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a b s t r a c t

Starting from a well-known construction of polynomial-based interpolatory 4-point
schemes, in this paper we present an original affine combination of quadratic polynomial
samples that leads to a non-uniform 4-point scheme with edge parameters. This blending-
type formulation is then further generalized to provide a powerful subdivision algorithm
that combines the fairing curve of a non-uniform refinement with the advantages of a
shape-controlled interpolation method and an arbitrary point insertion rule. The result
is a non-uniform interpolatory 4-point scheme that is unique in combining a number
of distinctive properties. In fact it generates visually-pleasing limit curves where special
features ranging from cusps and flat edges to point/edge tension effects may be included
without creating undesired undulations. Moreover such a scheme is capable of inserting
new points at any positions of existing intervals, so that the most convenient parameter
values may be chosen as well as the intervals for insertion.

Such a fully flexible curve scheme is a fundamental step towards the construction of
high-quality interpolatory subdivision surfaces with features control.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Given a mesh of points, linear subdivision is a recursive process by which, at each step, new vertices are inserted as
linear combinations of the old ones. If the set of points computed at each refinement is retained at all the successive
ones, the scheme is said to be interpolatory since the given vertices will be also part of the limit shape. Interpolatory
subdivision is thus considered of great interest for applications because of its intuitive link with the starting mesh and
in recent years interpolatory subdivision curves and surfaces have become an important alternative to their parametric
counterpart.

This paper originates from our final intention of designing an interpolatory subdivision scheme for quadrilateral meshes
with arbitrary topology and lays the foundations of this futurework. To this aim,we aremainly concernedwith the definition
of refinement rules that fulfill three properties that any smooth interpolating scheme should possess to be of practical
use in modeling or reconstruction applications: (i) non-uniform parameterization, (ii) accurate features control and (iii)
the possibility of inserting points at arbitrary locations. The first of these requirements ensures a good quality of the limit
surface; the second one provides a greater design flexibility by allowing the generation of a number of special shape effects,
including cusps and creases; the last one is essential for tuning the scheme around extraordinary vertices.

As concerns the class of approximating subdivision schemes, there already exist several proposals in this direction, both
in the univariate and in the bivariate contexts [1–4]. The leading idea supporting these kinds of proposals consists in a
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natural generalization of non-uniform spline theory. In particular, the features control derives from the splines capability
of arbitrarily moving the knots in the knot-partition, up to include multiple knots, and the arbitrary point insertion trivially
generalizes the standard midpoint knot-insertion. Differently, as concerns the family of interpolatory schemes, since there
does not exist a compactly-supported refinable basis behind the derivation of this kind of refinement rules, features control
must be handled separately from non-uniform parameterization. Moreover, if compared to the approximating theory, also
the insertion of a new point corresponds to a quite different idea. In fact, whenever, at a certain refinement level, we insert
a new point at a location different from the midpoint of an edge, we modify the shape of the limit curve/surface. Hence, in
any situation, it is important to ensure that the overall quality of the interpolant is preserved.

In this framework, the present work is concerned with the definition of non-uniform, univariate, interpolatory
subdivision schemes including both features control as well as the capability of inserting points at arbitrary locations.While
formany years interpolatory subdivision schemes that appeared in the literaturewere limited to the uniform case [5,6], only
recently an increasing number of papers dealing with non-uniform interpolatory refinements were presented [7,8] and the
theoretical tools concerning their analysis were proposed [9,10]. The trend in these works is in exploiting the benefits of a
properly chosen parameterization to reduce the undesired undulations that naturally appear when interpolating unevenly
spaced data through the original Dubuc–Deslauriers’s 4-point scheme. However, so far, none of the available proposals
has concentrated on defining a variant of such a scheme that, besides incorporating the advantages of a non-uniform
parameterization, is capable of generating visually-pleasing limit curves where special shape effects, like cusps and flat
edges, can be included when desired.

The key idea behind the presentwork naturally emerges if we rewrite the existing polynomial-based 4-point refinements
in the form of a parameter-depending blending between the two quadratic polynomials interpolating the two consecutive
subsequences of three points having a pair of central vertices in common. Thanks to this formulation it is possible to work
out the refinement rules of a non-uniform 4-point scheme with edge parameters possessing several interesting properties.
First of all it comes out that such a scheme is the unique interpolatory 4-point scheme capable of producing a piecewise
polynomial curve passing through the initial vertices, even if they are not its samples. In particular, piecewise quadratic
polynomials that join C0 continuously at the given points can be automatically produced by a suitable setting of the edge
parameters, and piecewise C1 quadratic polynomials can be further obtained after a simple preprocessing step. Moreover,
by opportunely handling the edge parameters, it is also possible to include in the limit curve special shape effects ranging
from cusps and flat edges to point/edge tension effects.

As we will show, by generalizing the cited construction, it is also possible to include in the scheme the capability
of inserting new points at arbitrary locations, thus improving the visual quality of the limit curve, especially where the
points generated at each step turn out to be irregularly distributed. We also emphasize that the possibility of an arbitrary
point insertion is considered a fundamental step towards the generalization of a curve subdivision scheme to the bivariate
case [1,2]. In fact, it allows us to create a locally uniform configuration of points around a selected vertex, which may be
of crucial importance for tuning the surface in the vicinity of extraordinary points. While this issue will be analyzed in
a forthcoming paper, in this work we lay the foundations for the generalization of our interpolatory curve scheme with
edge parameters to surfaces on quadrilateral meshes. Although in the literature one may find proposals of approximating
subdivision schemes with features control [3,4], to our knowledge there are no interpolatory schemes providing intuitive
edge parameters for producing more flexible and various limit surfaces.

The remainder of the paper is organized as follows. Section 2 deals with non-uniform interpolatory 4-point subdivision
schemes. In particular, Section 2.1 contains the main basic notions and the needed background, while Section 2.2
presents a blending-type formulation of well-known polynomial-based interpolatory 4-point schemes, ranging from the
pioneers Dubuc–Deslauriers [5,6] to the non-uniform 4-point scheme in [9,8], and introduces the proposal of a novel
non-uniform 4-point scheme with edge parameters. Section 3 focuses on the latter and discusses all its characterizing
properties in detail. Section 4 addresses the attention towards the special features that can be achieved by the new
scheme and provides some examples of practical use. Successively, based on the proposed blending-type formulation,
Section 5 introduces a generalization of the previously presented refinement rules enriched by the flexibility of arbitrary
point insertion, which makes our algorithm an eligible candidate for many applications. Finally, Section 6 presents
some illustrations of surfaces with features control, obtained by generalizing the proposed curve scheme to regular
quadrilateral meshes. Concluding remarks and a brief summary of the main contributions of the paper can be found in
Section 7.

Many figures included in this work present some details that cannot be appreciated on a hard copy of the manuscript.
We thus invite the reader to refer to the electronic version of the paper and zoom in to enlarge the salient details as
necessary.

2. Non-uniform interpolatory 4-point subdivision schemes

2.1. Main definitions and related background

A subdivision scheme is an iterative algorithm aimed at producing curves or surfaces from given discrete data by refining
these on denser and denser grids. In the univariate functional case, starting with some initial points p = {pi ∈ R : i ∈ Z}

attached to a sequence of parameter values xi in ascending order, we set p0
≡ p, x0 ≡ x and then for all k ≥ 0we iteratively
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compute a sequence pk+1 by repeated application of the refinement rules

pk+1
i =

−
j∈Z

mk
i−2jp

k
j , i ∈ Z, (1)

defined in terms of the k-level coefficients {mk
i ∈ R, i ∈ Z} forming the so called k-level subdivision mask mk. Notice that,

in general, the k-level coefficients mk
i depend on the parameterization xk of the k-level polyline of vertices pki . Additionally,

in practice, any mask mk has finite support S for all k ≥ 0 and thus the k-level refinement rules (1) can be viewed as
multiplication of a local subdivision matrix Mk whose columns are given by the masks mk, times a column vector with
elements pki where i ∈ S.

By the subsequent application of the subdivision operators Mk, k ≥ 0, we see that the subdivision process generates
denser and denser sequences of data so that a notion of convergence can be established by taking into account the
piecewise linear function Lk that interpolates the values pki in correspondence to the parameters xki , namely Lk(xki ) = pki ,
L(k)

|
[xki ,x

k
i+1]

∈ Π1, i ∈ Z, k ≥ 0, where Π1 is the space of linear polynomials. If the sequence {Lk, k ≥ 0} converges, then

we denote its limit by Fp := limk→∞ Lk and say that Fp is the limit function of the subdivision scheme based on the rule (1)
for the initial data p.

An equivalent description of convergence investigates the existence of the so called basic limit function as the limit of
the subdivision scheme when applied to the initial data (xh, δh,i), h ∈ Z. If this is convergent with limit Fδi , then we have
Fp(t) =

∑
i∈Z Fδi(t) pi, t ∈ R, for any initial data sequence p.

In the stationary case, namely when the coefficients mk
i do not vary with the refinement level k, then Mk

≡ M for all
k ≥ 0 and many properties of the basic limit function can be deduced from the eigenstructure of M . For a more detailed
description of the fundamental notions at the base of subdivision theory, we refer the reader to [11].

An interesting class of subdivision schemes is that of the so called interpolatory schemes. These refine the sequence p
while keeping the original data in the sense that for all k ≥ 0 it holds pk+1

2i = pki , i ∈ Z. Their refinement mask mk is of a
special type since it has the even index subsequence (mk)even := {mk

2i, i ∈ Z} that satisfies (mk)even = δ0. Whenever they
converge, the associated limit functions are cardinal interpolants to the given data, i.e. Fp(xi) = pi, i ∈ Z and their basic
limit function Fδi is a cardinal interpolant to the sequence δi, i.e. Fδi(xh) = δh,i, h ∈ Z.

When the odd index subsequence of the interpolatory mask (mk)odd := {mk
2i+1, i ∈ Z} contains exactly 4 coefficients,

the interpolatory scheme is termed 4-point and if these coefficients change with the location of the newly inserted point
the scheme is said to be non-uniform. For the sake of simplicity and clarity, hereinafter we will denote this sequence of
4 coefficients by ck0,i, ck1,i, ck2,i, ck3,i. This notation allows us to write the refinement rules of an interpolatory non-uniform
4-point scheme in the general form

pk+1
2i = pki

pk+1
2i+1 = ck0,ip

k
i−1 + ck1,ip

k
i + ck2,ip

k
i+1 + ck3,ip

k
i+2.

2.2. A blending-type formulation of polynomial based interpolatory 4-point schemes

In the last two decades interpolatory subdivision schemes have gained great popularity and proposals of 4-point schemes
with an insertion rule pk+1

2i+1 obtained by evaluating locally fitted polynomials at a certain parameter value, have appeared as
advantageous alternatives to the well-established parametric interpolating models. These schemes, also called polynomial
based interpolatory 4-point schemes, can be presented in many different guises. For example, it is known that the insertion
rule of the Dubuc–Deslauriers 4-point interpolatory scheme [5,6] comes from fitting a local cubic polynomial to four
successive equispaced data points and evaluating this at the center of the interval. Since this is a peculiarity that univocally
identifies this proposal, in the followingwewill refer to such a scheme as the uniform polynomial based interpolatory 4-point
scheme.

It is well known (see for example [12]) that the insertion rule of such a scheme can also be derived by following an
alternative approach based on quadratic interpolation, which is actually a special case of Neville–Aitken’s algorithm [13].
More precisely, denoting by pi−1, pi, pi+1, pi+2 a quadruple of points attached to the integer grid, ifwedetermine the quadratic
polynomials Bi−1(x) and Bi(x) interpolating the triples pi−1, pi, pi+1 and pi, pi+1, pi+2 respectively, and then compute the
average between the center points of the corresponding curve segments that are confined between pi and pi+1, we can
equivalently get the rule of the Dubuc–Deslauriers 4-point scheme.

The described construction can be straightforwardly extended to a sequence of four arbitrarily spaced points pi−1, pi, pi+1,
pi+2 with corresponding parameter values xi−1, xi, xi+1, xi+2, by generalizing the average between the center points of the
two quadratic segments to an affine combination with coefficients 1 − γ , γ , where γ =

1
2
xi+1−2xi−1+xi

xi+2−xi−1
. As a result, we get

the stencil of the non-uniform 4-point scheme in [9,10]. Because of its analogy with the Dubuc–Deslauriers 4-point scheme,
this last proposal will be called the non-uniform polynomial based interpolatory 4-point scheme.
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The above construction procedure implies that, whenever the starting points are uniformly sampled from a cubic
polynomial, the uniform polynomial based interpolatory 4-point scheme reproduces that polynomial. Analogously the non-
uniform polynomial based interpolatory 4-point scheme reproduces the sample polynomial, when applied both to the
sample points and the corresponding parameters.

The objective of this section is to show that, by losing one degree of polynomial reproduction in a polynomial based
4-point scheme (namely settling for reproducing quadratics instead of cubics), we can generate a family of subdivision
schemes whose refinement rules incorporate a free parameter that can be intuitively modified to get limit curves with
features control.

In the remainder of the paper we will adopt the following notation. Let p = {pi} be the initial polyline and x = {xi} the
associatedparameterization.Wewill indicate byBi(x) the quadratic polynomial (written in theBernstein basis) interpolating
the triple pi, pi+1, pi+2 at the corresponding parameter values xi, xi+1, xi+2, namely

Bi(x) = pi(1 − ξ)2 +
pi+1(xi+2 − xi)2 − pi(xi+2 − xi+1)

2
− pi+2(xi+1 − xi)2

2(xi+1 − xi)(xi+2 − xi+1)
2ξ(1 − ξ) + pi+2ξ

2

with ξ =
x − xi

xi+2 − xi
, (2)

and we will denote by x̄i :=
xi+xi+1

2 the midpoint of the i-th parameter interval.
Given the four subsequent initial points pi+h and parameters xi+h for h = −1, 0, 1, 2 we consider an affine combination

of the polynomial values Bi−1(x̄i) and Bi(x̄i) of the form

C(λi) = (1 − ω(λi))Bi−1(x̄i) + ω(λi)Bi(x̄i). (3)

We will call the value λi ∈ [0, 1], associated with the i-th edge pipi+1, the edge parameter. Moreover we require that the
blending function ω(λ) satisfies

(a) ω : [0, 1] → [0, 1];
(b) ω(0) = 1 and ω(1) = 0;
(c) ω is monotonically decreasing;
(d) ω is regular (at least C1);

(e) ω is an odd function with respect to the point

1
2
,
1
2


.

(4)

To our aims, conditions (b) and (c) above are equivalent to

(bb) ω(0) = 0 and ω(1) = 1;
(cc) ω is monotonically increasing;

since the expression in (3) will give us the same values in correspondence to 1 − λi.

Fig. 1. Different choices of functions ω(λ) satisfying the requirements (4).

Fig. 1 shows different choices of functions ω(λ) satisfying (4), whose derivation will be discussed in Section 5. Notice
that Eq. (3) describes a whole family of affine combinations, where each member of the family is identified by a different
function ω(λ) that fulfills the above list of requirements.
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Fig. 2. Limit curves obtained by setting the edge parameter λ4 to the values: 1 (green curve), 5
6 ,

2
3 ,

1
2 (blue curve), 1

6 , 0 (red curve). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

In this way, assuming p0i+h := pi+h, x0i+h := xi+h for h = −1, 0, 1, 2 and λ0
i := ω(λi), for all k ≥ 0 we can derive the

k-level refinement rules of an interpolatory 4-point scheme as

pk+1
2i = pki

pk+1
2i+1 = C(λk

i ) = ck0,ip
k
i−1 + ck1,ip

k
i + ck2,ip

k
i+1 + ck3,ip

k
i+2

(5)

where the coefficients ckj,i, j = 0, 1, 2, 3 turn out to possess the following expressions

ck0,i := c0(λk
i , d

k
i−1, d

k
i , d

k
i+1) = −

(1 − λk
i )(d

k
i )

2

4dki−1(d
k
i−1 + dki )

ck1,i := c1(λk
i , d

k
i−1, d

k
i , d

k
i+1) =

(1 − λk
i )(d

k
i )

2
− λk

i d
k
i (d

k
i−1 + dki+1) + dki d

k
i+1

4dki−1(d
k
i + dki+1)

+
1
2

ck2,i := c2(λk
i , d

k
i−1, d

k
i , d

k
i+1) =

λk
i (d

k
i )

2
− (1 − λk

i )d
k
i (d

k
i−1 + dki+1) + dki−1d

k
i

4dki+1(d
k
i−1 + dki )

+
1
2

ck3,i := c3(λk
i , d

k
i−1, d

k
i , d

k
i+1) = −

λk
i (d

k
i )

2

4dki+1(d
k
i + dki+1)

.

(6)

Assuming d0j := x0j+1 − x0j for j = i − 1, i, i + 1, the parameters dki−1, d
k
i , d

k
i+1 represent three consecutive knot intervals

related to the k-level refinement and λk
i is the parameter of the edge pki p

k
i+1.

In general, if not fixed independently of the refinement level, at the k-th iteration both the values of the knot-intervals
dki and the edge parameters λk

i should be computed according to a suitable method. Of course, this choice will influence the
linearity and stationarity of the scheme as well as the properties of the limit function.

In order to guarantee that (6) identify a linear and stationary subdivision process, we will use an updating strategy to
deduce the k-level knot-intervals and edge parameters from those at level 0. In particular, in the sequel for all k ≥ 0 the
knot-intervals will be updated according to the formula

dk+1
2i = dk+1

2i+1 =
dki
2

(7)

and the edge parameters will be defined as
λk+1
2i =

1
2

λk+1
2i+1 = λk

i

if λk
i <

1
2
, (8)

and λk+1
2i = λk

i

λk+1
2i+1 =

1
2

if λk
i ≥

1
2
. (9)

Through the refinement process, the behavior of the parameters λk
i can be understood as follows. At subdivision level k = 0

the edge parameter λ0
i := ω(λi) is assigned to the edge pi pi+1. Then, at the successive step k = 1 the edge pi pi+1 is split into

the two edges p12i p
1
2i+1, p

1
2i+1 p12i+2 and, according to (8)–(9), λ1

2i will inherit the edge parameter value λ0
i if λ

0
i ≥

1
2 , otherwise

the edge parameter λ0
i will be assigned to λ1

2i+1. In this way the chosen updating rule provides a linear subdivision process.
Fig. 2 shows the limit curves of the scheme corresponding to ω(λ) = 1 − λ for different values of λ4 (edge parameters

λi on the other edges are set to the value 1
2 ). We observe that, if λ4 > 1/2, in the vicinity of vertex p1 the limit curve is more

‘spiky’, otherwise it is more ‘rounded’.
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Remark 1. If the parameters xi are uniform and λi =
1
2∀i, since by the definition of the scheme any ω(λ) satisfies condition

(e) in (4), λ0
i =

1
2∀i; then relations (7)–(9) imply that dki = d and λk

i =
1
2 for all k > 0 and the coefficients in (6) coincide

with the Dubuc–Deslauries 4-point scheme [5,6].

3. Properties of the polynomial-based interpolatory 4-point scheme with edge parameters

In this section we analyze the analytic properties of limit curves generated by the family of polynomial-based schemes
given by Eqs. (5)–(6), concerning support width, polynomial precision, approximation order and smoothness.

Proposition 1 (Support Width). Let Fδi the basic limit function of the non-uniform 4-point scheme centered at xi, namely the
limit function of the rules (5)–(6) applied to the data (xh, δh,i), h ∈ Z. Then Fδi has support S = [xi−3, xi+3].
Proof. Since the mask of the scheme is of finite support, by definition, the basic limit function Fδi has compact support and
its width is

S =


xi−2 −

+∞−
k=1

xi−2 − xi−3

2k
, xi+2 +

+∞−
k=1

xi+3 − xi+2

2k


= [xi−3, xi+3]. �

Proposition 2 (Polynomial Precision in the Non-Uniform Setting). For any initial set of edge parameters {λi}i∈Z the non-
uniform 4-point scheme (5)–(6) reproduces the set Π2 of polynomials up to degree 2 whenever applied to any sequence of
arbitrarily spaced samples.
Proof. Let pki+h, h = −1, 0, 1, 2 the samples of a quadratic polynomial P (x) at the parameters xi+h. Since the scheme (5) is
interpolatory, we should just verify that the point pk+1

2i+1 belongs toP (x). To this aim recall that pk+1
2i+1 is computed by applying

Eq. (3) to the i-th interval [xi, xi+1], where Bi−1(x) and Bi(x) are interpolating quadratic polynomials given by (2), and thus
Bi−1(x) = Bi(x) = P (x). Hence, by applying formula (3), we trivially get pk+1

2i+1 = P (x̄i). �

Proposition 3 (Polynomial Precision in the Uniform Setting). The non-uniform 4-point scheme (5)–(6) reproduces the set Π3 of
polynomials up to degree 3 whenever applied to evenly-spaced samples, provided that λi =

1
2 , ∀i.

Proof. This result follows from the fact that, in the uniform setting, the refinement rules (5)–(6) reduce to Dubuc’s 4-point
scheme (see Remark 1). �

As it is well known, under certain conditions, the exactness of a non-uniform subdivision scheme for polynomials up to
degree m is necessary and sufficient for achieving an approximation order m + 1 for any function which is smooth enough
(see e.g. [14,15]). Thus the following result holds.

Corollary 1 (Approximation Order). The non-uniform 4-point scheme with coefficients in (6) has approximation order 3.

Proposition 4. The non-uniform 4-point scheme with edge parameters λi−1 = 0 and λi = 1 generates a limit curve that
between the knot values xi−1, xi+1 coincides with the quadratic polynomial Bi−1(x) interpolating the points (xi−1, pi−1), (xi, pi),
(xi+1, pi+1).
Proof. We start by observing that, at refinement step k = 1, the two points inserted on the intervals [xi−1, xi] and [xi, xi+1]

both belong to Bi−1(x).
To this aim, let us first analyze the effect of setting the edge parameter λi−1 = 0 on the initial edge between xi−1

and xi. Since for any function ω(λ) that satisfies condition (b) in (4) we have ω(λi−1) = ω(0) = 1, it follows that
p12i−1 = C(λi−1) = Bi−1(x̄i−1) and thus the point inserted along the considered edge belongs to the quadratic polynomial
Bi−1(x). In a similar way, it can also be proven that the new point p12i+1, inserted on [xi, xi+1], belongs to Bi−1(x).

Suppose now that, after k > 1 iterations of the scheme, all the points inserted between xi−1 and xi+1 belong to Bi−1(x).
Then we will prove that all the new points inserted at the successive refinement level k + 1 still belong to Bi−1(x).

Let us first focus on the initial span [xi−1, xi]. After k steps, the considered edge has been split into 2k new edges. Recalling
the updating relation (9), it turns out that the first of these edges — i.e. the edge containing the initial vertex xi−1 = xk

2k(i−1)

— has an edge parameter λk
2k(i−1)

= 1, while for the others λk
i =

1
2 . For the first edge, we have λk

2k(i−1)
and thus, by repeating

the procedure above, it can be easily seen that the newly inserted point belongs to Bi−1(x). For all the other 2k
−1 edges, since

the insertion formula (5) involves only points of the polynomial Bi−1(x), the thesis is straightforward (see Proposition 2).
Analogously, ifwenowmove to consider the edge [xi, xi+1], the updating relation (8) implies that only the edge containing

the point xi+1 = xk
2k(i+1)

has edge parameter λk
2k(i+1)−1

= 0 and the same arguments as above hold.
To conclude, for all k > 0, all the new points inserted between xi−1 and xi+1 belong to Bi−1(x) and thus, in the considered

interval, the limit curve reproduces the entire polynomial Bi−1(x). �

We conclude this section by analyzing the smoothness properties of the proposed non-uniform 4-point subdivision
scheme.

To this aim we start by observing that, after a few rounds of subdivision, the knot intervals in the neighborhood of any
initial point xi assume a piecewise-uniform configuration of the kind . . . , 1, 1, 1, α, α, α, . . . where α > 0 (see Fig. 3).
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Fig. 3. Knot-interval configuration in the neighborhood of the initial knot xi after k and k + 1 iterations of the non-uniform 4-point scheme.

Thus the parameters 1 and α identify two adjacent uniform regions, whose junction point is represented by the vertex xi.
By relations (8)–(9), in the uniform regions the edge parameters assume everywhere the common value λk

i = 1/2, except
possibly at those edges containing xi. As a consequence, away from the junction point xi, the non-uniform 4-point scheme
brings back to the uniform 4-point scheme [6], which is known to be C1. Thus, we only need to analyze the smoothness of
the scheme in the regions surrounding the junction points.

To this purpose, we will rely on a generalization of the analysis in [10], concerning binary refinements defined over
non-uniform knot sequences that are halved at each step. Differently from [10], in the neighborhood of the junction points,
we need to take into account both the local knot intervals dki -s and the edge parameters λk

i -s. However, when using the
parameter updating strategy in (7), the scheme is still stationary, namely the same refinement matrixMk

≡ M for all k ≥ 0
is applied at each iteration around the point xi. In particular, it can be easily proven that, for each eigenvalue ℓi of M with
eigenvector ri, the basis function Fri of the scheme satisfies

ℓiFri(x) = Fri

 x
2


. (10)

Therefore, the following result holds true, analogously to Theorem 7 in [10].

Proposition 5. Let Mx = ℓx, with |ℓ| < 1
2k
. If Fri(x) is C

k-continuous everywhere except at x = 0, then Fri is C
k-continuous

everywhere.

A consequence of this proposition is that, if the scheme satisfies relation (10) and the two leading eigenvectors reproduce
the constant and linear functions — which is true by construction of the scheme — the conditions

ℓ0 = 1, ℓ1 =
1
2
, |ℓi| <

1
2
, ∀i ≥ 2 (11)

are sufficient to guarantee C1-smoothness of the scheme. Thus, we can prove the following result.

Proposition 6 (Smoothness Order). The non-uniform 4-point scheme generates C1-continuous limit curves for any choice of
initial knots {xi}i∈Z and edge parameters {λi}i∈Z such that two subsequent initial edges do not assume at the same time the values
λi−1 = 1 and λi = 0. In this case the limit curve will be only C0 at the point pi.

Proof. Without loss of generality, we will assume the junction point of the two regular knot sequences obtained after
k > 2 subdivision steps to be xi = 0. From the above discussion, the non-uniform 4-point scheme is C1-continuous
everywhere except at the point xi = 0. Thus we only need to analyze the eigenproperties of the local subdivision matrix in
the neighborhood of xi = 0. For the sake of generality, we will consider a local subdivision matrix M of the most general
form (namely involving a different edge parameter λk

i for each stencil), even if, when the updating rules are the ones in
(8)–(9), the matrix assumes a simplified structure. In particular,

M =



c0(λ
k
i−2, 1, 1, 1) c1(λ

k
i−2, 1, 1, 1) c2(λ

k
i−2, 1, 1, 1) c3(λ

k
i−2, 1, 1, 1) 0 0 0

0 0 1 0 0 0 0
0 c0(λ

k
i−1, 1, 1, α, ) c1(λ

k
i−1, 1, 1, α) c2(λ

k
i−1, 1, 1, α) c3(λ

k
i−1, 1, 1, α) 0 0

0 0 0 1 0 0 0
0 0 c0(λ

k
i , 1, α, α) c1(λ

k
i , 1, α, α) c2(λ

k
i , 1, α, α) c3(λ

k
i , 1, α, α) 0

0 0 0 0 1 0 0
0 0 0 c0(λ

k
i+1, α, α, α) c1(λ

k
i+1, α, α, α) c2(λ

k
i+1, α, α, α) c3(λ

k
i+1, α, α, α)


and thus, by substituting formulas (6) above

M =



λk
i−2 − 1

8

3(2 − λk
i−2)

8

3(1 + λk
i−2)

8
−

λk
i−2
8

0 0 0

0 0 1 0 0 0 0

0
λk
i−1 − 1

8

3(1 + α) − λk
i−1(2 + α)

4(1 + α)

3α + λk
i−1(2 + α)

8α
−

λk
i−1

4α(1 + α)
0 0

0 0 0 1 0 0 0

0 0 −
α2(1 − λk

i )

4(1 + α)

2(2 + α) − λk
i (1 + 2α)

8

2 + α + λk
i (1 + 2α)

4(1 + α)
−

λk
i
8

0

0 0 0 0 1 0 0

0 0 0
λk
i+1 − 1

8

3(2 − λk
i+1)

8

3(1 + λk
i+1)

8
−

λk
i+1
8


. (12)
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Using the symbolic computation program Mathematica, it can be easily verified that, for all possible edge parameters
configurations—except for the case λi−1 = 1 and λi = 0—the eigenvalues of M satisfy the necessary C1 conditions (11).
Conversely, the local subdivisionmatrixM in (12) with λi−1 = 1 and λi = 0, generates the eigenvalues ℓ0 = 1, ℓ1 = ℓ2 =

1
2 ,

|ℓi| < 1
2∀i ≥ 3. In this case the eigenvalues ℓ1 and ℓ2 have two linearly independent eigenvectors,

r1 =

[
0, 0, 0, 0,

1
3
,
2
3
, 1

]
, r2 = [ 3, 2, 1, 0, 0, 0, 0 ]

causing the scheme to be C0 at the junction point xi = 0. �

4. Features control and special behaviors

One of themain contributions of this paper consists in introducing a new formulation for the construction of non-uniform
4-point schemes with edge parameters that allows us to provide an efficient method for generating flexible and various
shapes passing through a given set of points.

It is important to observe that, even though with respect to the polynomial based 4-point schemes we have reduced the
polynomial reproduction degree by one, we do not lose quality in the limit curves. In fact, as we have experienced in [7],
the underlying non-uniform parameterization is sufficient to guarantee a satisfactory approximation to the initial data. On
the other hand, relaxing the constraints on the polynomial reproduction degree as described, allows us to incorporate the
edge parameters λi-s in the coefficients of the scheme. As we will show in this section, the edge parameters can be properly
set to include special features in the limit curve, extending the applicability of this interpolation method to many practical
contexts. In particular, with the term features we indicate a number of different curve shape effects and special behaviors
that can be classified into the following groups:

• generation of polynomial curves and piecewise polynomials;
• tension effects focused on prescribed vertices or edges;
• C0 effects (cusps);
• subsequent flat edges, i.e. degenerating to one or more line segments;
• automatic handling of open curves.

While in the class of approximating subdivision there exist schemes managing these special shape effects [3,4], to our
knowledge this is the unique interpolatory scheme with such capabilities.

In this section, we describe in detail how the edge parameters λi in formulas (6) should be handled, in order to specify
prescribed features in the limit curves. The proposed examples refer to the subdivision scheme with ω(λ) = 1 − λ.

4.1. Piecewise continuous quadratic interpolation

Usually, when we say that a uniform or non-uniform interpolating scheme reproduces polynomials, we mean that the
refinement process converges in a certain span to a polynomial when a sufficient number of starting points in that span lie
on it. This is also the case e.g. of the schemes [9] or [8], that, in this sense, reproduce cubic polynomials.

Differently, the scheme (5)–(6) is capable of producing a piecewise continuous quadratic curve even if the starting points
are not sampled from a quadratic. This is a straightforward consequence of Proposition 4. In fact, if on any number of initial
edges we set the parameters λi alternating the values 0 and 1 on successive edges, the corresponding limit curve will consist
of a sequence of quadratic polynomials, each one corresponding to two initial edges, with a continuous join between them.
The two following special behaviors depend on this property and can be achieved by just adding to the refinement algorithm
a simple preprocessing step as described.

4.1.1. Piecewise smooth quadratic interpolation
Starting from any arbitrary initial data, it is possible to obtain a limit curve formed of quadratic polynomial pieces joined

C1-continuously. To this aim it is sufficient to properly add some extra points to the initial polyline before starting the
refinement process.

For each initial edge pipi+1 the additional points are specified as follows. In correspondence with each vertex pi we first
compute the tangent Ti of the quadratic polynomial Bi−1(x) interpolating pi−1, pi, pi+1 at the parameter values xi−1, xi, xi+1.
Then, in front of each edge pipi+1, we extend the initial sequence of vertices with three new points v2i−1, si and v2i by
evaluating the C1-joined quadratic Bézier curves

q1(u), u ∈ [xi, x̄i], q2(u), u ∈ [x̄i, xi+1]

respectively with control points

Q 1
0 = pi, Q 1

1 = pi +
1
4
Ti(xi+1 − xi), Q 1

2 =
1
2
(Q 1

1 + Q 2
1 )
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a b c d e

Fig. 4. Generation of an interpolatory limit curve made of C1-joined quadratic pieces: (a) starting polyline; (b) tangents at the initial points; (c) starting
polyline enriched by vertices vi and si; (d) limit curve; (e) curvature comb.

and

Q 2
0 = Q 1

2 , Q 2
1 = pi+1 −

1
4
Ti+1(xi+1 − xi), Q 2

2 = pi+1.

In particular we set

v2i−1 = q1


3
4
xi +

1
4
xi+1


,

si = Q 1
2 ,

v2i = q2


1
4
xi +

3
4
xi+1


,

so that v2i−1 and v2i correspond to the value of q1(u) and q2(u) at the midpoints of the respective intervals of definition and
si is the junction point between q1 and q2.

By refining the starting polyline {pi}i∈Z enriched by the so computed vertices vi and si through the non-uniform 4-point
scheme with edge parameters λi−1 = 0 and λi = 1, we generate a limit curve that is made of C1-joined quadratic pieces
with endpoints at the vertices pi and si (see Fig. 4).

Remark 2. The limit curve so obtained coincides with the non-uniform local interpolatory quadratic spline in [16]. As a
consequence, in this particular setting, the proposed method is the only interpolatory scheme capable of generating a C1

piecewise limit curve whose analytic representation is known.

4.1.2. Flat edges
As a special case of the property illustrated in 4.1, we also have that, when three points pi−1, pi, pi+1 are collinear, the

scheme is capable of reproducing the linear segment passing through them, provided that the initial parameters are specified
as explained in Section 4.1 (see e.g. Fig. 5, center).

Fig. 5. Left: initial polyline; flat edges are marked with the letter F . Center: parameters configuration on the polyline after the first refinement step; green
circles correspond to the initial points, while pink circles represent the inserted points. Right: limit curve. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

If the starting polyline does not contain three collinear points, it is still possible to generate a flat edge just by forcing, at
the first refinement iteration, that the points inserted on the selected flat edges be placed at their midpoints, so as to create
three collinear points in the refined polyline. Obviously, in this case, also the edge parameters should be properly reassigned
after the first refinement, as illustrated in Fig. 5.

We now emphasize two remarkable behaviors of the scheme in the presence of flat edges. First, in case two consecutive
flat edges occur in the starting polyline, by Proposition 6 the limit curve will be C0 at the joint. The results in Proposition 6
also imply that, if the flat edge is isolated, the limit curve will be C1 continuous at the joint. Moreover, even when it is
smoothly connected with a curvilinear part, the flat region is incorporated in the limit curve without creating undesired
artifacts in correspondence of its end points (see Fig. 5, right). This is not the case of any other interpolatory scheme, being
either uniform or non-uniform.
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Fig. 6. Point tension effects obtained by setting the couple of edge parameters (λi−1, λi) to the values: (1, 0) (red curve), ( 5
6 , 1

6 ), ( 2
3 , 1

3 ), ( 1
2 , 1

2 ) (blue
curve), ( 1

3 , 2
3 ), ( 1

6 , 5
6 ), (0, 1) (green curve). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

4.2. Cusps and point tension effects

In Proposition 6 it was proven that, when two non collinear flat edges meet at a vertex pi, it is possible to obtain in
the limit curve a C0 behavior at one initial vertex pi by setting the edge parameters of the neighboring edges to the values
λi−1 = 1 and λi = 0. This property has a straightforward geometric interpretation, due to the structure of the limit curve
in the neighborhood of the vertex pi. In fact, due to this setting of edge parameters, a portion of the limit curve to the left
of pi coincides with the quadratic polynomial Bi−2(x) interpolating the triple pi−2, pi−1, pi, while to the right it reproduces
the polynomial Bi(x), that interpolates pi, pi+1, pi+2. The vertex pi is thus the junction point between the two quadratic
polynomials, that, except for ad hoc constructions (see Section 4.1.1), meet only C0 continuously.

It is important to observe that aC0 point in the limit curve is just the ‘limit’ of a tension effect focused on the corresponding
initial vertex pi, which can be obtained by gradually increasing the edge parameter λi−1 up to the value 1 and at the same
time decreasing the parameter λi down to 0, as illustrated in Fig. 6.

4.3. End-point rules

When the initial set of points represents an open polyline it is not possible to refine the first or the last edges by using the
4-point refinement rules introduced in Section 2.2, since the refinement equations require a well-defined 2-neighborhood
in the vicinity of the boundary points. Usually, this problem is overcome by specifying an ad hoc insertion rule for the points
on the boundary edges, which very often relies on their linear extrapolation. Conversely, the constructive approach at the
base of our 4-point scheme naturally lends itself to refine boundary edges without using any auxiliary point. In fact, to refine
the first edge p0p1, it is sufficient to set the edge parameter λ0 = 0. In this way, by formula (3), it trivially follows that the
point p11 is simply obtained as

p11 = B0(x̄0) =
d0 + 2d1
4(d0 + d1)

p0 +
d0 + 2d1

4d1
p1 −

(d0)2

4d1(d0 + d1)
p2.

Analogously, associating the edge parameter λN−1 = 1 to the last edge pN−1pN , formula (3) provides

p12N−1 = BN−2(x̄N−1) = −
(dN−1)

2

4dN−2(dN−2 + dN−1)
pN−2 +

2dN−2 + dN−1

4dN−2
pN−1 +

2dN−2 + dN−1

4(dN−2 + dN−1)
pN .

4.4. Tension control

In this subsection we show that the non-uniform 4-point scheme introduced in Section 2.2 has the property of tension
control, i.e. the possibility of intuitively controlling the tension of the limit curve segment corresponding to a certain
initial edge. Excluding some proposals involving non-stationary schemes (see e.g. [17,18]), we are not aware of any other
interpolatory 4-point scheme with the behavior described in the following.

It is easy to observe that, if the knot interval di associated with the edge pipi+1 is not automatically set according to a
centripetal or chordal parameterization, but is assigned by the user, then it assumes the role of a tension parameter. More
precisely, the smaller it is the tighter is the portion of the limit curve confined between the vertices pi, pi+1 (see Fig. 7).
However, an undesired side effect is that changing the parameterization on a single edge affects also the neighboring curve
segments (Fig. 7 (left)). Exploiting the unique properties of the proposed schemes, we can confine this effect to the edge
of interest, by just combining the change in the parameterization with a proper setting of edge parameters. Fig. 7 (center)
shows the combined effect of changing the parameter d2 and opportunely modifying the parameters λ1 and λ3 on the two
adjacent edges. In the figure in the center, the initial edge parameters λ1 and λ3 are set to the values 1 and 0, respectively,
in order to confine the modification of the limit curve only to the edge p2p3. Moreover, the figure on the right illustrates the
effect of changing the parameterization of an edge in correspondence with different configurations of the edge parameters
on the adjacent edges.
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Fig. 7. Left: the effect of setting the parameter d2 to the values 1
2 ,

3
8 ,

1
4 (value of centripetal parameterization), 1

8 ,
1
16 . Center: combined effect of changing

the parameter d2 as before and at the same time setting the edge parameters λ1 = 1 and λ3 = 0. Right: combined effect of setting the parameter d2 =
1
16

and at the same time the couple of edge parameters (λ1, λ3) to (1, 0), ( 3
4 , 1

4 ), ( 2
3 , 1

3 ), ( 7
12 , 5

12 ), ( 1
2 , 1

2 ).

4.5. Application examples

The fully flexible refinement rules introduced in Section 2.2 make our interpolatory scheme an eligible candidate for
many applications. An interesting example consists in proposing this novel interpolatorymethod to represent curves where
one switches frequently between round shapes and flat shapes that are stitched together at sharp corners, exactly like it
happens in the description of the outline curves of digital fonts. In particular, due to its capability of including flat edges and
cusps, the proposed subdivision algorithm provides a mathematical description of vector outlines that turns out to be very
simple and efficient.

Fig. 8. Application of the proposed scheme to the description of digital fonts.

In the examples shown in Fig. 8 knot intervals are computed according to the centripetal parameterization of the initial
polyline. As it is apparent, the limit curve consists in an alternation of flat edges, smoothly connected with free-form
curvilinear pieces. In particular, the straight line segments of the limit curve correspond to edges of the initial polyline
that are tagged as flat before starting the subdivision process.

In the initial polyline, assume that the first edge has endpoints p1 and p2 and that the following edges are numbered
in subsequent order. The outline representing the number ‘‘1’’ has been generated as follows: we have set all the edge
parameters to the value 1

2 except on edges 2 and 3, where the edge parameters are 0 and 1 respectively in such a way that
we have two cusp features in correspondence of vertices p2 and p4 and the segment of the limit curve between these vertices
is a quadratic polynomial. Moreover we have treated as flat the edges 1, 4, 5, 8, 11, 12, 13, 14, 15, 18 (i.e. the refinement and
edge parameters updating of these edges is performed as explained in Section 4.1.2).

To generate the outline of number ‘‘2’’ we have treated as flat the edges 1, 4, 27, 28, 29 and in addition we have generated
two cusps by setting the edge parameters to 0, 1, 0, 1 on edges 5, 17, 18, 26 respectively. The other number outlines in Fig. 8
have been obtained with a similar parameter setting strategy.

5. Subdivision rules for features control and arbitrary point insertion

In this section, we investigate a generalization of the family of schemes presented in Section 2.2, that allows for the
insertion of new points at arbitrary locations, independent of the underlying parameterization. As already mentioned, at
a general subdivision level k, the 4-point scheme related to the construction (3) limits the insertion of a new point at the
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position x̄ki , corresponding to the midpoint of the interval [xki , x
k
i+1]. Differently, we will see in the following that new points

may be placed at any position of existing intervals, so that the most convenient parameter values may be chosen as well as
the intervals for insertion. We remark that, since the scheme is interpolatory, the limit curve depends on the location of the
point of insertion.

To this aim, if instead of combining the two values of the polynomials Bi−1(x) and Bi(x) at x = x̄i like in (3), we let them
vary inside the interval [xi, xi+1], we can write a blending formula of the kind

C(x) = (1 − ω(x))Bi−1(x) + ω(x)Bi(x), x ∈ [xi, xi+1] (13)

where, once reparameterized in the interval [0, 1], ω(x) is a blending function as assumed in Section 2.2. As it will become
clear by the end of this section, at this stage it is convenient to consider a function ω(x) satisfying conditions (a), (bb), (cc),
(d) and (e). Observe that, in the equation above, instead of controlling the generation of special features like it happened in
(3), the parameter x determines the location of the new point p2i+1 = C(x) in the interval [xi, xi+1].

Remark 3. In Section 2.2 we have recalled Daubechies et al. proposal [9] as an example of polynomial based non-uniform
midpoint scheme. Such a scheme was called by the authors as the semi-regular 4-point scheme, as opposed to its more
general version termed the irregular 4-point scheme, that allows for the insertion of a new point at any arbitrary location
x ∈ [xi, xi+1]. We remark that the formulation of the latter can also be represented by Eq. (13), but in this case the function
ω(x) is

ω(x) =
x − xi−1

xi+2 − xi−1
(14)

and does not satisfy condition (bb).

Our purpose is now to generalize (13) to design a two-parameter function C(λ, x), which possesses both a parameter λ
to manipulate features, and another parameter x corresponding to the location of the newly inserted point. Thus, in the
following, we will provide a construction procedure for the blending function ω(λ, x) that, once blended with the two
polynomials Bi−1(x) and Bi(x), fulfills this requirement. The key idea of this construction is to consider a two-piece blending
function defined as follows. Let us first introduce the couple of functions

L1(x) =
x − xi
x̄i − xi

and L2(x) =
xi+1 − x
xi+1 − x̄i

, x ∈ [xi, xi+1],

and consider the two-piece C1 blending function ω : [xi, xi+1] → [0, 1], defined through the formula

ω(x) =


1
2

L
m
1 (x)

L
n
2(x)

if x ∈ [xi, x̄i)

1 −
1
2

L
m
2 (x)

L
n
1(x)

if x ∈ [x̄i, xi+1],

(15)

for any integersm > 0, n ≥ 0, indicating the m-th and n-th powers of the considered functions.
We can now think of (15) as of ω( 1

2 , x) and afterwards generalize this one to a function ω(λi, x) for λi ≠
1
2 , such that, for

any fixed value of λi ∈ [0, 1], the following hold

(a′) ω : [xi, xi+1] → [0, 1];
(b′) ω(λi, xi) = 0 and ω(λi, xi+1) = 1;
(c′) ω is monotonically increasing;
(d′) ω is regular (at least C1) at ti,

where ti = xi + λi(xi+1 − xi). We can now extend the definition of L1(x) and L2(x) on two intervals proportional to λi and
1 − λi respectively, as

L1(λi, x) =
x − xi
ti − xi

, L2(λi, x) =
xi+1 − x
xi+1 − ti

(16)

and define the function ω(λi, x) by formula (15), where the expressions L1(x) and L2(x) are substituted by the functions
L1(λi, x) and L2(λi, x) in (16), namely

ω(λi, x) =


c
Lm1 (λi, x)
Ln2(λi, x)

if x ∈ [xi, ti)

1 − (1 − c)
Lm2 (λi, x)
Ln1(λi, x)

if x ∈ [ti, xi+1],

(17)
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where, to fulfill condition (d′), the coefficient c is given by

c =
(1 − λi) n + λim

n + m

andm, n are two integers as above. Now, to allow the insertion of a new point at any arbitrary position x between xi and xi+1,
we consider the following blending formula depending both on the parameter λi ∈ [0, 1] and on an arbitrary x ∈ [xi, xi+1]

C(λi, x) = (1 − ω(λi, x))Bi−1(x) + ω(λi, x)Bi(x), x ∈ [xi, xi+1]. (18)

As a result, for any integers m > 0 and n ≥ 0, C(λi, x) is a two-piece function, C1 continuous on the interval [xi, xi+1],
interpolating the values Bi−1(xi), B′

i−1(xi) at xi and Bi(xi+1), B′

i(xi+1) at xi+1. Moreover, for the forthcoming choices of m and
n, C(λi, x) identifies the following particular cases:

• form = 1 and n = 0, ω(λi, x) = x and C(λi, x) coincides with the C1 Catmull–Rom spline [19];
• for n = 1, C(λi, x) is the C1 join of two degree-(m + 1) polynomials; in particular, when m = 1, C(λi, x) coincides with

the two-piece quadratic polynomial proposed in [20,16] and, whenm = 2, C(λi, x) is a two-piece cubic polynomial that
further interpolates the values B′′

i−1(xi) at xi and B′′

i (xi+1) at xi+1;
• for n ≠ 1, C(λi, x) is purely rational.

In the case where x = x̄i (corresponding to the new point p2i+1 inserted so that its parameter x2i+1 is the midpoint
between xi and xi+1), the blending function ω(λi, x) in (17) reduces to a function of λ, that we will indicate by ω(λ, x̄i),
where

ω(λ, x̄i) =


1 − (1 − c)

Lm2 (λ, x̄i)
Ln1(λ, x̄i)

if λ ∈

[
0,

1
2

]
,

c
Lm1 (λ, x̄i)
Ln2(λ, x̄i)

if λ ∈


1
2
, 1

]
,

and

L1(λ, x̄i) =
1
2λ

, L2(λ, x̄i) =
1

2(1 − λ)
.

For any m, n > 0, the definition of ω(λ, x) ensures that ω(λ, x̄i) satisfies the conditions (4), in such a way that the
corresponding insertion rule belongs to the family of schemes with coefficients in (6). Conversely, when m > 0 and n = 0,
the corresponding function ω(λ, x̄i) does not fulfill the requirements (4), and thus this setting does not generalize any
midpoint insertion scheme of the family (6).

Fig. 1 shows different functions ω(λ, x̄i), obtained in correspondence to m = n = 1 (black), m = n = 2 (magenta),
m = n = 3 (blue), m = 2, n = 1 (green). The generalized rules derived from ω(λ, x), instead, handle non-uniform knot
vectors, edge parameters and are not restricted to midpoint knot insertion.

Remark 4. When m = 0 and n ≠ 0, the blending function ω(λ, x) does not vanish at xi and xi+1, and thus C(λi, x)
interpolates only the values of Bi−1(x) and Bi(x) at xi and xi+1, respectively. In this case ω(λ, x̄i) is a piecewise polynomial
blending function analogous to (14) but, differently from (14), it also contains the edge parameter λ.

We observe now that, if the rules for arbitrary point insertion are applied only to a limited number of refinement steps,
the smoothness properties of the limit curve are determined by the corresponding midpoint scheme. Thus, as proved in
Section 3, the described method will generate C1 limit curves for any arbitrary choice of the edge parameters except in the
neighborhood of those initial vertices pi that separate subsequent edges with parameters λi−1 = 1 and λi = 0.

Given an initial polyline, the corresponding subdivision algorithm can be outlined as follows. First, a suitable blending
function ω(λ, x) needs to be selected and the corresponding arbitrary point insertion scheme is derived. Also the midpoint
scheme corresponding to ω(λ, x̄i) is computed. For a limited number of steps k < k the arbitrary point insertion refinement
algorithm is applied. Successively, for any k ≥ k the k-th polyline is refined through the corresponding midpoint scheme.

Indeed, any ω(λ, x) of the kind (17) can be conveniently assumed as a blending function in (18). However, to illustrate
the above procedure, let us consider the scheme with ω(λ, x) where m = n = 1, namely

ω(λ, x) =


1
2

(1 − λ)(x − xi)
λ(xi+1 − x)

if
x − xi

xi+1 − xi
< λ

1 −
1
2

λ(xi+1 − x)
(1 − λ)(x − xi)

if
x − xi

xi+1 − xi
≥ λ.

(19)



C. Beccari et al. / Journal of Computational and Applied Mathematics 235 (2011) 4754–4769 4767

Now, if we set ξ =
x−xi

xi+1−xi
, for any arbitrary x the scheme derived from (18) can be rewritten as a linear combination of the

four points pi−1, pi, pi+1, pi+2 with coefficients

c0,i := c0(λi, di−1, di, di+1, x) =
d2i ξ(λi(ξ − 2) + ξ)

2λidi−1(di + di−1)

c1,i := c1(λi, di−1, di, di+1, x)

= −
ξ 2di(λi(di − di−1 + di+1) + di + di−1 + di+1) + 2ξλi(di−1 − di)(di + di+1) − λi2di−1(di + di+1)

2λidi−1(di + di+1)

c2,i := c2(λi, di−1, di, di+1, x) = −
ξ(ξdi(λi(di + di−1 − di+1) − di − di−1 − di+1)) − 2λidi−1di+1

2λidi+1(di + di−1)

c3,i := c3(λi, di−1, di, di+1, x) =
d2i (λi − 1)ξ 2

2λidi+1(di + di+1)

(20)

if λi ≥ ξ and

c0,i := c0(λi, di−1, di, di+1, x) =
d2i λi(ξ − 1)2

2(λi − 1)di−1(di + di−1)

c1,i := c1(λi, di−1, di, di+1, x)

= −
(ξ − 1)(ξdi(λi(di − di−1 + di+1) + 2di−1) − 2di−1(di + di+1) − λi((di − di−1)(di + di+1) − di−1di+1))

2(λi − 1)di−1(di + di+1)

c2,i := c2(λi, di−1, di, di+1, x)

= −
ξ 2di(λi(di + di−1 − di+1) − 2(di−1 + di)) + 2ξ((di−1 + di)(di + di+1) − λidi−1di+1) − λidi(di + di−1 + di+1)

2(λi − 1)di+1(di + di−1)

c3,i := c3(λi, di−1, di, di+1, x) =
d2i (ξ − 1)((λi − 1)(ξ + 1) − (ξ − 1))

2(λi − 1)di+1(di + di+1)

(21)

if λi < ξ , where λ0
i := ω(λi, x). For the ease of notation, in the above expressions we have dropped the superscript index k,

as it is obvious that we refer to the generic k-th iteration.
Note that the set of coefficients c0,i, c1,i, c2,i, c3,i in (21) can be obtained by applying the transformation

λi → 1 − λi, ξ → 1 − ξ, di−1 → di+1, di+1 → di−1

to the coefficients c3,i, c2,i, c1,i, c0,i in (20), and that the function ω(λ, x̄i) related to (19) is given by

ω(λ) =


2 − 3λ
2(1 − λ)

if λ ∈

[
0,

1
2


1 − λ

2λ
if λ ∈

[
1
2
, 1

]
.

(22)

In particular, we remark that, in the case of midpoint insertion, the refinement rules corresponding to (22) coincide with
the proposal in [7].

In the remainder of this section we describe by an example one of the possible applications of the discussed arbitrary
point insertion method.

We preliminarily observe that the possibility of inserting new points at arbitrary locations can be used to make the
scheme uniform around a specified vertex.

Fig. 9. Local configuration of parameters to make the scheme uniform around the point xi at levels k = 0 (left) and k = 1 (right).

Focusing on the point xi in Fig. 9, the procedure can be outlined by a simple algorithm as follows. We first determine
the shortest interval containing xi, in this case [xi, xi+1], and its parameter di. After the refinement, the considered interval
will be split into two subintervals, both having parameters 1

2di. We now want to split the longest interval, i.e. [xi−1, xi], into
two subintervals so that the one still containing xi has parameter 1

2di. To this aim we compute the location x that splits the
interval [xi−1, xi] into two subintervals, proportionally to the values di−1 −

di
2 and di

2 , namely

x =
di

2di−1
xi−1 +


1 −

di
2di−1


xi
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a b c

d e f

Fig. 10. Comparisons between the effects of selective point insertion ((b), (e)) and midpoint insertion ((c), (f)).

and, after inserting a new point at x, we assign the parameters to the new edges as illustrated in Fig. 9. After one more
subdivision step, due to the updating relation (7), the scheme will become uniform around xi and will also be uniform from
this iteration onward (see Remark 1).

Fig. 10 illustrates how, despite arbitrary point insertion, the features of the limit curve are preserved. This example was
generated using Eqs. (20)–(21) for arbitrary point insertion and (22) for midpoint refinement. Let us focus the attention on
the two symmetric vertices, corresponding to the tip of the scissors (sub-figures (b)–(e) and (c)–(f)). The edge parameters
allowed us to obtain a flat edge, smoothly (C1) connected with a curved segment. Taking into account the orientation of
the curve, the parameters’ configuration is the same for the two considered vertices; in particular, for the vertex in (b) we
have set λi = 1 (on the flat edge) and λi+1 = 0.3 on the subsequent edge, so as to precisely model the tip. Analogously,
for the vertex in (c), λi = 0.7 and λi+1 = 1 (on the flat edge). Through proper point insertion, the vertex in (b) has become
uniform in a few steps; conversely, the vertex in (c) has been refined from the beginning with standard midpoint insertion.
To better visualize the location of points, Figures (e) and (f) show the comb of the normals to the vertices of the polyline
after six refinement iterations. This example emphasizes also the fact that selective point insertion can be used to modify
the parameterization at a critical zone of the polyline, improving the visual quality of the limit curve. In fact, as proven in
Proposition 5, the limit curve is C1 continuous at the considered vertices. However, in the neighborhood of the vertex in (c),
the bad parameterization deriving from the remarkable difference in length between the initial edges erroneously suggests
that the curve be only C0 at the vertex. Conversely, this undesired visual effect is not noticeable around the vertex in (b).

6. Generalization to subdivision surfaces on quadrilateral meshes

The work done in the univariate case maps readily into the definition of tensor product subdivision surfaces with
features, defined on quadrilateral meshes. As suggested in [21], the possibility of handling surface features is fundamental to
implement subdivision schemes of practical use in applications. The considered example (Fig. 11) illustrates the inclusion of
creases, cusps and flat faces in a regular torus model. All these shape effects have been obtained through the tensor product
of the proposed non-uniform 4-point rules with edge parameters, where the parameters λi are defined on each edge of the
starting mesh and the handling of edge parameters described in Section 4 has been properly generalized.

Fig. 11. The effect of setting the edge parameters λi in order to generate creases (b), cusps (c), flat faces (d).
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7. Conclusions and ongoing research

Wehave introduced a blending-type formulation of polynomial-based interpolatory 4-point schemes and a related novel
class of 4-point refinement rules that turn out to be very attractive in practical applications. In fact, besides possessing the
capability of generating visually-pleasing limit curves, they include edge parameters for handling boundaries, selectively
reducing continuity, and integrating features like cusps and flat edges when desired. Additionally, such a family of
subdivision schemes is the only one capable of producing a piecewise polynomial curve passing through the initial vertices,
even if they are not its samples. In particular, piecewise quadratic polynomials that join C0 continuously at the given points
can be automatically produced by a suitable setting of the edge parameters, and piecewise C1 quadratic polynomials can
be further obtained after the application of a preprocessing step aimed at inserting properly chosen vertices in the initial
polyline. Finally, the proposed schemes can be used to refine a given control polygon in a selective way, since they allow for
arbitrarily specifying the locations of the inserted points. To the authors knowledge, existing interpolatory schemes do not
present at the same time all the aforementioned properties.

Furthermore, the proposed algorithm provides the univariate foundations for a novel non-uniform interpolatory surface
subdivision scheme with features control. We have presented a first generalization to tensor product of the univariate 4-
point scheme with edge parameters, tailored for regular quadrilateral control meshes. There is in fact no point in making
ad hoc rules for extraordinary vertices without having a firm foundation to build on. A further extension of this work to
quadrilateral meshes with arbitrary topology will be a topic for future research.
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