
Journal of Computational and Applied Mathematics 228 (2009) 313–325

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A penalty-function-free line search SQP method for
nonlinear programmingI

Wenjuan Xue a,c,∗, Chungen Shen b,c, Dingguo Pu c
a Department of Mathematics and Physics, Shanghai University of Electric Power, 200090, China
b Department of Applied Mathematics, Shanghai Finance University, 201209, China
c Department of Mathematics, Tongji University, 200092, China

a r t i c l e i n f o

Article history:
Received 13 November 2005
Received in revised form 13 September
2008
MSC:
90C30
65K10

Keywords:
Non-monotonicity
Line search
SQP
Global convergence
Local convergence
SOC

a b s t r a c t

We propose a penalty-function-free non-monotone line search method for nonlinear
optimization problems with equality and inequality constraints. This method yields global
convergence without using a penalty function or a filter. Each step is required to satisfy a
decrease condition for the constraint violation, as well as that for the objective function
under some reasonable conditions. The proposed mechanism for accepting steps also
combines the non-monotone technique on the decrease condition for the constraint
violation, which leads to flexibility and an acceptance behavior comparable with filter
based methods. Furthermore, it is shown that the proposed method can avoid the Maratos
effect if the search directions are improved by second-order corrections (SOC). So locally
superlinear convergence is achieved. We also present some numerical results which
confirm the robustness and efficiency of our approach.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the constrained optimization problem:

(P)

{min f (x)
s.t. ci(x) = 0, i ∈ E,

ci(x) ≤ 0, i ∈ I,
(1)

with twice continuously differentiable functions f (x) : Rn → R, c(x) = (c1(x), . . . , cm(x)) : Rn → Rm. E = {1, . . . ,me},
I = {me + 1, . . . ,m}. The Lagrangian function associated with problem (P) is L(x, λ) = f (x)+ λTc(x), where λ ∈ Rm is the
corresponding Lagrangian multiplier.
The sequential quadratic programming (SQP) method has been widely used for solving problem (P) and has been

investigated by many researchers [12,13,16,17]. However, traditional SQP methods may encounter the trouble of choosing
problematic penalty parameters. Fletcher and Leyffer [6] proposed the filter method which is an alternative to traditional
SQP methods to solve problem (P). The key point of the concept is that the trial point generated by solving a trust region
SQP problem is accepted if there is a sufficient decrease of the objective function or the constraint violation. No penalty
parameter needs to be chosen. So, we call it a penalty-function-free method. In addition, the computational results of the

I This research is supported by National Science Foundation of China (No. 10771162) and Shanghai Excellent Young Teacher Foundation.
∗ Corresponding author at: Department of Mathematics, Tongji University, 200092, China.
E-mail address: xuewenjuan@gmail.com (W. Xue).

0377-0427/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2008.09.031

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81926224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:xuewenjuan@gmail.com
http://dx.doi.org/10.1016/j.cam.2008.09.031

314 W. Xue et al. / Journal of Computational and Applied Mathematics 228 (2009) 313–325

algorithm in [6] are also very encouraging and subsequently the global convergence of the filter SQP methods was proved
in [7,8]. There are also various methods using the filter strategy (see [1,4,5,15,22–24]).
Another penalty-function-free method is the non-monotone trust region SQP method proposed by Ulbrich and

Ulbrich [21]. This algorithm is the only trust region algorithmwithout a penalty function or a filter. Therefore, it also does not
require any penalty parameter. However, only equality constrained optimization problems are discussed in their algorithm.
In this paper, we propose a non-monotone line search SQP method, which interprets the optimization problem with

general constraints as a bi-objective optimization problem. Our method uses neither a penalty function nor an augmented
Lagrange function to test the acceptability of trial steps. Thus, it avoids the difficulty of choosing a proper penalty parameter.
Since the filter acceptant criteria in the filter methods mentioned above require that the trial point compare with all the
points in the filter, it implies that all the information about the points in the filter is needed. Storing the filter points results
in a lot of memory being required in the optimization calculation. Therefore, the method that we investigate here does not
use the concept of filters, either. Rather, the non-monotone line search technique is applied in our method. This strategy is
comparable to filter methods with respect to the flexibility of accepting trial steps.
We also discuss the local convergence property of ourmethod. The SQPmethodmay suffer from thewell-knownMaratos

effect [14]. As a remedy, Fletcher and Leyffer [6] proposed to improve the search direction by means of the second order
correction (SOC) step which aims to further reduce the infeasibility, if the full step is rejected. In this paper, we show that
this modification is indeed able to avoid the Maratos effect in our method.
Here, we make an extensive use of the symbols o(·) and O(·). Denote {ηk} and {νk} as two vanishing sequences, where

ηk, νk ∈ R, k is a positive integer. If there exists a constant C > 0, such that |ηk| ≤ C |νk| for all k sufficiently large, we write
ηk = O(νk). If the sequence of ratios {ηk/νk} approaches zero when k→+∞, we write ηk = o(νk).
This paper is organized as follows. In Section 2 the algorithm is developed. We describe the decrease conditions for the

objective function and the non-monotone decrease conditions for the constraint violation, which are the key ingredients of
our algorithm. The global convergence of the algorithm is established in Section 3. In Section 4, we show that under some
reasonable conditions the algorithm converges to a local minimum of problem (P) superlinearly. Some numerical results are
reported in the final section.

2. Algorithm

Let xk be the current iterate; the search direction is computed by solving the quadratic programming (QP) subproblem
as follows:

QP(xk)

min gTk d+

1
2
dTBkd

s.t. Ai(xk)Td+ ci(xk) = 0, i ∈ E,

Ai(xk)Td+ ci(xk) ≤ 0, i ∈ I,

(2)

where gk = g(xk) = ∇f (xk), A(xk) = [A1(xk), . . . , Am(xk)] = ∇c(xk), and Bk ∈ Rn×n is symmetric positive definite.
There is a commondifficulty in solving theQP subproblems. That is, the linearization of the nonlinear constraintsmay give

rise to infeasibility of the QP subproblem. It means that QP(xk) may be inconsistent. To overcome the difficulty, we define
a relaxed feasible QP subproblem. We use the technique in [10] to deal with the infeasible problem (P) and the infeasible
QP subproblem. Since QP(xk)may be infeasible or the corresponding Lagrangian multipliers may be too large, we consider
solving the following auxiliary problem:

P(γ)

min f (x)+ γ eT(v + w)
s.t. ci(x)− vi + wi = 0, i ∈ E,

ci(x)− vi + wi ≤ 0, i ∈ I,
v ≥ 0, w ≥ 0,

(3)

where γ is a non-negative penalty parameter and vT = (v1, . . . , vm), wT = (w1, . . . , wm), eT = (1, . . . , 1) with
corresponding dimension. If problem (P) has a feasible solution and γ is sufficiently large, then the solutions to problem (P)
and problemP(γ) are identical. Otherwise problemP(γ) tends to determine a ‘‘good’’ infeasible solution if γ is large enough.
The choice of γ requires heuristics.We use the value γ = 100‖∇f (x̂0)‖, where x̂0 is the first iterate atwhich the inconsistent
linearized constraints are detected. We do not stop increasing γ with the increasing factor 10 until v = 0, w = 0 or
γ = 1010‖∇f (x̂0)‖.
For simplicity, we do not introduce the quadratic model of problem P(γ) in the following part of this paper, and just

assume that QP(xk) is always consistent.
Let dk be the solution of QP(xk). Then the KKT conditions of QP(xk) are as follows:

gk + Bkdk = −A(xk)λk,
ci(xk)+ Ai(xk)Tdk = 0, i ∈ E,

λk,i
(
ci(xk)+ Ai(xk)Tdk

)
= 0, i ∈ I,

ci(xk)+ Ai(xk)Tdk ≤ 0, λk,i ≥ 0, i ∈ I,

(4)

where λk = (λk,1, . . . , λk,m)T is the associated Lagrangian multiplier.

W. Xue et al. / Journal of Computational and Applied Mathematics 228 (2009) 313–325 315

After the search direction dk is computed, a step size αk ∈ (0, 1] is determined in order to obtain the next iterate
xk+1 := xk + αkdk. We propose a backtracking line search procedure, where a decreasing sequence of step size α is
tried until the acceptance criteria are satisfied. The basic idea in our approach is to interpret problem (P) as a bi-objective
optimization problem with two goals, i.e., minimizing the objective function f (x) and the constraint violation h(c(x)) :=∑
i∈E |ci(x)| +

∑
i∈Imax{0, ci(x)}.

First of all, we consider the decrease condition for the objective function. Define 1fk = f (xk) − f (xk + αdk) and
1lk = −gTk dk. For simplicity, let h(ck) = h(c(xk)). If

gTk dk ≤ −ξd
T
kBkdk and h(ck) ≤ ζ1‖dk‖ζ2 , (5)

with constants ξ ∈ (0, 12), ζ1 > 0, ζ2 ∈ (2, 3), then the sufficient decrease condition

1fk ≥ σα1lk (6)

is required be satisfied, where σ ∈ (0, 12) is a constant.
Now we consider the non-monotone decrease condition for the constraint violation h(c(x)), we use the technique

inspired by [21]. The well-known KKT conditions for problem (P) are
g(x)+ A(x)λ = 0,
ci(x) = 0, i ∈ E,
λici(x) = 0, i ∈ I,
ci(x) ≤ 0, λi ≥ 0, i ∈ I,

(7)

where λ ∈ Rn is the Lagrangian multiplier. Denote Nfk = ‖Akλk + gk‖. If Nfk → 0 and h(ck)→ 0, then the KKT conditions
are satisfied at the limit points of {xk} if some reasonable conditions are satisfied. In order to reduce h(ck) and Nfk evenly,
we need a slack variable Tk.
The choice of Tk is an important issue in the design of themethod. It is done in such away that the feasibility requirement

is relaxed if the feasibility is much better than the stationarity, i.e., if h(ck) � Nfk, then a value larger than h(ck) is chosen.
In order to keep minimum control over the constraint violation, we choose Tk to be not larger than some upper bound bjk .
Hereby, {bjk} is a slowly decreasing sequence tending to zero and only when Tk yields the maximum in the first term ofRk,
jk increases, i.e., jk+1 = jk + 1. Let {bj} be a sequence with

b0 > 0, bj =
b0
j+ 1

(j ≥ 1), bj → 0 (j→+∞), and
1
2
≤
bj+1
bj

< 1.

With a fixed positive integer l > 1, let

Ml,k = max
k−l+1≤i≤k−1

h(ci), (8)

and

Rk = max{Tk,Ml,k}. (9)

For the non-monotone decrease of the constraint violation, the trial step xk + αdk is accepted as a new iterate xk+1 if it
satisfies

Rk − h(ck+1) ≥ αηRk, η ∈

(
0,
1
2

)
. (10)

Now, we give a complete statement of our algorithm.

Algorithm A (Update Tk). Initiate parameters: 0 < η1, η2 <
1
2 .

B If h(ck) < min{η1bjk , η2Nfk}, set Tk = min{bjk ,Nfk},
• If Tk ≥Ml,k, set jk+1 = jk + 1;
• otherwise set jk+1 = jk.

B else set Tk = h(ck), jk+1 = jk.

Algorithm B. Initiate parameters: x0 ∈ Rn, σ ∈ (0, 12), η ∈ (0,
1
2), ξ ∈ (0,

1
2), B0 ∈ Rn×n, t ∈ (0, 1), ζ1 > 0, ζ2 ∈

(2, 3), k := 1.
Step 1 Compute the search direction.
Compute the search direction dk and the corresponding Lagrangian multiplier λk from QP(xk).
Set α = 1.
Step 2 Evaluate functions at xk.
Compute f (xk), c(xk), g(xk), A(xk).
Step 3 Check for termination.
If the KKT conditions of problem (P) are satisfied, stop.

316 W. Xue et al. / Journal of Computational and Applied Mathematics 228 (2009) 313–325

Step 4 Update Tk.
Update Tk by calling Algorithm A.
Step 5 Backtracking line search.
If (5) holds, go to 5.1, else go to 5.2.
5.1 IfRk − h(c(xk + αdk)) < αηRk or1fk < σα1lk,
Case 1: α 6= 1, then set α = tα, and go to Step 5.
Case 2: α = 1, go to 5.3,
Otherwise set αk = α, xk+1 = xk + αkdk, go to Step 6.
5.2 IfRk − h(c(xk + αdk)) ≥ αηRk, then set αk = α, xk+1 = xk + αkdk, go to Step 6.
5.3 Compute the SOC step.
Solve the subproblem Q̃P(xk) to obtain the SOC step d̃k and define x̃k+1 = xk + dk + d̃k.

Q̃P(xk)

min g(xk)T(dk + d)+

1
2
(dk + d)TBk(dk + d)

s.t. Ai(xk)Td+ ci(xk + dk) = 0, i ∈ E

Ai(xk)Td+ ci(xk + dk) ≤ 0, i ∈ I

(11)

5.3.1 IfRk − h(c(xk + dk + d̃k)) ≥ αηRk, go to 5.3.2, else set α = tα, go to Step 5.
5.3.2 If1f̃k ≥ σ1lk, where1f̃k = f (xk)− f (x̃k+1), then set xk+1 = x̃k+1, go to Step 6, else set α = tα, go to Step 1.
Step 6 Compute Bk+1, set k := k+ 1, go to Step 1.

Remark 1. In step 6, update Bk+1 by the modified BFGS method [16], or the modified Broyden methods [18,19]. We call
Step 5 the inner loop, and call Step 1–Step 6 the outer loop.

3. Global convergence

In this section, we prove the global convergence of Algorithm B. Firstly, we give some assumptions:
A1 {xk}, {xk + dk + d̃k} and {xk + αdk} are contained in a compact and convex set S of Rn for all α ∈ (0, 1].
A2 The functions f (x), c(x) are twice continuously differentiable on S.
A3 The matrix Bk is bounded and uniformly positive definite for all k. And the Lagrange multiplier λk is also bounded for

all k.

Remark 2. A consequence of assumption A3 is that there exist two scalars δ > 0 and M > 0, independent of k, such
that δ‖y‖2 ≤ yTBky ≤ M‖y‖2 for all y ∈ Rn. By assumptions A1–A3, without loss of generality, we may also assume that
‖λk‖∞ ≤ M , ‖∇2ci(x)‖ ≤ M , i ∈ E ∪ I, ‖∇2f (x)‖ ≤ M , x ∈ S.

Lemma 1. Suppose assumptions A1–A3 hold, then for any xk ∈ S,

h(c(xk + αdk)) ≤ (1− α)h(c(xk))+
1
2
α2mM‖dk‖2, (12)

and

|1fk − α1lk| ≤
1
2
α2M‖dk‖2. (13)

Proof. From the Taylor Expansion Theorem, (4) and Assumption A3, we have that for all i ∈ E ∪ I,

ci(xk + αdk) = (1− α)ci(xk)+ αci(xk)+ α∇ci(xk)Tdk +
1
2
α2dTk∇

2ci(yi)dk

≤ (1− α)ci(xk)+
1
2
α2M‖dk‖2,

where yi denotes some point on the line segment from xk to xk + αdk. This, together with the definition of h(c(x)) implies
(12). Similarly, we can also prove that (13) is true. �

Theorem 1. Suppose assumptions A1–A3 hold, then the inner loop terminates in a finite number of iterations.

Proof. If xk is a KKT point of problem (P), then dk = 0 solves QP(xk) and Algorithm B terminates without going to the inner
loop. Otherwise, we suppose dk 6= 0. From Algorithm A, we have that h(ck) ≤ Tk. It follows with (12) and (9) that

h(c(xk + αdk)) ≤ (1− α)h(ck)+
1
2
α2mM‖dk‖2

≤ (1− α)Rk +
1
2
α2mM‖dk‖2. (14)

W. Xue et al. / Journal of Computational and Applied Mathematics 228 (2009) 313–325 317

Thus, (10) holds when α ≤ 2(1−η)Rk
mM‖dk‖2

. If (5) does not hold, then the inner loop terminates by Algorithm B. Otherwise, if (5)
holds, two situations need to be considered.

Case 1. If4fk < σα4lk and α = 1, then SOC step x̃k+1 is taken. If x̃k+1 is accepted as the next iterate xk+1, then the inner
loop terminates.

Case 2. If α 6= 1, we obtain from Remark 2 and (5) that

1lk ≥ ξδ‖dk‖2.

This together with (13) implies∣∣∣∣1fk − α1lkα1lk

∣∣∣∣ ≤ α2M‖dk‖2

2

αξδ‖dk‖2
=
αM
2ξδ

. (15)

Therefore,1fk ≥ σα1lk when α ≤
2δξ(1−σ)
M . Define

C ′ =
2δξ(1− σ)

M
, Ck,2 =

2(1− η)Rk
mM‖dk‖2

, Ck = min
{
C ′, Ck,2

}
. (16)

By (15) and (16), the inner loop terminates whenever α ≤ Ck.
Therefore, the inner iteration terminates finitely in all cases. �

Lemma 2. In Algorithm A, if the index k satisfies jk+1 = jk + 1, then for all k′ ≥ k, h(ck′) ≤ bjk . Furthermore, for any k, jk ≥ 1,

h(ck) ≤ 2bjk . (17)

Proof. If jk+1 = jk + 1, it follows from Algorithm A and (8) that h(ck) < min{η1bjk , η2Nfk}, and bjk ≥ Tk ≥Ml,k.

Thus for k′ = k− l+ 1, . . . , k, h(ck′) ≤ bjk .
We use the inductive method to prove that for all k′ ≥ k− l+ 1, h(ck′) ≤ bjk .
For k′ = k − l + 1, . . . , k, we have already proved that the claim is true. Now we assume that h(ck′) ≤ bjk holds for

k′ = s− l+ 1, . . . , s(≥ k). Next, we only have to prove that for k′ = s+ 1, it still holds.
From Algorithm A, the definition of bjk , for s ≥ k,

Ts ≤ max{h(cs), bjs} ≤ max{h(cs), bjk} = bjk , (18)

where the last equality holds because of the induction hypothesis.
By Theorem 1, there exists a step size α > 0, such that

Rs − h(cs+1) ≥ αηRs > 0.

This together with the induction hypothesis and the definition ofMl,k implies

h(cs+1) ≤ Rs = max{Ts,Ml,s} ≤ bjk .

Therefore, for any k′ ≥ k, where jk+1 = jk + 1, h(ck′) ≤ bjk .
As to (17), if for some k, jk+1 = jk + 1, then it follows from Algorithm A that (17) holds.
Now, consider any k′ with jk′ = jk+1, k′ ≥ k+ 1. According to the definition of bjk and the previous result, we have that

h(ck′) ≤ bjk = bjk′−1 ≤ 2bjk′ , jk′ ≥ 1.

Therefore, for any k (jk′ ≥ 1), (17) holds. �

Lemma 3. If Rk 6= max{h(ck),Ml,k} holds for infinite iterations, then jk →+∞, and h(ck)→ 0.

Proof. From the assumption of the lemma and Algorithm A, there exists an infinite sequence {k′}, such that

Tk′ 6= h(ck′) and Tk′ > Ml,k′ .

Then

Tk′ = min{bjk′ ,Nfk′} > h(ck′) and Tk′ ≥Ml,k′ .

By Algorithm A we have that for any k′, jk′+1 = jk′ + 1. Therefore, jk →+∞, and bjk =
b0
jk+1
→ 0. This combining with (17)

implies h(ck)→ 0. �

Lemma 4. If the outer loop of Algorithm B cannot terminate finitely, then limk→+∞ h(ck) = 0.

318 W. Xue et al. / Journal of Computational and Applied Mathematics 228 (2009) 313–325

Proof. For the purpose of contradiction, we assume that h(ck) 9 0. By Lemma 3, there exists a sufficiently large integer
j1 > 0, such that for k ≥ j1,

Rk = max{h(ck),Ml,k}. (19)

It implies with (8) that

Rk = max{h(ck),Ml,k} = max
k−l+1≤i≤k

h(ci). (20)

According to Algorithm B, (10) and (20), we have that
h(ck+1) < (1− αkη) max

k−l+1≤i≤k
h(ci)

h(ck+2) < (1− αk+1η) max
k−l+2≤i≤k+1

h(ci)

· · ·

h(ck+l) < (1− αk+l−1η) max
k≤i≤k+l−1

h(ci)

(21)

and for k ≥ j1,

max
k−l+1≤i≤k

h(ci) ≥ max
k−l+2≤i≤k+1

h(ci) ≥ · · · ≥ max
k≤i≤k+l−1

h(ci). (22)

Since h(ck) 9 0, it follows that there exists a positive constant ε1 > 0 and an infinite subsequence {h(cki)}, such that
h(cki) ≥ ε1 for all ki > j1. Then, for any k > j1, there exists a positive integer i0, such that ki0 > k. So it follows with (22) that

max
k≤i≤k+l−1

h(ci) ≥ max
ki0≤i≤ki0+l−1

h(ci) ≥ ε1. (23)

According to (16) and (20), we have that there exists a step size αmin > 0, such that αk > αmin for all k > j1. Thus, it follows
with (21) and (22) that

max
k≤i≤k+l−1

h(ci) ≤ (1− αminη)b
k−k1
l c max

k1−l+1≤i≤k1
h(ci) (24)

where bac denotes the maximal integer less than a.
So we have that

lim
k→+∞

max
k≤i≤k+l−1

h(ci) = 0.

It implies that

lim
i→+∞

h(cki) = 0,

which contradicts the assumption that h(cki) ≥ ε1 for all ki > j1. The conclusion follows. �

Lemma 5. Suppose assumptions A1–A3 hold and (5) is satisfied. Then

αk

{
= 1 if Ck ≥ 1 or xk+1 = xk + dk + d̃k;
≥ tCk if Ck < 1,

(25)

where t and Ck are from Algorithm B and Theorem 1.

Proof. If xk+1 = xk + dk + d̃k, we easily obtain αk = 1. From the proof of Theorem 1, the inner loop terminates whenever
α ≤ Ck. Since (5) holds, it follows with Step 5 of Algorithm B that αk = 1 if Ck ≥ 1 and that αk ≥ tCk if Ck < 1. �

Lemma 6. Suppose assumptions A1–A3 hold, then

‖dk‖ = O(Nfk).

Proof. It follows from (4) that

dk = −B−1k (gk + Akλk). (26)

Since {Bk} is uniformly positive definite and uniformly bounded, we obtain that {B−1k } is also positive definite and bounded
for all k. Therefore ‖dk‖ = O(‖gk + Akλk‖) = O(Nfk). �

Theorem 2. Suppose assumptions A1–A3 hold. Then one of the following two situations occurs:
(i) Algorithm B terminates at a KKT point of problem (P).
(ii) There exists at least one accumulation point, which is a KKT point.

W. Xue et al. / Journal of Computational and Applied Mathematics 228 (2009) 313–325 319

Proof. We only need to consider the situation (ii). Since the inner loop is finite, we only need to consider that the outer loop
is infinite.
Let K0 = {k | gTk dk > −ξd

T
kBkdk or h(ck) > ζ1‖dk‖ζ2}. There are two cases, depending on whether K0 is finite or not.

(1) K0 is an infinite set.
Since {xk}k∈K0 ⊂ S is bounded, there exists an accumulation point denoted by x, i.e.,

lim
k∈K1,k→+∞

xk = x,

where K1 ⊂ K0 is an infinite index set. It follows with Lemma 4 that h(ck) → 0, k → +∞. Thus x is a feasible point of
problem (P).
If there exists a subsetK 1 ⊂ K1, such that limk∈K1, k→+∞ ‖dk‖ = 0, then x is a KKT point. Otherwise there exists a constant

ε > 0, such that ‖dk‖ > ε for all k ∈ K1. By Lemma 4, there exists a positive integer j1, such that for all k > j1, k ∈ K1,

h(ck) ≤ min
{
(1− ξ)ε2δ

M
, ζ1‖dk‖ζ2

}
. (27)

It implies that

h(ck) ≤
(1− ξ)δ‖dk‖2

M
≤
(1− ξ)dTkBkdk

M
. (28)

According to (4), (27) and (28), we have that for all k ∈ K1, k > j1,

gTk dk = −d
TAkλk − dTkBkdk

= λTkck − d
T
kBkdk

≤ ‖λk‖∞h(ck)− dTkBkdk
≤ Mh(ck)− dTkBkdk
≤ −ξdTkBkdk

and

h(ck) ≤ ζ1‖dk‖ζ2 .

That is a contradiction with the definition of K0. So x is a KKT point.
(2) K0 is a finite set.
It implies that there exists a positive integer j2 > 0, such that (5) holds for any k > j2. It follows with Theorem 1 that for

any k > j2, there exists an iterate xk+1 = xk + αkdk or xk+1 = xk + dk + d̃k, such that

f (xk)− f (xk+1) ≥ σαk1l ≥ ξσαkdTkBkdk ≥ ξσαkδ‖dk‖
2. (29)

Denote

K2 = {k|αk = 1, k > j2},
K3,1 = {k|Ck < 1 and C ′ < Ck,2, k > j2},
K3,2 = {k|Ck < 1 and C ′ ≥ Ck,2, k > j2}.

According to (9) and (29) and Lemma 5, we have that∑
k∈K2

(f (xk)− f (xk+1)) ≥
∑
k∈K2

ξσδ‖dk‖2, (30)

∑
k∈K3,1

(f (xk)− f (xk+1)) ≥
∑
k∈K3,1

tC ′ξσδ‖dk‖2, (31)

∑
k∈K3,2

(f (xk)− f (xk+1)) ≥
∑
k∈K3,2

tCk,2ξσδ‖dk‖2

=

∑
k∈K3,2

tξσδ‖dk‖2
2(1− η)Rk
mM‖dk‖2

,

≥

∑
k∈K3,2

2(1− η)tξσδTk
mM

,

≥

∑
k∈K3,2

2(1− η)tξσδmin{bjk ,Nfk}
mM

. (32)

320 W. Xue et al. / Journal of Computational and Applied Mathematics 228 (2009) 313–325

By assumptions A1–A3, we have

+∞ >

+∞∑
k=j2+1

(f (xk)− f (xk+1)) =
∑
k∈K2

(f (xk)− f (xk+1))+
∑
k∈K3,1

(f (xk)− f (xk+1))+
∑
k∈K3,2

(f (xk)− f (xk+1)). (33)

Since
∑
+∞

k=1 bjk = +∞, it follows with (30), (31), (32) and Lemma 6 that∑
k→+∞

‖dk‖2 < +∞.

It implies that ‖dk‖ → 0, k→+∞.
The above two cases imply that the theorem holds. �

4. Local convergence

In this section, we prove the local convergence of Algorithm B. Let x∗ be a local minimizer. We also need the following
assumptions:

A4 The sequence {xk} converges to x∗. And the sequence {Bk} converges to B∗. There exist constants L̄ > 0 and 1 ≤ γ < 2,
such that ‖dk‖γ ≤ L̄bjk .

A5 The point x∗ is the KKT point of problem (P). The vectors {∇ci(x∗), i ∈ J∗} are linearly independent. The strict
complementarity condition holds. Denote the matrix Ac(x∗) = {∇ci(x∗), i ∈ J∗}, where J∗ = E

⋃
{i ∈ I : ci(x∗) = 0}.

A6 The Hessian matrix ∇xxL(x∗, λ∗) is positive definite on the null space of Ac(x∗)T, i.e., there is a constant % > 0, such
that

dT∇xxL(x∗, λ∗)d ≥ %‖d‖2

for any d 6= 0 with Ac(x∗)Td = 0, where λ∗ is the multiplier associated with x∗.
A7 Let Pk = I − Ac(xk)[Ac(xk)TAc(xk)]−1Ac(xk)T and

lim
k→+∞

‖Pk(Bk −∇xxL(x∗, λ∗))dk‖
‖dk‖

= 0,

where I is an identity matrix with appropriate size.

Remark 3. The assumption ‖dk‖γ ≤ L̄bjk is important to the proof of the local convergence of Algorithm B. From the global
convergence analysis of Algorithm B, we know that the sequence {xk} converges to an optimal point. So dk and Nfk with the
same order eventually converge to zero, which is proved by Lemmas 6 and 7. From Algorithm B, we know that the role of
the sequence {bjk} is to relax the infeasibility. Even if bjk converges to zero, it will not decrease to zero too fast.

Theoretical speaking, since dk andNfk converge to zerowith the same order simultaneously as xk converges to an optimal
point, and eitherNfk orMl,k relaxes the infeasibility after sufficiently large k, the sequence {bjk}may not decrease after some
iterations from the mechanism of Algorithm A.
Furthermore, practical speaking, when xk sufficiently approaches to an optimal point, the sequence {bjk} never decreases,

which is confirmed by the good numerical results in Section 5. Thus, assumption A4 is reasonable.

Lemma 7. Suppose assumptions A1–A7 hold, then dk → 0, k→+∞.

Proof. It follows from (4) and assumptions A1–A7 that gk → g(x∗), Ak → A(x∗), λk → λ∗, Bk → B∗, k → +∞. Without
loss of generality, let dk → d∗, k→ +∞. assumptions A3–A4 imply that B∗ is positive definite. Since x∗ is the KKT point of
problem (P), it follows that g(x∗)+ A(x∗)λ∗ = 0, B∗d∗ = 0. Thus, d∗ = 0, i.e., dk → 0, k→+∞. �

Lemma 8. Suppose assumptions A1–A7 hold. Then there exists a neighborhood U1 of x∗, such that for xk ∈ U1,

d̃k = O(‖dk‖2), (34)

ci(xk + dk + d̃k) = o(‖dk‖2), i ∈ J∗. (35)

Proof. It follows from [20, Proposition 3.6] that d̃k = O(‖dk‖2). According to assumptions A1–A7, there exists a
neighborhood U1 of x∗, such that for all xk ∈ U1, QP(xk) is equivalent to the following subproblem

EQP(xk)

{
min g(xk)Td+

1
2
dTBkd

s.t. ∇ci(xk)Td+ ci(xk) = 0, i ∈ J∗.

W. Xue et al. / Journal of Computational and Applied Mathematics 228 (2009) 313–325 321

From the Taylor Expansion Theorem and the feasibility of Q̃P(xk), we have

ci(xk + dk + d̃k) = ci(xk + dk)+∇cTi (xk + dk)d̃k + O(‖d̃k‖
2)

= o(‖dk‖2),

for all i ∈ J∗. �

In order to prove the local convergence of Algorithm B, we need two conclusions in [3], which are applications of the SOC
steps on the exact penalty function. We introduce a penalty function

Φρ(x) = f (x)+ ρh(c(x)) (36)

and its quadratic approximation

qρ(xk, d) = f (xk)+ gTk d+
1
2
dTBkd+ ρ

[∑
i∈E

|ci(xk)+∇ci(xk)Td| +
∑
i∈I

max{ci(xk)+∇ci(xk)Td, 0}

]
(37)

just for proof. The following two lemmas from [3] are important to our proof.

Lemma 9 ([3, Theorem 15.3.7]). Suppose assumptions A1–A7 hold. The exact penalty function Φρ and qρ are described by (36)
and (37), where ρ > ‖λ∗‖∞, then

lim
k→∞

Φρ(xk)− Φρ(xk + dk + d̃k)
qρ(xk, 0)− qρ(xk, dk)

= 1. � (38)

Lemma 10 ([3, Theorem 15.3.2]). Suppose assumptions A1–A7 hold. Let dk be the solution of QP(xk), λk is the associated
multiplier, and ρ > ‖λ∗‖∞, then

qρ(xk, 0)− qρ(xk, dk) ≥ 0. � (39)

Lemma 11. Suppose assumptions A1–A7 hold, then there exists a neighborhood U2 (⊂U1) of x∗, such that for xk ∈ U2,
1fk ≥ σ1lk or 1f̃k ≥ σ1lk whenever (5) holds.

Proof. If 1fk ≥ σ1lk, then the theorem holds. Otherwise the SOC step is computed. We only need to prove that 1f̃k ≥
σα1lk holds. Since (5) holds, it follows

h(ck) = o(‖dk‖2). (40)

By Lemmas 8 and 9, for all sufficiently large k,

Φρ(xk)− Φρ(xk + dk + d̃k) ≥
(
1
2
+ σ

)
(qρ(xk, 0)− qρ(xk, dk)), (41)

where ρ > ‖λk‖∞, independent of k. Then

f (xk)− f (xk + dk + d̃k) = Φρ(xk)− Φρ(xk + dk + d̃k)− ρ(h(c(xk))− h(c(xk + dk + d̃k))) (by (36))

≥

(
1
2
+ σ

)
(qρ(xk, 0)− qρ(xk, dk))+ o(‖dk‖2) (by (35), (40) and (41))

= −

(
1
2
+ σ

)
(gTk dk +

1
2
dTkBkdk)+ o(‖dk‖

2) (by (35) and (37)) (42)

and

f (xk)+ σgTk dk − f (xk + dk + d̃k) ≥ −
1
2
gTk dk −

(
1
4
+
σ

2

)
dTkBkdk + o(‖dk‖

2) (by (42))

=
1
2
(dTkBkdk − c(xk)

Tλk)−

(
1
4
+
σ

2

)
dTkBkdk + o(‖dk‖

2) (by (4))

≥

(
1
4
−
σ

2

)
dTkBkdk − ‖λk‖∞h(c(xk))+ o(‖dk‖

2) (by (4))

=

(
1
4
−
σ

2

)
dTkBkdk + o(‖dk‖

2), (by the boundedness of ‖λk‖∞). (43)

This, together with Lemma 7 implies1f̃k ≥ σ1lk. �

322 W. Xue et al. / Journal of Computational and Applied Mathematics 228 (2009) 313–325

Table 1
Numerical results.

Problem n m Algorithm B LANCELOT
NIT NF NG NC NA NIT NF/NC NG/NA

HS002 2 1 13 24 14 21 14 4 4 5
HS004 2 2 1 2 2 2 2 1 1 2
HS008 2 2 5 6 6 6 6 8 8 8
HS010 2 1 11 12 12 12 12 27 27 22
HS022 2 2 1 2 2 2 2 12 12 13
HS026 3 1 31 46 32 46 32 32 32 32
HS029 3 1 13 18 14 18 14 43 43 33
HS035 3 4 5 8 6 7 6 9 9 10
HS038 4 8 63 101 81 101 81 45 45 42
HS047 5 3 21 23 22 23 22 23 23 23
HS049 5 2 17 24 18 21 18 23 23 24
HS065 3 7 8 10 9 10 9 43 43 39
HS067 3 20 22 23 23 23 23 69 69 64
HS072 4 10 25 26 26 26 26 110 110 111
HS088 2 1 21 24 22 24 22 93 93 78
HS090 4 1 25 27 26 27 26 97 97 79
HS092 6 1 32 34 33 34 33 102 102 86
HS100 7 4 18 44 19 44 19 31 31 30
HS101 7 20 53 73 54 77 5 – – –
HS113 10 8 14 22 15 22 15 48 48 43

Theorem 3. Suppose assumptions A1–A7 hold, then for all sufficiently large k, either xk+ dk or xk+ dk+ d̃k is accepted and the
sequence {xk} converges to x∗ superlinearly.

Proof. If xk is not a KKT point of problem (P), then dk 6= 0. By the mechanism of Algorithm A, two cases may occur.
(1) If h(c(xk)) < min{η1, bjkη2Nfk},

Tk = min{bjk ,Nfk} ≥ min{η1bjk , η2Nfk}.

(2) If h(c(xk)) ≥ min{η1bjk , η2Nfk},

Tk = h(ck) ≥ min{η1bjk , η2Nfk}.

Therefore,

Tk ≥ min{η1bjk , η2Nfk}, (44)

holds in both cases. From A4 and Lemma 6, we have

‖dk‖γ ≤ L̄bjk , Nfk = O(‖dk‖), 1 ≤ γ < 2. (45)

Combining this with (35), we have h(c(xk + dk + d̃k)) ≤ (1 − η)Tk ≤ (1 − η)Rk for all k > k1, where k1 > 0 is some
sufficiently large integer. Now for k > k1, if (5) does not hold, then either xk+ dk or xk+ dk+ d̃k is accepted as a new iterate
by Algorithm B. If (5) holds, by Lemma 11, it follows 1fk ≥ σα1lk or 1f̃k ≥ σα1lk. So xk + dk + d̃k is accepted as a new
iterate. Therefore, by [9, Theorem 5.2], the sequence {xk} converges to x∗ superlinearly. �

5. Numerical results

In this section, we give some numerical results for a set of problems from Hock and Schittkowski’s problems [11]. The
results are obtained by a preliminary Matlab implementation of Algorithm B. At each iteration, we use matlab command
quadprog to solve the QP subproblem. Details about the implementation are described as follows.

(a) Termination criteria. Algorithm B stops if h(ck) ≤ ε
√
m and Nfk ≤ ε

√
n.

(b) Update Bk. For each test problems, we chose B0 = I , where I denotes the identity matrix with an appropriate size, as
the initial guess of the Lagrangian Hessian. At each step, the matrix Bk was updated by the BFGS formula from Powell’s
modifications [16]. Specifically, we set

Bk+1 = Bk −
BksksTkBk
sTkBksk

+
ykyTk
sTkyk

,

where

yk =
{
ỹk, ỹTksk ≥ 0.2s

T
kBksk,

θ kỹk + (1− θ k)Bksk, otherwise,

W. Xue et al. / Journal of Computational and Applied Mathematics 228 (2009) 313–325 323

Table 2
Numerical results.

Problem n m Algorithm B SNOPT
NIT NF NG NC NA NIT NF/NC NG/NA

HS001 2 1 38 56 39 48 39 71 49 48
HS002 2 1 13 24 14 21 14 18 15 14
HS003 2 1 9 10 10 10 10 2 2 2
HS004 2 2 1 2 2 2 2 2 3 2
HS005 2 4 7 12 8 10 8 8 9 8
HS006 2 1 9 13 10 13 10 5 8 7
HS007 2 1 11 12 12 12 12 18 31 30
HS008 2 2 5 6 6 6 6 2 7 6
HS009 2 1 6 7 7 7 7 9 9 8
HS010 2 1 11 12 12 12 12 20 32 31
HS011 2 1 7 8 8 8 8 11 18 17
HS012 2 1 9 10 10 10 10 12 12 11
HS013 2 3 7 8 8 8 8 1 7 6
HS014 2 2 5 6 6 6 6 2 10 9
HS015 2 3 2 3 3 3 3 5 11 10
HS016 2 5 4 5 5 5 5 1 5 4
HS017 2 5 6 9 7 8 7 13 19 18
HS018 2 6 8 9 9 9 9 19 31 30
HS019 2 6 5 6 6 6 6 2 9 8
HS020 2 5 3 4 4 4 4 1 5 4
HS021 2 5 1 4 2 3 2 1 1 1
HS022 2 2 1 2 2 2 2 2 6 5
HS023 2 9 5 6 6 6 6 1 7 6
HS024 2 5 4 5 5 5 5 4 6 5
HS025 3 6 0 1 1 1 1 0 2 1
HS026 3 1 31 46 32 46 32 25 25 24
HS027 3 1 18 26 19 28 19 22 24 23
HS028 3 1 3 6 4 5 4 4 4 4
HS029 3 1 13 18 14 18 14 17 19 18
HS030 3 7 11 12 12 12 12 7 5 4
HS031 3 7 9 17 10 17 10 9 11 10
HS032 3 5 2 3 3 3 3 5 5 4
HS033 3 6 3 4 4 4 4 3 9 8
HS034 3 8 7 8 8 8 8 5 8 7
HS035 3 4 5 8 6 7 6 5 5 5
HS036 3 7 1 2 2 2 2 10 9 8
HS037 3 8 9 17 10 15 10 12 10 11
HS038 4 8 63 101 81 101 81 160 119 118
HS039 4 2 12 13 13 13 13 20 31 30
HS040 4 3 6 7 7 7 7 7 8 7
HS041 4 9 7 8 8 8 8 12 9 8
HS042 4 2 8 11 9 11 9 8 9 8
HS043 4 3 11 15 12 15 12 14 10 9
HS044 4 10 5 6 6 6 6 12 12 12
HS045 5 10 7 8 8 8 8 Fail Fail Fail
HS046 5 2 34 40 35 40 35 28 27 26
HS047 5 3 21 23 22 23 22 24 32 31
HS048 5 2 3 10 4 7 4 6 6 6
HS049 5 2 17 24 18 21 18 Fail Fail Fail
HS050 5 3 11 14 12 13 12 33 22 21
HS051 5 3 2 7 3 5 3 6 6 6
HS052 5 3 6 10 7 10 7 5 5 5
HS053 5 13 8 10 9 10 9 2 2 2
HS054 6 13 1 2 2 2 2 5 5 5
HS055 6 14 1 2 2 2 2 3 3 3
HS056 7 4 16 22 17 22 17 13 15 14
HS057 2 3 15 23 16 22 16 5 6 5
HS059 2 7 16 22 17 20 17 20 20 19
HS060 3 7 7 11 8 11 8 11 13 12
HS061 3 2 9 16 10 16 10 17 24 23
HS062 3 7 9 18 10 14 10 13 16 15
HS063 3 5 8 9 9 10 9 13 14 13
HS064 3 4 42 64 43 65 43 33 26 25
HS065 3 7 8 10 9 10 9 15 11 10
HS066 3 8 7 8 8 8 8 7 6 5
HS067 3 20 22 23 23 23 23 38 28 27
HS068 4 10 37 50 38 50 38 Fail Fail Fail
HS069 4 10 12 18 13 18 13 Fail Fail Fail

(continued on next page)

324 W. Xue et al. / Journal of Computational and Applied Mathematics 228 (2009) 313–325

Table 2 (continued)

Problem n m Algorithm B SNOPT
NIT NF NG NC NA NIT NF/NC NG/NA

HS070 4 9 34 37 35 36 35 14 12 11
HS071 4 10 5 6 6 6 6 9 8 7
HS072 4 10 25 26 26 26 26 36 41 40
HS073 4 7 4 5 5 5 5 11 8 7
HS074 4 13 11 12 12 12 12 12 15 14
HS075 4 13 8 9 9 9 9 5 12 11
HS076 4 7 6 7 7 7 7 4 4 4
HS077 5 2 14 19 15 19 15 15 15 14
HS078 5 3 8 9 9 9 9 9 8 7
HS079 5 3 9 12 10 12 10 14 15 14
HS080 5 13 6 7 7 7 7 14 22 21
HS081 5 13 7 8 8 8 8 10 10 9
HS083 5 16 4 5 5 5 5 9 8 7
HS084 5 16 8 9 9 9 9 11 10 9
HS085 5 48 35 50 36 50 36 17 17 16
HS086 5 15 5 8 6 7 6 23 23 23
HS088 2 1 21 24 22 24 22 32 55 54
HS089 3 1 27 33 28 33 28 41 47 46
HS090 4 1 25 27 26 27 26 Fail Fail Fail
HS091 5 1 36 42 37 45 37 37 62 61
HS092 6 1 32 34 33 34 33 37 54 53
HS093 6 8 14 20 15 19 15 41 34 33
HS095 6 16 1 2 2 2 2 1 3 2
HS096 6 16 1 2 2 2 2 1 2 3
HS097 6 16 6 7 7 7 7 13 37 36
HS098 6 16 6 7 7 7 7 13 37 36
HS099 7 16 15 35 16 38 16 32 23 22
HS100 7 4 18 44 19 44 19 21 17 16
HS101 7 20 53 73 54 77 5 165 463 462
HS102 7 20 46 59 47 63 47 117 323 322
HS103 7 20 31 40 32 43 32 84 179 178
HS104 8 22 17 18 18 18 18 38 25 24
HS105 8 17 49 50 50 50 50 127 107 106
HS106 8 22 35 37 36 37 36 32 14 13
HS107 9 14 7 10 8 10 8 22 14 13
HS108 9 14 12 13 13 13 13 36 14 13
HS109 9 26 27 28 28 28 28 39 29 28
HS110 10 20 7 12 8 10 8 23 8 7
HS111 10 23 77 81 78 81 78 60 78 77
HS112 10 13 46 87 47 72 47 52 30 29
HS113 10 8 14 22 15 22 15 37 19 18
HS114 10 31 29 30 30 30 30 59 42 41
HS116 13 41 44 45 45 45 45 91 28 27
HS117 15 20 17 18 18 18 18 49 19 18
HS118 15 59 18 19 19 19 19 13 13 13
HS119 16 40 7 8 8 8 8 63 17 16

and sk = xk+1 − xk,ỹk = ∇f (xk+1)−∇f (xk)+ (Ak+1 − Ak) λk,
θ k = 0.8sTkBksk/(s

T
kBksk − s

T
k ỹk).

(c) Compute Tk. Let b0 = min{0.1max(1, h(c0)),Nf0 + h(c0)}, bj =
b0
j+1 , j ≥ 1. If h(ck) � Nfk, then set Tk = min{bjk ,Nfk},

else set Tk = h(ck).
(d) The parameters are chosen as follows:

σ = 0.1, l = 5, η = 0.1, ζ1 = 1, ζ2 = 2.2, ε = 10−6, t = 0.6, η1 = η2 = 0.2.

In the tables :
Problem: the problem number given in [11],
n: the number of variables,
m: the number of constraints,
NIT= the number of iterations,
NF= the number of evaluations for f (x),
NG= the number of evaluations for ∇f (x),

W. Xue et al. / Journal of Computational and Applied Mathematics 228 (2009) 313–325 325

NC= the number of evaluations for c(x),
NA= the number of evaluations for ∇c(x).
‘–’ denotes the iteration number is greater than 1000.
‘Fail’ denotes some errors occur when the solver solves the problem.
Since we use a quasi-Newton method to update Bk in Algorithm B, the second order information of the Lagrangian

function is not used. Therefore, it is not proper for us to compare Algorithm B with the algorithm in [6]. Therefore, for
comparison, we include the corresponding results obtained by the well-known optimization solvers LANCELOT [2] (column
‘‘LANCELOT’’ in Table 1). In LANCELOT solver, (1) The exact Cauchy step is computed; (2) Accurate solution of quadratic
problems with bound constraints (BQP) is computed; (3) Bandsolver preconditioned Conjugate Gradient (CG) is used
(semi-bandwidth= 5); (4) Infinity-norm trust region is used; (6) SR.1 approximation to second derivatives is used.
From Table 1, we can see that our algorithm is better than LANCELOT in these problems.
Furthermore, for more comparison, we also compare Algorithm Bwith SNOPT [10] (column ‘‘SNOPT’’ in Table 2). We run

on a NEOS Server [25] with default options, where feasibility tolerance and optimality tolerance are 10−6. A total of 114
problems are selected from [11]. HS087 is the only problem left out. Since it is a discontinuous optimization problem, it is
not suitable for our algorithm.
The numerical results on these problems are summarized in Table 2. The initial point of HS025 is a stationary point, then

our algorithm terminates at the first iterationwhich is anundesired result because of its non-minimal property. FromTable 2,
we find that Algorithm B succeeds in solving all the test problems, and for all these problems the number of iterations is
small. From Table 2, Algorithm B is more efficient for 89 problems in terms of NIT, 74 problems in terms of NF and 86
problems in terms of NG.
Therefore, all the computational results illustrate that our algorithm is competitive with those in [2,10].
As expected from our local convergence theory, we also observed a transition to fast local convergence for all problems

tested, i.e., unit steps are accepted in last several iterations for all problems tested here. The results indicate that our new
non-monotone line search method without a penalty function is an interesting and competitive alternative to algorithms
with penalty functions and deserves further consideration. Considering the lower memory requirement, it is also
competitive with filter methods. So, numerical tests confirm the robustness and efficiency of our approach.

References

[1] C. Audet, J.E. Dennis, A pattern search filter method for nonlinear programming without derivatives, SIAM J. Optim. 14 (2004) 980–1010.
[2] A.R. Conn, N.I.M. Gould, Ph.L. Toint, LANCELOT: A fortran package for large-scale nonlinear optimization, in: Numerical Optimization (Release A),
in: Springer Ser. Comput. Math., Springer-Verlag, Berlin, 1992.

[3] A.R. Conn, N.I.M. Gould, Ph.L. Toint, Trust Region Methods, SIAM, Philadelphia, PA, USA, 2000.
[4] H.Y. Benson, D.F. Shanno, R. Vanderbei, Interion-point methods for nonconvex nonlinear programming jamming and numercical test, Math. Program.
99 (2004) 35–48.

[5] R. Fletcher, S. Leyffer, A bundle filtermethod for nonsmooth nonlinear optimization, Technical Report NA/195, Department ofMathematics, University
of Dundee, Scotland, December 1999.

[6] R. Fletcher, S. Leyffer, Nonlinear programming without a penalty function, Math. Program. 91 (2002) 239–269.
[7] R. Fletcher, N.I.M. Gould, S. Leyffer, Ph.L. Toint, A. Wächter, Global convergence of a trust region SQP-filter algorithms for general nonlinear
programming, SIAM J. Optim. 13 (2002) 635–659.

[8] R. Fletcher, S. Leyffer, Ph.L. Toint, On the global convergence of a filter-SQP algorithm, SIAM J. Optim. 13 (2002) 44–59.
[9] F. Facchinei, S. Lucidi, Quadratically and superlinearly convergent algorithm for the solution of inequality constrained minimization problems, J.
Optim. Theory Appl. 85 (1995) 265–289.

[10] Ph.E. Gill, W. Murray, M.A. Saunders, SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Rev. 47 (2005) 99–131.
[11] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes, Springer-Verlag, 1981.
[12] S.P. Han, Superlinearly convergent variable metric algorithms for general nonlinear programming problems, Math. Program. 11 (1976) 263–282.
[13] S.P. Han, A globally convergent method for nonlinear programming, J. Optim. Theory Appl. 22 (1977) 297–309.
[14] N. Maratos, Exact penalty function algorithms for finite dimensional and control optimization problems, Ph.D. Thesis, University of London, London,

UK, 1978.
[15] P.Y. Nie, A filter method for solving nonlinear complementarity problems, Appl. Math. Comput. 167 (2005) 677–694.
[16] M.J.D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in: Numerical Analysis, Proceedings, Biennial conference, Dundee

1977, in: G.A. Waston (Ed.), Lecture Notes in Math., vol. 630, Springer-Verlag, Berlin, New York, 1978, pp. 144–157.
[17] M.J.D. Powell, Variable metric methods for constrained optimization, in: A. Bachem, M. Grotschel, B. Korte (Eds.), Math. Programming: The State of

Art, Bonn, 1982.
[18] D. Pu, W. Tian, A class of modified Broyden algorithms, J. Comput. Math. 8 (1994) 366–379.
[19] D. Pu, W. Tian, A class of modified Broyden algorithms without exact line search, Appl. Math. - A J. Chinese Univ. 10 (1995) 313–322.
[20] E.R. Panier, A.L. Tits, Avoiding the Maratos effect by means of a nonmonotone line search I: General constrained problems, SIAM J. Numer. Anal. 28

(1991) 1183–1195.
[21] M. Ulbrich, S. Ulbrich, Nonmonotone trust-regionmethods for nonlinear equality constrained optimizationwithout a penalty function,Math. Program.

95 (2003) 103–135.
[22] M. Ulbrich, S. Ulbrich, L.N. Vicente, A globally convergent primal-dual interior filter method for nonconvex nonlinear programming, Math. Program.

100 (2004) 379–410.
[23] A. Wächter, L.T. Biegler, Line search filter methods for nonlinear programming: Motivation and global convergence, SIAM J. Optim. 16 (2005) 1–31.
[24] A. Wächter, L.T. Biegler, Line search filter methods for nonlinear programming: Local convergence, SIAM J. Optim. 16 (2005) 32–48.
[25] NEOS Server: http://neos.mcs.anl.gov/neos/solvers/nco:SNOPT/GAMS.html, 2006.

http://neos.mcs.anl.gov/neos/solvers/nco:SNOPT/GAMS.html

	A penalty-function-free line search SQP method for nonlinear programming
	Introduction
	Algorithm
	Global convergence
	Local convergence
	Numerical results
	References

