility (van Hoang et al., 2009). Recently many important re-
searches based on the theory of “Source to Sink” have been carried
out in the Yangtze Delta and the Jianghan Basin to reconstruct the
evolutionary history of the Yangtze River. These authors used the
elemental compositions (Yang et al., 2006, 2007b; Huang et al.,
2009), isotopic compositions (Yang et al., 2007b), and age pat-
terns of monazite (Fan et al., 2005; Yang et al., 2006) and zircon (Jia
etal., 2010) to trace the source of the late Cenozoic sediments in the
Yangtze Delta. Their research provided direct evidence of evolution
of the Yangtze River and showed that the wide Yangtze drainage
basin similar as today’s dimension was formed mainly at the
beginning of the Quaternary. As revealed by rare earth element
(REE) and Neodymium isotopic compositions, the ancient Yangtze
River might have undergone different evolution phases under the
tectonic-climatic coupling controls (Yang et al, 2007b). Heavy
mineral compositions of sediments in the Jianghan Basin revealed
that the sediments after 1.1 Ma show stable heavy mineral com-
positions were similar as the modern Yangtze River (Kang et al.,
2009). Besides, magnetism parameters characters of these sedi-
ments were also similar to the modern Yangtze River (Zhang et al.,
2008). These researches argue that the provenance of the sedi-
ments in the Jianghan Basin has been the same as the modern
upper Yangtze River since 1.1 Ma. This change of provenance was
also identified in the Neodymium isotopic variations (Shao et al.,
2012). However, the Neodymium isotopic variations also recorded
the changing provenance around the beginning of the Quaternary
and unstable provenance of the early and middle Pleistocene sed-
iments. Therefore, more evidence is needed to decipher the prov-
enance implications recorded in the late Cenozoic sediments in the
Jianghan Basin.

The immobile elements, such as Y, Zr, Hf, Th, Sc, Co, Cr, REEs and
their ratios have been found to be least affected by geological
processes including weathering, transport and sorting. Thus, these
elements and their ratios can be useful indicators of provenance
(Taylor and McLennan, 1985; Fralick and Kronberg, 1997). Immobile
elements La and Th are relatively enriched in felsic igneous rocks
whereas Co and Sc are concentrated in mafic rocks. Thus, ratios
such as La/Sc and Co/Th could be used to make distinction between
felsic and basic sources. Just as mentioned above, the Emeishan LIP
is most typical basic source in the upper Yangtze drainage basin,
thus the elemental compositions could be used to identify the
provenance changes of the core sediments in the Jianghan Basin,
especially whether these sediments were influenced by the
Emeishan LIP. In this paper, sediments taken from the Core Zhoulao
in the Jianghan Basin were selected for elemental analysis. The
main purpose of our paper is to examine variations in elemental
compositions and identify the changing provenance of the late
Cenozoic sediments in the Jianghan Basin. Additionally, we try to
provide more constraints on the evolution of the Yangtze River.

2. River setting and study area

2.1. River setting and geological background of the Yangtze
drainage basin

The Yangtze River flows from west to east to debouch into the
East China Sea. It is located between 24°27'—35°44’ N and

90°33/—122°19' E (Fig. 1), with the drainage basin area of
1.94 x 10% km? (Chen et al., 2001). The huge Yangtze drainage basin
can be divided into three parts, the upper, middle and lower
reaches.

The upper Yangtze is from the source to Yichang, with an area of
100 x 10% km?. This section of the Yangtze River is joined by some
large tributaries: the Yalongjiang, Minjiang, Tuojiang, Jialingjiang
and Wujiang. Hydrological records reveal that most of the sediment
load in the Yangtze drainage basin is derived from the upper basin
(Chen et al., 2001).

The middle Yangtze is from Yichang to Hukou, jointed by the
Dongting Lake drainage basin, Hanjiang and Poyang Lake drainage
basin. The Hanjiang is the longest tributary and join the Yangtze
River at Wuhan.

The lower Yangtze is segment of the river below Hukou. Several
large interior lakes, such as the Chaohu Lake and Taihu Lake in
association with many tributaries, drain into the lower Yangtze
River. Quaternary loose sediments and Paleozoic sedimentary rocks
widely outcrop in the middle—lower reaches.

The Yangtze drainage basin consists of complex strata from
Archean to Quaternary (Fig. 2). Quaternary loose sediments
widely outcrop in the Jianghan Basin and its surrounding area.
Triassic flysh and Neoproterozoic—Permian passive margin sedi-
ments widely outcrop at the Longmenshan area. Paleozoic car-
bonate rocks, Mesozoic red clastic rocks and igneous rocks
largely distributed in the drainage basins of the Jinshajiang and
Wujiang rivers. In spite of the complex source rocks, the
Emeishan Large Igneous Province (Emeishan LIP), covers a large
area of over 250,000 km? (Xiao et al., 2004) is the typical basic
source in the upper Yangtze especially in the Jinshajiang valley. It
suffered strongly chemical weathering under the influence of
humid and warm climate and thus should have much influence
on the geochemical compositions of the river sediments. There-
fore, it should be a major supplier of basic sources to the Jian-
ghan Basin.
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Figure 3. Magnetic polarity and lithology of the late Cenozoic sediments in the Jian-
ghan basin. Data were collected from Zhang et al. (2008).
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Table 1

Trace element (in ppm) compositions of sediments in the Jianghan Basin.
Depth (m) Li Be Sc \% Cr Co Ni Cu Zn Ga Rb
8.50 41.59 234 13.96 112.15 91.12 16.20 42.88 46.80 82.12 18.13 115.46
26.00 36.17 2.26 12.62 112.10 85.40 27.02 46.84 35.84 85.30 16.32 103.90
38.10 37.96 2.08 13.34 107.13 89.28 16.66 41.92 31.34 80.34 16.60 104.68
46.00 36.23 213 12.49 108.96 82.88 35.22 50.43 37.31 97.24 15.28 86.71
53.00 34.69 1.96 12.93 115.05 75.50 24.72 45.84 34.46 84.99 16.61 94.14
56.30 39.69 233 14.01 117.07 87.77 29.22 57.07 36.11 96.55 17.68 100.30
62.00 45.83 239 14.55 133.79 92.01 26.85 59.56 38.06 107.13 18.34 119.90
72.00 37.04 1.99 12.23 93.99 75.74 13.53 35.67 54.07 70.26 14.79 90.88
82.00 40.13 2.03 12.58 97.16 82.10 16.52 43.03 45.55 7217 15.83 96.90
87.20 38.87 2.06 13.87 123.22 116.01 23.77 50.15 32.86 79.56 17.28 96.04
94.60 42.25 2.05 13.10 103.18 83.76 14.64 39.92 42.41 78.14 16.77 104.83
97.40 31.54 1.92 12.40 109.99 92.26 21.88 45.73 33.27 80.15 16.35 82.78
105.40 39.42 2.40 16.37 133.00 106.99 21.07 49.59 35.62 81.00 17.98 99.22
107.80 38.77 1.85 12.69 104.21 91.80 1545 44.05 44.24 74.70 14.94 89.04
117.60 33.04 1.81 12.84 118.65 90.21 27.36 5717 3717 76.54 15.21 85.10
121.00 34.48 1.80 11.77 87.60 80.59 13.06 38.06 39.55 65.14 13.72 88.69
122.10 43.24 2.05 12.52 98.68 78.30 15.25 42.04 61.40 80.74 15.82 103.35
129.80 25.68 1.84 10.02 82.30 63.44 14.03 30.37 40.75 65.58 12.17 87.47
132.10 34.35 1.84 11.99 91.91 76.21 14.25 37.59 38.54 76.96 14.84 94.87
137.80 38.05 2.79 14.10 118.18 81.45 25.25 56.54 32.75 89.87 16.99 95.21
143.00 32.22 1.76 13.19 122.90 109.19 21.20 48.51 32.54 78.91 15.72 85.04
148.30 32.85 1.86 12.15 134.18 91.68 30.03 58.14 33.33 82.39 16.05 83.67
151.00 32.50 1.70 13.24 127.46 98.68 23.77 54.66 40.73 76.27 16.11 83.61
155.00 34.14 2.04 17.88 167.75 111.56 23.62 56.93 37.99 82.33 16.77 8347
160.90 18.98 1.40 8.10 61.02 49.94 9.86 23.97 51.03 40.89 8.61 50.49
163.60 38.39 1.78 12.36 96.59 75.83 13.70 35.35 43.25 7143 14.12 87.99
167.20 35.05 245 15.17 125.93 98.86 21.11 47.30 26.83 82.28 18.78 89.22
170.00 39.69 1.76 12.56 98.13 77.28 15.20 39.71 44.07 76.34 14.99 93.89
173.70 30.18 1.67 14.00 126.25 118.38 22.65 54.11 27.77 81.37 15.76 75.63
179.20 35.22 1.92 10.79 76.86 60.94 12.22 28.21 36.77 60.69 12.52 93.25
183.80 43.09 1.79 11.04 88.92 70.47 11.45 29.17 73.77 76.11 15.67 110.71
193.70 20.35 1.22 11.39 91.02 137.24 11.96 31.02 26.91 56.11 12.91 65.05
198.60 41.10 1.87 12.20 92.02 85.80 13.00 37.85 39.90 69.60 14.60 96.50
205.00 34.70 1.88 13.60 120.00 111.00 20.70 55.65 30.70 80.20 15.40 82.20
208.20 27.60 1.60 14.15 121.00 115.00 22.05 55.60 24.02 73.70 13.80 65.30
214.80 17.60 143 10.80 103.00 72.58 22.90 46.30 20.70 61.90 11.60 54.80
233.50 29.00 1.76 12.40 119.00 90.10 21.05 49.50 33.30 81.10 15.20 83.10
243.30 33.60 1.83 13.40 117.00 97.30 19.00 49.30 29.10 78.30 16.20 86.60
254.70 34.30 1.90 14.60 134.00 102.00 21.60 50.30 23.90 78.60 17.20 84.10
266.10 32.30 232 13.10 115.00 99.70 19.30 45.40 40.90 87.40 16.60 87.70
271.40 32.50 2.18 11.30 91.60 101.00 12.70 36.10 26.50 67.50 14.10 78.80
279.40 33.80 1.98 11.70 105.00 88.00 16.90 43.10 24.80 72.50 15.70 89.90
286.00 40.00 3.75 13.90 121.00 88.40 45.00 106.00 81.70 101.00 18.80 107.00
287.00 37.90 2.46 11.60 97.50 79.60 16.20 51.80 61.90 91.90 15.80 101.00
296.00 26.50 142 11.30 97.80 122.00 13.30 43.60 27.20 63.20 14.40 74.60
300.00 26.10 1.55 11.20 88.70 126.00 12.30 36.70 23.51 57.60 12.70 66.90
Depth (m) Sr Y Zr Nb Cs Ba Hf Ta Pb Th U
8.50 183.95 28.35 198.51 16.18 7.62 529.28 5.26 1.18 19.62 12.22 2.53
26.00 22145 27.15 183.37 14.75 5.83 549.18 5.02 1.13 27.05 11.09 240
38.10 212.59 30.71 280.46 17.34 6.15 494.60 7.50 2.28 21.23 14.29 2.95
46.00 205.02 2935 258.51 14.98 6.38 508.69 6.92 1.10 29.37 13.77 2.79
53.00 247.28 25.84 186.79 15.56 4.80 543.07 497 1.15 21.43 11.38 243
56.30 215.58 30.04 265.49 17.79 6.11 564.00 7.16 1.32 26.54 12.45 2.84
62.00 168.41 29.25 248.93 17.77 7.59 521.99 6.49 1.30 24.03 12.20 2.70
72.00 190.39 30.00 200.24 15.42 5.98 371.40 5.22 1.11 19.30 11.89 2.68
82.00 177.44 28.82 208.72 15.35 6.62 390.73 5.47 1.11 19.22 12.02 2.71
87.20 217.47 30.75 29291 17.65 5.25 488.27 7.63 1.25 26.51 12.61 2.80
94.60 173.96 30.93 225.35 16.10 6.81 401.58 5.93 1.16 20.21 13.72 2.89
97.40 223.61 30.90 199.15 16.08 3.88 436.01 5.14 1.16 20.17 11.29 2.22
105.40 198.06 32.74 353.76 16.68 5.47 446.61 9.29 1.23 27.15 14.76 3.27
107.80 191.83 29.97 238.34 16.41 6.12 342.92 6.30 1.16 19.51 12.20 2.94
117.60 215.38 28.32 220.94 15.28 3.92 496.15 5.82 1.10 37.75 10.29 2.29
121.00 161.15 30.48 290.36 15.62 5.63 328.88 7.97 1.23 20.06 14.46 3.20
122.10 163.35 32.57 22293 16.18 7.13 371.04 5.95 1.27 22.53 14.10 3.15
129.80 159.55 23.65 251.12 12.48 427 500.36 6.62 0.78 18.94 18.84 3.02
132.10 185.36 30.24 238.00 16.61 6.01 461.27 6.30 1.25 19.01 13.21 2.94
137.80 173.25 27.45 265.36 15.05 5.42 466.33 6.95 1.12 2717 10.58 2.64
143.00 209.87 30.55 502.80 17.01 4.58 528.66 13.28 1.26 31.07 12.96 3.05
148.30 224.07 27.83 27734 16.75 4.19 498.66 7.25 1.21 23.95 11.26 2.21
151.00 225.07 27.31 27498 16.39 3.84 497.26 7.23 1.15 29.31 10.68 2.14
155.00 188.16 32.02 418.39 16.59 4.56 399.90 10.63 1.19 25.84 13.44 2.71
160.90 119.77 21.39 181.04 9.31 3.45 199.43 4.57 0.68 13.36 7.08 1.90
163.60 186.67 31.77 274.37 16.07 5.62 346.27 6.99 1.10 17.49 12.49 2.61
167.20 255.62 28.26 335.59 16.71 4.82 615.87 8.92 1.22 29.29 11.68 2.48



L. Shao et al. / Geoscience Frontiers 6 (2015) 605—615 609

Table 1 (continued )

Depth (m) Sr Y Zr Nb Cs Ba Hf Ta Pb Th U

170.00 167.99 30.75 237.04 16.18 6.08 349.76 6.19 1.16 19.55 13.77 2.71
173.70 252.86 28.32 398.97 16.25 3.74 668.12 10.23 1.23 25.84 10.39 2.46
179.20 48.79 30.30 404.76 17.19 7.02 315.36 10.62 1.36 21.26 15.46 3.26
183.80 55.99 31.94 479.71 17.61 8.28 349.80 12.82 1.43 28.37 17.95 3.54
193.70 133.05 36.45 924.38 17.09 3.51 282.40 24.05 1.26 17.32 17.08 3.49
198.60 149.07 32.49 37191 17.12 6.69 333.10 9.74 134 17.73 15.23 3.40
205.00 27712 27.21 339.05 16.28 4.32 712.06 8.71 1.18 22.47 11.34 248
208.20 460.10 26.94 347.00 15.49 3.39 1280.45 9.18 1.09 24.04 11.28 217
214.80 796.62 22.06 160.74 12.28 2.74 2216.94 437 0.89 24.62 6.73 143
233.50 337.05 26.25 197.69 15.13 4.29 87143 5.26 1.11 24.73 8.80 1.93
243.30 193.86 29.31 392.36 16.28 4.15 396.19 10.26 1.18 23.54 13.04 2.55
254.70 206.63 29.03 314.37 16.16 4.12 407.33 8.28 117 24.28 11.81 2.39
266.10 233.20 28.31 366.36 17.57 4.26 447.69 9.86 1.26 24.66 12.96 2.83
27140 132.34 32.01 483.49 17.06 4.80 378.97 12.78 1.23 18.30 12.53 3.22
279.40 179.37 29.58 279.23 15.45 441 411.07 7.27 111 23.19 10.22 2.41
286.00 83.32 33.30 216.45 15.82 8.15 303.67 5.78 1.19 4491 13.80 3.76
287.00 62.40 29.97 31.00 0.04 6.91 281.98 0.93 0.00 22.10 10.27 1.82
296.00 136.94 33.87 805.07 21.06 4.00 311.75 2117 1.55 18.83 16.49 3.63
300.00 183.34 43.09 746.99 19.80 3.49 290.51 19.13 142 17.84 18.15 3.73

2.2. Geological background of the Jianghan Basin and the late
Cenozoic sediments in Core Zhoulao

The Jianghan Basin is located between 29°26'—30°23’ N and
111°30'—114°32' E, in the middle Yangtze River (Fig. 1). It is a Cre-
taceous—early Tertiary rift basin, situated between the Qinling belt
on the north and the Sichuan—Yangtze belt on the south. The
Yangtze River runs through the Jianghan Basin from west to east.
Quaternary loose sediments widely outcrop inside the basin and its
surrounding area. Tectonic frameworks of the Jianghan Basin are
controlled by two groups of tensional normal faults lying NNW and
EW, respectively. The basin has subsided ever since the late
Cretaceous (Zhang, 1994). The Jianghan Basin is surrounded by hills,
the Dahong Mountain and Dabie Mountain on the north, the Mufu
Mountain on the east and Exi Mountain (Exi means the west Hubei
Province) on the west. Such a geological controlled basin is favor-
able to siltation (Yin et al., 2007). The thickness of the Neogene
deposits varies between 300 and 600 m while that of the Quater-
nary deposits varies within a range of 250—300 m (Li and Zhang,
1997). With continuous deposits ever since the late Cenozoic, the
Jianghan Basin provides ideal materials for the research of the
evolution of the Yangtze River.

The continuously drilled core (Core Zhoulao) was taken in the
Qianjiang Depression, at the depocenter of the Jianghan Basin. The
final drilling depth was 300.49 m, with the average recovery of 85%.
Zhang et al. (2008) reported the magnetic stratigraphic framework
of Core Zhoulao. The Brunhes/Matuyama boundary ( ~0.78 Ma) and
Matuyama/Gauss ( ~2.58 Ma) boundary were located at the depths
of 82 m and 260 m respectively. The Jaramillo (0.99—1.07 Ma) and
Olduvai (1.77—1.95 Ma) normal polarity subepoch were located at
the depths of 90—100 m and 154.99—164.37 m respectively, while
the Reunion normal polarity subepoch (2.14—2.15 Ma) was located
at the depth of 178.69—185.07 m. The Quaternary strata of the
Jianghan Basin primarily consist of fluvial facies interbedded with
lacustrine facies and comprise several major fining-upward and
coarsening-upward sediment sequences (Zhang et al., 2008, Fig. 3).

3. Materials and analytical methods
3.1. Sampling

A total of 46 samples were collected from the borehole sedi-
ments. Fine-grained clastic sediments can best reflect the average

composition of the large source area, so only the fine fraction
(<0.058 mm) was selected for the determination of trace and rare
earth element (REE) concentrations. The <0.058 mm fine fraction
was washed to remove salts and sieved from the bulk sediments
using a 250-mesh sieve in deionized water and dried at room
temperature in a clean oven. Then the dried samples were groun-
ded into powder <200 mesh with an agate mortar. Most of the
samples were previously analyzed for Nd isotopic compositions
(Shao et al., 2012).

3.2. Laboratory procedures

An aliquot of 50 + 1 mg of powdered sample was moistened
with a few drops of ultrapure water in a teflon bomb and added
with 1.5 mL HNO3 + 1.5 mL HF. The sealed bomb was heated at
190 + 5 °C in oven for >48 h. After the solution was evaporated at
140 °C to dryness, 1 mL HNO3 was added and the solution was
evaporated to dryness again. The resultant salt was re-dissolved by
adding 3 mL 30% HNO3 and heated in the bomb at 190 + 5 °C in
oven for >12 h. The final solution was transferred into a poly-
ethylene bottle and diluted to ~100 g with mixture of 2% HNOs3 for
ICP-MS analysis. Concentrations of trace and rare earth elements
(REE) were measured using an inductive coupled plasma mass
spectrometer (ICP-MS: Agilent 7500a) at the State Key Laboratory
of Geological Processes and Mineral Resources (GPMR), China
University of Geosciences. Analytical precision and accuracy were
monitored by standards AGV-2, BHVO-2, BCR-2 and RGM-1. The
results indicate that the relative deviations between measured and
certified values are generally less than 5% for most elements and
~10% for some transitional elements.

4. Results
4.1. Trace element

Table 1 presents trace elements concentrations of the sediments
from the Core Zhoulao. Generally, the trace elements show large
variations downward in Core Zhoulao (Fig. 4), with an average co-
efficient of variation of 23%. Some elements such as Sr, Zr, Ba and Hf
yield coefficient of variation higher than 50%. The element Zr shows
the highest coefficient of variation, concentration of which varies
between 31 and 924.4 ppm. While the element Y shows stable
concentration with a coefficient of variation of 12% (Fig. 5a).
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Figure 4. Depth variations of trace element concentrations in the <0.058 mm fraction of Core Zhoulao.

The upper continental crust (UCC) (Taylor and McLennan,
1985) normalized pattern for trace elements (average concen-
tration of each element is taken to represent the trace
elemental composition of the sediments in Core Zhoulao) in-
dicates that the sediments are depleted in Be, Ga, Sr and Ba. In
contrast to the above set of elements, the sediments show
enrichment of Li, Y, Hf, Ta, Nb, Zr, Cu, Zn, Cr, Co, and Ni
compared to UCC (Fig. 5b).

In order to make it easier to show the variations of the trace
element compositions, we divided the sediments into four parts
(Age of the sediments were presumed based on magnetic strati-
graphic framework of Core Zhoulao):

Part I (300—287 m, 2.77—2.68 Ma): Trace elemental composi-
tions are much different from the other parts. Some elements
are characterized by extremely high or low concentrations, such
as Be, Co, Ni, Cu, Pb and Nb.

Part II (287—205 m, 2.68—2.28 Ma) and Part IV (117-0 m,
1.25—0 Ma): Trace element compositions of sediments from
these two parts show similar and the least fluctuant variations.
Part III (205—117 m, 2.28—1.25 Ma): Most of the trace elements
from this part show the most fluctuant variations except Nb and
Ta.

4.2. Rare earth element (REE)

The REE concentrations of sediments from Core Zhoulao are
listed in Table 2 and Fig. 6. In Fig. 7 we show the chondrite (Anders
and Grevess, 1989) normalized REE pattern of the sediments from
the core. As might be expected, the chondrite normalized REE
patterns are characterized by steep light-REE (LREE) and relatively

flat heavy-REE (HREE), which are similar to those of UCC (Taylor
and McLennan, 1985).

In general, the total REE of the sediments ranges between 117.7
and 321.2 ppm with an average of 197.8 ppm. The ratios of LREE/
HREE in sediments vary from 5.79 to 11.73, suggesting that LREEs
are enriched when compared with HREEs. (La/Yb)y varies between
5.71 and 11.87, with an average of 8.23. (La/Sm)y varies between
2.72 and 4.52, with an average of 3.55, indicating medium LREE
fractionation.

Negative anomalies of Ce (6Ce) and Eu (0Eu) with large varia-
tions are present in the core sediments. The ¢Ce ratios range be-
tween 0.76 and 0.97, with an average of 0.83, indicating a slight
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Figure 5. Coefficient of variation (a) and UCC normalized trace element pattern (b) of
sediments from Core Zhoulao. CV denotes coefficient of variation. Data of UCC are
collected from Taylor and McLennan (1985). The average concentration of each
element is taken to represent the trace elemental composition of the sediments in Core
Zhoulao.
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Table 2
REE compositions of sediments in the Jianghan Basin. Eu anomaly (6Eu) is calculated by Eun/(Smy x Gdy)'/? and Ce anomaly (6Ce) by Cey/(Lay x Pry)'/?, with normalization to
chondrite. Chondrite values used are from Anders and Grevess (1989).

Depth (m) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er

8.50 33.93 69.40 8.05 30.38 6.05 1.32 5.66 0.83 4.84 1.03 2.79
26.00 34.02 80.54 8.31 32.18 6.23 1.35 5.60 0.90 5.02 0.98 2.88
38.10 39.46 77.96 9.23 34.25 6.98 137 6.11 0.91 534 1.10 3.08
46.00 38.74 87.51 9.27 36.70 7.27 1.38 6.51 0.98 5.45 1.01 2.96
53.00 34.64 71.85 8.27 31.03 6.37 1.42 5.64 0.81 4.66 0.94 2.56
56.30 36.12 72.80 8.50 32.04 6.45 1.40 5.93 0.89 5.23 1.10 3.02
62.00 36.50 74.13 8.65 33.23 6.88 1.46 6.05 0.88 4.98 1.07 2.84
72.00 36.02 71.55 8.25 30.87 6.39 1.34 5.73 0.84 5.05 1.06 2.84
82.00 34.77 70.29 8.14 30.21 6.28 1.31 5.69 0.84 4.87 1.04 2.81
87.20 38.31 75.41 8.84 3349 6.76 1.48 5.95 0.88 5.18 1.12 3.07
94.60 37.29 74.15 8.59 3225 6.55 1.40 6.00 0.88 5.17 1.09 293
97.40 35.66 71.27 8.36 31.64 6.63 1.44 5.97 0.86 5.16 1.09 2.89
105.40 45.62 91.07 10.79 40.45 8.06 1.62 6.83 0.99 5.75 1.18 3.20
107.80 36.56 73.55 8.71 3217 6.76 1.38 5.80 0.85 5.02 1.05 2.81
117.60 33.61 68.39 7.95 30.26 6.14 1.36 5.58 0.80 4.80 1.00 2.66
121.00 39.06 77.80 9.05 33.42 6.70 1.37 6.06 0.89 5.38 1.10 298
122.10 38.84 77.95 9.03 33.21 6.66 1.34 6.15 0.91 5.50 1.14 3.09
129.80 33.93 68.09 7.97 29.19 6.10 1.25 5.11 0.73 4.10 0.86 2.26
132.10 36.49 73.33 8.62 32.26 6.55 1.39 5.94 0.86 5.28 1.07 2.90
137.80 31.54 61.72 7.49 27.52 5.95 1.34 5.39 0.77 4.76 0.98 2.59
143.00 38.44 76.81 9.15 33.98 7.00 1.48 6.33 0.92 5.50 1.12 3.10
148.30 34.86 71.13 8.54 31.64 6.67 1.41 5.93 0.85 5.11 1.02 2.75
151.00 3747 74.60 8.92 32.96 7.02 1.51 5.90 0.84 5.00 0.99 2.69
155.00 43.77 86.49 10.47 39.17 8.18 1.70 7.07 1.00 5.94 1.18 3.27
160.90 25.18 47.19 5.71 2141 432 0.87 4.03 0.57 3.44 0.70 1.94
163.60 38.32 76.52 8.98 33.15 6.85 1.40 6.03 0.89 538 1.07 3.02
167.20 37.41 73.21 8.64 32.08 6.69 1.48 5.79 0.84 5.07 1.00 2.77
170.00 40.92 80.67 9.53 35.24 7.26 145 6.42 0.91 5.47 1.12 3.02
173.70 34.88 69.73 8.19 31.11 6.50 1.56 5.91 0.87 5.04 1.02 2.79
179.20 38.06 76.39 8.81 31.92 6.42 1.16 5.81 0.87 5.36 1.15 3.23
183.80 41.76 83.16 9.63 34.69 6.93 1.23 5.92 0.89 5.46 1.17 331
193.70 54.70 111.14 12.89 47.11 9.09 1.62 7.71 1.09 6.44 1.34 3.70
198.60 38.98 77.36 9.30 34.79 7.00 145 6.46 0.95 5.64 1.20 3.25
205.00 38.31 76.16 9.19 34.41 6.68 1.55 6.00 0.84 4.86 0.99 2.70
208.20 37.59 75.45 9.17 34.24 7.05 1.60 6.20 0.86 4.90 1.00 2.72
214.80 24.84 51.41 6.28 24.34 4.95 1.44 4.76 0.69 4.00 0.82 2.20
233.50 31.05 62.45 7.46 28.46 5.82 141 538 0.81 4.81 0.97 2.66
243.30 43.13 85.49 10.08 37.28 7.11 1.59 6.45 0.92 5.22 1.03 2.85
254.70 40.72 83.43 9.85 37.23 7.48 1.58 6.33 0.90 5.40 1.05 2.78
266.10 41.03 80.76 9.71 35.99 7.23 1.56 6.08 0.86 5.04 1.05 2.79
271.40 40.62 82.35 9.49 35.29 6.71 1.36 6.00 0.88 5.37 1.14 3.17
279.40 3441 67.83 8.12 30.18 6.02 1.37 5.34 0.83 5.19 1.06 2.85
286.00 51.13 235.55 13.94 53.30 11.75 242 9.42 1.37 7.83 1.44 3.73
287.00 38.03 74.12 8.98 33.77 6.86 1.39 6.11 0.87 5.07 0.98 2.52
296.00 57.78 116.22 13.70 50.40 9.47 1.79 7.45 1.07 6.06 1.25 3.52
300.00 57.00 114.63 13.56 49.91 9.89 1.76 8.23 1.21 7.19 1.49 4.20
Depth (m) Tm Yb Lu oCe 0Eu (La/Yb)n (Gd/Yb)n SREE

8.50 0.42 2.71 0.41 1.03 0.69 8.99 1.73 167.83
26.00 0.43 2.62 0.42 1.15 0.69 9.59 1.77 182.48
38.10 0.46 2.87 0.44 1.00 0.64 9.87 1.76 189.57
46.00 0.47 2.75 0.45 1.11 0.61 10.41 1.96 201.45
53.00 0.37 234 0.37 1.04 0.72 10.62 2.00 171.27
56.30 0.45 2.89 0.45 1.02 0.69 8.97 1.70 177.28
62.00 0.43 2.78 0.42 1.02 0.69 9.42 1.80 180.29
72.00 0.41 2.77 0.42 1.02 0.68 9.32 1.71 173.55
82.00 0.42 2.63 0.39 1.02 0.67 9.50 1.79 169.68
87.20 0.46 2.92 0.44 1.00 0.71 9.40 1.69 184.32
94.60 0.44 2.86 0.43 1.02 0.68 9.36 1.73 180.02
97.40 0.42 2.60 0.39 1.01 0.70 9.85 1.90 174.37
105.40 0.48 3.06 0.45 0.99 0.66 11.01 1.85 219.49
107.80 0.45 2.85 0.41 1.01 0.68 9.19 1.68 178.39
117.60 0.42 2.69 0.39 1.03 0.71 8.97 1.72 166.04
121.00 0.46 2.98 0.42 1.01 0.66 9.40 1.68 187.67
122.10 0.48 3.00 0.44 1.02 0.64 9.27 1.69 187.76
129.80 0.35 2.23 0.33 1.02 0.68 10.90 1.89 162.52
132.10 0.45 2.76 0.43 1.01 0.68 9.48 1.78 178.32
137.80 0.41 2.62 0.40 0.98 0.72 8.65 1.70 153.47
143.00 0.48 3.18 0.47 1.00 0.68 8.68 1.65 187.96
148.30 0.42 2.54 0.39 1.01 0.69 9.85 1.93 173.25
151.00 0.40 2.49 0.38 1.00 0.72 10.78 1.96 181.15
155.00 0.47 3.05 0.45 0.99 0.68 10.30 1.92 212.23
160.90 0.29 1.78 0.26 0.96 0.64 10.16 1.88 117.68

(continued on next page)



612 L. Shao et al. / Geoscience Frontiers 6 (2015) 605—615

Table 2 (continued )

Depth (m) Tm Yb Lu 0Ce O0Eu (La/Yb)n (Gd/Yb)n SREE

163.60 0.45 2.75 0.42 1.01 0.67 10.00 1.82 185.23
167.20 0.40 2.73 0.39 1.00 0.73 9.84 1.76 178.50
170.00 0.44 2.80 0.42 1.00 0.65 10.48 1.90 195.67
173.70 0.41 2.63 0.40 1.01 0.77 9.51 1.86 171.03
179.20 0.50 3.37 0.48 1.02 0.58 8.11 143 183.53
183.80 0.54 3.47 0.54 1.02 0.59 8.64 141 198.70
193.70 0.58 3.96 0.59 1.03 0.59 9.90 1.61 261.97
198.60 0.47 3.18 0.47 1.00 0.66 8.79 1.68 190.49
205.00 0.38 2.61 0.39 1.00 0.75 10.52 1.90 185.07
208.20 0.39 2.55 0.38 1.00 0.74 10.58 2.01 184.08
214.80 0.31 1.96 0.28 1.01 0.90 9.09 2.01 128.29
233.50 0.38 242 0.35 0.99 0.65 10.22 1.76 235.34
243.30 0.43 2.85 0.42 1.01 0.64 10.10 1.67 196.03
254.70 0.42 2.76 0.40 1.01 0.77 9.22 1.84 154.42
266.10 0.41 2.78 0.41 1.01 0.72 10.87 1.88 204.85
27140 0.52 3.26 0.50 1.02 0.70 10.59 1.90 200.32
279.40 0.43 2.84 0.41 0.99 0.72 10.60 1.81 195.70
286.00 0.60 3.85 0.54 1.03 0.65 8.94 1.52 196.64
287.00 0.36 2.15 0.30 1.00 0.74 8.68 1.55 166.88
296.00 0.56 3.71 0.57 1.01 0.65 11.17 1.66 273.54
300.00 0.66 433 0.67 1.01 0.60 9.44 1.57 274.73

depletion. Whereas, Eu shows a distinct depletion, with JEu ratios
ranging between 0.58 and 0.98.

Part I (300—287 m, 2.77—2.68 Ma): REE compositions are much
different from the other parts. Some samples are characterized
by extremely high REE concentration.

Part Il (287—205 m, 2.68—2.28 Ma) and Part IV (117—0 m,
1.25—0 Ma): REE compositions of sediments from these
two parts show similar variations, which are the least
fluctuant.

Part I11 (205—117 m, 2.28—1.25 Ma): Sediments of this part show
fluctuant REE concentrations.

5. Discussion

5.1. Provenance discrimination based upon trace element and REE
compositions

The immobile elements, such as Th, Sc, Co, REEs and their ratios
have been found to be at least affected by geological processes
including weathering, transport and sorting. Thus, these elements
and their ratios can be useful indicators of provenance (Taylor and
McLennan, 1985; Fralick and Kronberg, 1997). Immobile elements
La and Th are relatively enriched in felsic igneous rocks whereas Co
and Sc are concentrated in mafic rocks. Thus, ratios such as La/Sc
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Figure 6. Depth variations of REE concentrations in the <0.058 mm fraction of Core Zhoulao. Noticed that variations of the REEs are similar to those of the trace elements.
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and Co/Th could be used to make distinction between felsic and
basic sources.

Observation of the sediment lithology shows that the significant
trace element and REE compositions cannot be well correlated
with particular sediment lithology or its variation. Significant
geochemical variations still exist even among sediments with same
characters. Therefore changing sediment characters were not ex-
pected to affect the geochemical variations.

As shown by Fig. 8, the sediments below the depth of 287 m are
characterized by lower Co/Th and higher La/Sc ratios. It is evident
that lower Co/Th and higher La/Sc ratios in sediments indicate more
felsic source rock compositions in the provenances. Therefore we
infer that the sediments of the Core Zhoulao below the depth of
287 m primarily originated from more felsic sources whereas
sediments of the upper part were derived from more mafic sources.

Comparison between the Pliocene and Quaternary sediments
revealed the changing sediment sources from felsic provenances to
more basic provenances around 2.68 Ma. Similar provenance
change could also be found in the Yangtze Delta (Fig. 9). The
Yangtze drainage basin consists of complex strata from Archean to
Quaternary. Quaternary loose sediments widely outcrop in the
Jianghan Basin and its surrounding area. Triassic flysh and Neo-
proterozoic—Permian passive margin sediments widely outcrop at

10

¢ 300-287m
O 287-0m

Co/Th

La/Sc

Figure 8. Plots of Co/Th vs. La/Sc for sediments from Core Zhoulao. Sediments below
287 m could be separated from the other part, with lower Co/Th and higher La/Sc
ratios.

the Longmenshan area. Paleozoic carbonate rocks, Mesozoic red
clastic rocks and igneous rocks largely distributed in the drainage
basins of the Jinshajiang and Wujiang rivers. In spite of the complex
source rocks, the Emeishan Large Igneous Province (Emeishan LIP),
which covers a large area over 250,000 km? (Xiao et al., 2004) is the
typical basic source in the upper Yangtze especially in the Jin-
shajiang valley. It suffered strongly chemical weathering under the
influence of humid and warm climate and thus should have much
influence on the geochemical compositions of the river sediments.
Therefore, it should be a major source of mafic sediment to the
Jianghan Basin. The elemental compositions could not provide
compelling evidence for the detailed provenance of sediments
below the depth of 287 m. However, only the contribution of the
Emeishan LIP could induce the changing provenance from more
felsic to more mafic. So what can be confirmed is that the source
area of the sediments in the Jianghan Basin had extended to the
Emeishan LIP no later than the Pliocene—Quaternary boundary.

5.2. Constraint on the evolution of the Yangtze River

Previous studies proposed that the Yangtze River could be dated
back to the Cretaceous or the Tertiary (Li, 1933; Clift et al., 2006,
2008b; Huang et al., 2009; van Hoang et al., 2009; Jia et al., 2010;
Richardson et al., 2010), the early Quaternary (Li and Zhang, 1997,
Li et al,, 2001; Yang and Li, 2001; Yang et al., 2006, 2007b; Zhang
et al., 2008; Kang et al., 2009; Kong et al., 2009; Shao et al., 2012)
or the late Pleistocene (Brookfield, 1998; Chen et al., 2009).

As our borehole does not go deep enough, so it cannot provide
more details on the river evolution history before. Just as the dis-
cussion above, the trace element and REE compositions suggest the
provenance of sediments in the Jianghan Basin extended to the
Emeishan LIP no later than the Pliocene—Quaternary boundary.
Based on this we infer that the Yangtze River developed into a large
river similar as the modern Yangtze no later than the beginning of
the Quaternary. What needed to be declared is that we do not try to
prove a young birth to the Yangtze River, we just conclude that the
birth of the Yangtze River should predate the Pliocene—Quaternary
boundary.

Besides the Jianghan Basin, sediments in the Yangtze Delta also
recorded information on the evolution of the Yangtze River. Yang
et al. (2006) reported the elemental compositions and monazite
age patterns of sediments in the Yangtze Delta and proposed that
the Yangtze River developed into a large river similar to today’s
scale during the early Quaternary at >1.18 Ma. Huang et al. (2009)
also found that provenance of the sediments in the Yangtze Delta
had changed greatly from felsic sources to mafic sources since the
late Pliocene (approximately at 3.1 Ma). Research of the stepped
landforms in the Three Gorges area revealed that the ancestral
Yangtze River began to adjust its drainage network and ran through
the Three Gorges during 3.6 and 1.8 Ma (Li et al., 2001). These re-
searches are consistent with our research.

5.3. Changing patterns of erosion in the Yangtze valley

Sediments of Part II (287—205 m) and Part IV (117—0 m) show
stable and similar trace element and REE compositions (Figs. 2 and
4), indicating stable and similar sources of these sediments. It in-
dicates that the patterns of erosion were stable during those times.

Whereas, sediments of Part Il (205—117 m) show fluctuant trace
element and REE compositions (Figs. 2 and 4) indicating fluctuant
sources. Heavy mineral compositions of sediments in the Jianghan
Basin revealed that the sediments of Part IV (117—0 m) showed
stable heavy mineral compositions and were similar as the modern
Yangtze (Kang et al., 2009). Besides, magnetism parameters char-
acters of these sediments were also similar to the modern Yangtze
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River (Zhang et al., 2008). However, these researches provided little
information on the fluctuant sources of sediments of Part III
(205—117 m, 2.28—1.25 Ma) as revealed by the elemental compo-
sitions (this paper). Therefore geochemical compositions could
provide more constraints on the source of the Quaternary sedi-
ments in the Jianghan Basin. As discussed above, the source area of
the sediments in the Jianghan Basin had extended to the upper
valley including the Emeishan LIP no later than the Plioce-
ne—Quaternary boundary. Then the unstable provenance of the
sediments could only be explained as the result of the unstable
patterns of erosion in the drainage basin especially in the upper
Yangtze.

Sun (2005) reported loess provenance also had a pronounced
provenance shift across the Pliocene—Quaternary boundary, which
was attributed to increased erosion of Asian mountains caused by
colder climate. The possibility that more materials were input to
the Jianghan Basin from the Emeishan due to onset of the intensive
Northern Hemisphere glaciations cannot be excluded based on the
present data. However, the only way that the materials from the
Emeishan LIP could be delivered and deposited in the Jianghan
Basin was through the Yangtze River. It did show that the Emeishan
LIP had been part of the Yangtze drainage basin ever since the
Pliocene—Quaternary boundary.

Issues such as recycling, non-unique sources, and pre- and post-
depositional modifications may complicate interpretation of results
from individual provenance techniques. The best way to circum-
vent these issues in provenance studies is to use integrated
methods (Nie et al., 2012; Van Eynatten and Dunkl, 2012). In our
previous studies we have reported the Neodymium isotopic com-
positions of the late Cenozoic sediments in the Jianghan Basin
(Shao et al., 2012). The Nd isotopes show similar variations as the
elemental compositions reported in this study. It also recorded the
information on the provenance expansion around the Plioce-
ne—Quaternary boundary and the unstable patterns of erosion in
the upper Yangtze drainage basin during the early Pleistocene.

6. Conclusions

Trace element and REE compositions of the sediments from Core
Zhoulao in the Jianghan Basin were presented to identify the
provenance change and to provide useful constraints on the evo-
lution of the Yangtze River. According to the elemental variations,
the late Cenozoic sediments of the Jianghan Basin could be divided
into four parts. Comparison between the Pliocene and Quaternary
sediments revealed the changing sediment sources from more
felsic provenances to more basic provenances around the

Pliocene—Quaternary boundary. Input from the Emeishan LIP
should account for this provenance change. Based on this prove-
nance change, we infer that the Yangtze River developed into a
large river with its drainage basin extended to the Emeishan LIP no
later than the Pliocene—Quaternary boundary.
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