2-Linked Graphs

Carsten Thomassen

1. Introduction

Let $Z=\left(x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{k}\right)$ be an ordered set of distinct vertices of a graph G. A Z-linkage of G is a set of k pairwise disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ such that P_{i} connects x_{i} with y_{i} for $i=1,2, \ldots, k$. We say that G is k-linked if G has at least $2 k$ vertices and, for any ordered set Z of $2 k$ vertices, G has a Z-linkage.

A necessary condition for G to be k-linked is that G is $(2 k-1)$-connected. This condition is not sufficient unless $k=1$. Larman and Mani [8] and Jung [7] proved independently that there exists a (smallest) integer $f(k)$ such that every $f(k)$-connected graph is k-linked. The proof is based on a result of Mader [11] on subdivisions of large complete graphs.

A complete characterization of k-linked graphs is not known. A partial result for $k=2$ was obtained by Watkins [22] and improved by Jung [7] who demonstrated that a 4 -connected graph is 2 -linked unless it is a non-maximal planar graph. In such a graph we can select four vertices $x_{1}, x_{2}, y_{1}, y_{2}$ along a facial cycle of length at least four and it follows easily that the graph has no ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage. In particular, $f(2)=6$ while $f(3)$ is unknown.

In this paper we describe completely when a graph does not contain an ($x_{1}, x_{2}, y_{1}, y_{2}$)linkage. This result was obtained independently by Seymour [16] but stated without proof in [16].

As applications of this characterization we obtain the result of Jung [7] on 2-linked graphs and, as pointed out in $[16,20]$, the characterization also yields a polynomially bounded algorithm for deciding whether or not a graph has an ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage and for producing such a linkage if it exists. Such an algorithm has also been obtained by Shiloach [17]. In contrast to this, Fortune, Hopcroft and Wyllie [4] have shown that the analogous 2 -linkage problem for directed graphs is NP-complete.

If $Z=\left(x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{k}\right)$ is an ordered set of $2 k$ (not necessarily distinct) vertices of a multigraph G, then a weak Z-linkage in G is a set of k pairwise edge-disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ in G such that P_{i} connects x_{i} and y_{i} for $i=1,2, \ldots, k$. We say that G is weakly k-linked if G has at least two vertices and, for each ordered set Z of $2 k$ vertices, G has a weak Z-linkage. The problem of finding weak Z-linkages may be regarded as the integer k-commodity flow problem for undirected graphs. The non-integer 2 -commodity flow problem was treated by Hu [6], and a variant of the integer k-commodity flow problem for undirected graphs was shown to be NP-complete by Even, Itai and Shamir [3]. From the characterization of non-2-linked graphs we get the characterization of non-weakly-2-linked multigraphs found independently by Seymour [16] and the author [20].

The concept of k-linkage and weak k-linkage can be extended to directed graphs in the obvious way. The problem of finding an ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage or a weak ($x_{1}, x_{2}, y_{1}, y_{2}$)linkage in a directed multigraph is NP-complete by the above-mentioned result of Fortune et al. [4] and the problem of characterizing k-linked directed graphs is no easier than that of characterizing k-linked undirected graphs. However, weakly k-linked directed multigraphs have a simpler characterization than weakly k-linked undirected multigraphs at least when $k=2$. An obvious necessary condition for a directed multigraph to be weakly
k-linked is that it is k-edge-connected. This condition is also sufficient. For if $Z=$ ($x_{1}, x_{2}, \ldots, x_{k}, y_{1}, \ldots, y_{k}$) is an ordered set of $2 k$ vertices in a k-edge-connected directed multigraph D, then we add a new vertex x_{0} and k edges going from x_{0} to $x_{1}, x_{2}, \ldots, x_{k}$, respectively. By a result of Edmonds [2] (for a short proof, see [10]), the resulting directed multigraph has k edge-disjoint branchings from x_{0} and clearly, the union of these branchings contains a weak Z-linkage.

2-Linkages in undirected graphs can be applied to electrical networks. Consider a 2 -connected electrical network such that an edge $x_{1} x_{2}$ represents a voltage generator and all other edges represent resistances. Let one of these edges be $y_{1} y_{2}$ and we now consider the problem of adjusting the resistances such that the current through $y_{1} y_{2}$ becomes zero. Frank Nielsen (private communication) has pointed out that this is possible, by Kirchhoff's rule (see e.g. [15]), if and only if the network contains an ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage and an ($x_{1}, x_{2}, y_{2}, y_{1}$)-linkage. Note that Menger's theorem guarantees the existence of at least one of these linkages.

We also consider k-linked infinite graphs. We characterize completely the infinite maximal non-2-linked graphs. In particular, every 4-connected non-planar graph is 2-linked. As pointed out by Mader [12], there are infinite non-2-linked planar graphs of arbitrarily high (finite) connectivity. However, we apply a result of Halin [5] to prove that every uncountable $2 k$-connected graph is k-linked. This result is best possible. Furthermore, we conjecture that, for each $k \geqslant 2$, every finite ($2 k+2$)-connected graph is k-linked. If true this is best possible. We also conjecture that, for each odd integer $k, k \geqslant 3$, a finite or infinite multigraph is weakly k-linked if and only if it is k-edge-connected, and that, for each integer $k \geqslant 2$, an infinite directed multigraph is weakly k-linked if and only if it is k-edge-connected.

2. Terminology

We use standard terminology. The vertex set of a graph G is denoted $V(G)$ and the edge joining two vertices x and y is denoted $x y$. If $A \subseteq V(G)$, then $G-A$ is the subgraph obtained from G by deleting A and $G(A)$ is the subgraph of G induced by A, i.e. $G(A)=G-[V(G) \backslash A]$.

If G is a connected graph and R, S, T are vertex sets, we say that R separates S from T if each of $S \backslash R$ and $T \backslash R$ are non-empty, and every $S-T$ path of G (i.e. a path with ends in S and T, respectively) contains a vertex of R.

A plane graph (finite or infinite) is a graph drawn in the plane such that any two edges have at most an end in common.

A planar graph is an abstract graph isomorphic to a plane graph.
A facial cycle of a plane graph is a cycle whose interior or exterior does not intersect the graph, and a facial cycle in a planar graph is a cycle which is facial in some plane representation of the graph. If the graph is 3 -connected, a facial cycle is facial in any plane representation of the graph (see [19]).

Only in Sections 4 and 5 the graphs under consideration may be infinite.

3. Maximal Non-2-linked Graphs

In order to characterize the graphs which contain no $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-linkage and which are edge-maximal under this restriction we consider a plane graph G_{0} such that the unbounded face is bounded by a 4-cycle $S_{0}: x_{1} x_{2} y_{1} y_{2} x_{1}$ and such that every other face is bounded by a 3 -cycle. Suppose in addition that G_{0} has no separating 3 -cycle (i.e. a 3 -cycle which is not a facial cycle). For each 3 -cycle S of G_{0} we add K^{S}, a possible empty complete graph disjoint from G_{0}, and we join all vertices of K^{S} to all vertices of S. The resulting
graph G is called an ($x_{1}, x_{2}, y_{1}, y_{2}$)-web with frame S_{0} and rib G_{0}. If G_{0} has more than four vertices, S_{0} and the rib G_{0} are uniquely determined, and it follows from well-known results on planar graphs that G_{0} (and hence also G) is 3-connected and that any separating set of three vertices of G_{0} is of the form $\left\{x_{1}, y_{1}, z\right\}$ or $\left\{x_{2}, y_{2}, z\right\}$. A simple argument shows that G has no ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage.

Theorem 1. Let $x_{1}, x_{2}, y_{1}, y_{2}$ be vertices of a graph G. If G has no $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ linkage and the addition of any edge to G results in a graph containing an ($x_{1}, x_{2}, y_{1}, y_{2}$)linkage, then G is an ($x_{1}, x_{2}, y_{1}, y_{2}$)-web. Conversely, any $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-web is maximal with respect to the property of not containing an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-linkage.

Proof. We prove the first part of the theorem by induction on the number of vertices of G. If G has only four vertices, the statement is trivial so we proceed to the induction step. It is easy to see that G contains the cycle $S_{0}: x_{1} x_{2} y_{1} y_{2} x_{1}$. Also, G is 2 -connected, for if x is a cutvertex of G and y, z are neighbours of x belonging to distinct components of $G-x$, then clearly the addition of $y z$ to G does not create an ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage.

If one of the sets $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}$ is a separating set of G, then it is easy to see that G is an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-web with rib $S_{0} \cup\left\{x_{1} y_{1}\right\}$ or $S_{0} \cup\left\{x_{2} y_{2}\right\}$ so assume none of these sets separate G. We can then prove that G is 3 -connected. For suppose $\{x, y\}$ separates G and let H be a component of $G-\{x, y\}$ not intersecting S_{0}. The maximality property of G easily implies that the edge $x y$ is present and that $G-V(H)$ is also maximal with respect to the property of not containing an ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage. By the induction hypothesis, $G-V(H)$ is an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-web with rib, say, G_{0}. Then G_{0} contains a 3-cycle S such that every $V(H)-V\left(S_{0}\right)$ path intersects S. But then it is easy to see that the addition of an edge from H to S does not create an ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage, a contradiction to the maximality property of G.

So we can assume that G is 3 -connected.
We next consider the case where G contains a set A of three vertices such that $G-A$ contains a component H not intersecting S_{0}. Then the maximality of G easily implies that $G(A)$ is complete, that H is complete and that all vertices of H are joined to all vertices of A. Moreover, it is easy to see that $G-V(H)$ is maximal with respect to the property of not containing an ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage. So by the induction hypothesis, $G-V(H)$, is an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-web with rib, say, G_{0}. Let S be the unique 3 -cycle of G_{0} such that every $V(H)-V\left(S_{0}\right)$ path intersects S. The maximality of G implies that every vertex of H is joined to every vertex of S. So $A=V(S)$ and it follows easily that G is an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ web.

So we can assume that any separating set of three vertices of G (if any) is of the form $\left\{x_{1}, y_{1}, z\right\}$ or $\left\{x_{2}, y_{2}, z\right\}$ where $z \notin V\left(S_{0}\right)$. We now consider the situation where G contains a separating set A with four vertices such that a component H of $G-A$ does not intersect S_{0}, and H has at least two vertices. By Menger's theorem, G contains four disjoint $V\left(S_{0}\right)-A$ paths $P_{1}, P_{2}, P_{3}, P_{4}$. Suppose w.l.g. that these paths form an ($x_{1}, x_{2}, y_{1}, y_{2}, x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}$)-linkage. We shall prove that G contains the cycle $S_{0}^{\prime}: x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime} x_{1}^{\prime}$.

Let H^{\prime} be the subgraph of G induced by $A \cup V(H)$. Since H has at least two vertices, H^{\prime} has no vertex z which separates $\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\}$ from $\left\{y_{1}^{\prime}, y_{2}^{\prime}\right\}$ for if this were the case, then either $\left\{x_{1}^{\prime}, x_{2}^{\prime}, z\right\}$ or $\left\{y_{1}^{\prime}, y_{2}^{\prime}, z\right\}$ would separate G, contrary to the assumption of the previous paragraph. So by Menger's theorem, H^{\prime} contains paths P_{5}, P_{6} forming an ($x_{1}^{\prime}, x_{2}^{\prime}$, $y_{1}^{\prime}, y_{2}^{\prime}$)-linkage or an ($x_{1}^{\prime}, x_{2}^{\prime}, y_{2}^{\prime}, y_{1}^{\prime}$)-linkage.

Since $\bigcup_{i=1}^{6} P_{i}$ does not form an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-linkage, P_{5}, P_{6} must be an $\left(x_{1}^{\prime}, x_{2}^{\prime}, y_{2}^{\prime}, y_{1}^{\prime}\right)$ linkage. Now it is not difficult to see that the edge $e=x_{2}^{\prime} y_{1}^{\prime}$ is present in G. For otherwise we add this edge to G and obtain an ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage consisting of the two paths
P_{7}, P_{8} where P_{7}, say, contains e. But then we obtain an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-linkage of G by replacing e by P_{6} and, if necessary, a segment of P_{8} by P_{5}. This contradiction shows that $x_{2}^{\prime} y_{1}^{\prime}$ and, by symmetry, $x_{1}^{\prime} y_{2}^{\prime}$ are present in G. By considering the sets $\left\{x_{2}^{\prime}, y_{1}^{\prime}\right\}$ and $\left\{x_{1}^{\prime}, y_{2}^{\prime}\right\}$ instead of $\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\}$ and $\left\{y_{1}^{\prime}, y_{2}^{\prime}\right\}$, respectively, we conclude as above that also $x_{1}^{\prime} x_{2}^{\prime}$ and $y_{1}^{\prime} y_{2}^{\prime}$ are present in G. Since H^{\prime} has no ($x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}$)-linkage none of the edges $x_{1}^{\prime} y_{1}^{\prime}$ and $x_{2}^{\prime} y_{2}^{\prime}$ are present in G. Hence $G(A)=S_{0}^{\prime}$.

Let G^{\prime} denote the graph obtained by contracting H into a vertex z_{0} (which is then adjacent to precisely the vertices of S_{0}^{\prime}). It is easy to see that G^{\prime} has no ($x_{1}, x_{2}, y_{1}, y_{2}$)linkage so by the induction hypothesis, G^{\prime} is contained in an ($x_{1}, x_{2}, y_{1}, y_{2}$)-web $G^{\prime \prime}$ with rib G_{0}^{\prime} say. For each vertex $u \in V\left(S_{0}^{\prime}\right) \cup\left\{z_{0}\right\}, G^{\prime}$ contains four $u-V\left(S_{0}\right)$ paths having only u in common pair by pair, so $A \cup\left\{z_{0}\right\} \subseteq V\left(G_{0}^{\prime}\right)$. Since two consecutive vertices of S_{0}^{\prime} do not separate G, each of the four 3 -cycles of G_{0}^{\prime} containing z_{0} are facial cycles of G_{0}^{\prime} and each complete graph of $G^{\prime \prime}$ attached to these 3 -cycles is empty. Also, by the connectivity properties of G, each complete graph of G^{\prime} attached to any other 3-cycle of G_{0}^{\prime} is empty. So it follows that $G-V(H)$ has a plane representation such that S_{0} and S_{0}^{\prime} are facial cycles. By the maximality of G all other facial cycles are 3 -cycles.

Now $H^{\prime}=G(V(H) \cup A)$ has no $\left(x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right)$-linkage and is therefore contained in an ($x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}$)-web $H^{\prime \prime}$. By the connectivity property of G it follows that $H^{\prime \prime}$ has no separating 3-cycle so $H^{\prime \prime}$ is planar. It now follows that G is planar and that S_{0} is a facial cycle. So we have proved that G is an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-web in the case where G has a four-vertex separating set A such that a component H of $G-A$ has at least two vertices and is disjoint from S_{0}.

We can therefore assume that whenever A is a set of at most four vertices separating G such that a component H of $G-A$ does not intersect S_{0}, then $|A|=4$ and H consists of a vertex of degree 4 in G, and $G-A$ does not contain another component H^{\prime} disjoint from S_{0}. We consider any edge e of G not joining two vertices of $V\left(S_{0}\right)$ and we let G^{\prime} denote the graph obtained from G by contracting e. Then G^{\prime} has no ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage, so, by the induction hypothesis, G^{\prime} is contained in an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-web $G^{\prime \prime}$. If K^{S} has more than one vertex for some facial cycle S of the rib of $G^{\prime \prime}$, then the three vertices of S separate this K^{S} from $V\left(S_{0}\right)$. But then G has a set of three or four vertices which separates more than one vertex from S_{0}. However, this is a contradiction to the initial assumption of this paragraph. So each K^{S} has at most one vertex and hence $G^{\prime \prime}$ is planar.

We have shown that the contraction of any edge e not in S_{0} results in a planar graph. We shall show that this implies G to be planar. For suppose G is non-planar. By Kuratowski's theorem, G contains a subgraph H which is a subdivision of K_{5} or $K_{3,3}$. Now $V\left(S_{0}\right) \subseteq V(H)$. For if x_{1}, say, is not in H, then the contraction of any edge incident with x_{1} and not in S_{0} results in a non-planar graph (and such an edge exists since G is 3-connected). Also, if x is a vertex of degree 2 in H, then S_{0} contains the two edges of H incident with x because the contraction of any such edge results in a non-planar graph. This implies that G is obtained from K_{5} or $K_{3,3}$ by possibly inserting one or two vertices of degree 2 and then adding some edges such that the resulting graph is 3-connected. It is easy to see that such a graph is 2 -linked.

This contradiction proves that G is planar. In order to prove that S_{0} is a facial cycle it is sufficient to prove that $G-V\left(S_{0}\right)$ is connected. But if this is not the case, we select vertices z_{1}, z_{2} in distinct components and consider for $i=1,2$ four $z_{i}-V\left(S_{0}\right)$ paths having only z_{i} in common pair by pair. This easily gives us an ($x_{1}, x_{2}, y_{1}, y_{2}$) -linkage, a contradiction.

So G is planar and S_{0} is a facial cycle. By the maximality of G, G is an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-web and the proof of the first part of the theorem is complete.

In order to prove the second part we consider an ($x_{1}, x_{2}, y_{1}, y_{2}$)-web G with rib G_{0}. We shall prove that $G \cup e$ has an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-linkage for any edge e not in G. Since G_{0} has no separating 3 -cycle it contains no K_{4} and hence $G \cup\{e\}$ contains a path of length one,
two or three having only its ends x and y in common with G_{0} such that x and y are non-adjacent in G. Now $G_{0} \cup\{x y\}$ is not a spanning subgraph of an ($x_{1}, x_{2}, y_{1}, y_{2}$)-web and has therefore, by the first part of Theorem 1, an ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage. Then G also has such a linkage and the proof is complete.

Corollary 1 (Jung [7]). Let G be a 4-connected graph containing vertices $x_{1}, x_{2}, y_{1}, y_{2}$. Then G has an ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage unless G is planar and contains a facial cycle containing $x_{1}, x_{2}, y_{1}, y_{2}$ in that cyclic order.

It is possible to modify the proof of Theorem 1 such that Kuratowski's theorem is not used. It seems however, that this is not worth the effort since a very short proof of Kuratowski's theorem is presented in [19]. Also, Theorem 1 has a short proof using Jung's result [7].

As pointed out in $[16,20]$ we can derive the following result on edge-disjoint paths from Theorem 1 using the line graph operation.

Theorem 2 (Seymour [16], Thomassen [20]). Let G be a 2 -connected multigraph with vertices $x_{1}, x_{2}, y_{1}, y_{2}$. Then G contains two edge-disjoint paths connecting x_{1} with y_{1} and x_{2} with y_{2}, respectively, unless G is contractible to a 4 -cycle or to a graph G^{\prime} (such that $x_{1}, x_{2}, y_{1}, y_{2}$ are contracted into $x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}$, respectively) which is obtained from a 2 -connected planar cubic graph by selecting a facial cycle and inserting the vertices $x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}$ in that cyclic order on edges of that cycle.

Conversely, if G has this property, then it does not contain two edge-disjoint paths which connect x_{1} with y_{1} and x_{2} with y_{2}, respectively.

Alternative proofs of Theorem 2 are given in [16,20].
Let $g(k)$ denote the smallest function such that every $g(k)$-edge-connected multigraph is weakly k-linked. It follows easily from Menger's theorem that $g(k) \leqslant 2 k$. Results containing this as a corollary can also be derived from the fact that every k-edge-connected directed multigraph is k-linked combined with Nash-Williams' result [13] that every $2 k$-edge-connected multigraph has a k-edge-connected orientation, and from the result of Edmonds [2], Nash-Williams [14] and Tutte [22] which implies that every $2 k$-edgeconnected multigraph has k edge-disjoint spanning trees. From Theorem 2 it follows that $g(2)=3$.

We offer the following conjecture.
Conjecture 1. For each odd integer $k \geqslant 3, g(k)=k$ and, for each even integer $k \geqslant 2, g(k)=k+1$.

We have already observed that $g(k) \geqslant k$. To see that $g(k)>k$ when k is even, we consider the multigraph G obtained from a cycle $x_{1} x_{2} \cdots x_{k} y_{1} y_{2} \cdots y_{k} x_{1}$ of length $2 k$ by replacing each edge by a multiple edge consisting of $\frac{1}{2} k$ edges. Then G has no weak $\left(x_{1}, x_{2}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right)$-linkage. For such a linkage would have k^{2} edges and hence the linkage would be a decomposition of G into paths. But a simple parity argument shows that such a decomposition is impossible.

If a graph G is not k-linked and we add two new vertices and join them to all vertices of G, then the resulting graph is not $(k+1)$-linked and its connectivity exceeds the connectivity of G by two. By Theorem $1, f(2)=6$ and, thus, $f(k) \geqslant 2 k+2$ for each $k \geqslant 2$.

Conjecture 2. For each $k \geqslant 2, f(k)=2 k+2$.

This conjecture is also of interest in connection with the problem of finding cycles through specified edges [9, 18, 23].

4. 2-Linkages in Infinite Graphs

In the following two sections the graphs are allowed to be infinite. If G is a graph containing vertices $x_{1}, x_{2}, y_{1}, y_{2}$ such that G has no ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage, then it is an easy consequence of Zorn's Lemma that G is a spanning subgraph of an edge-maximal graph containing no ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage. The purpose of this section is to characterize all such edge-maximal graphs.

We first extend Jung's result [7] to infinite graphs.
Lemma 1. Let G be a (possibly infinite) graph G containing a 4-cycle $S_{0}: x_{1} x_{2} y_{1} y_{2} x_{1}$. Suppose further that G contains a subgraph H, which is a subdivision of K_{5} or $K_{3,3}$, such that for every vertex z of H which has degree greater than 2 in H there are in G four $z-V\left(S_{0}\right)$ paths having only z in common pair by pair. Then G contains an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-linkage.

Proof. It is sufficient to prove the lemma for the finite subgraph G^{\prime} of G consisting of S_{0}, H and the 20 or $24 z-V\left(S_{0}\right)$ paths described in the lemma. If G^{\prime} has no ($x_{1}, x_{2}, y_{1}, y_{2}$)linkage, then G^{\prime} is contained in an ($x_{1}, x_{2}, y_{1}, y_{2}$)-web $G^{\prime \prime}$ with rib G_{0}, say. Every vertex z of H which has degree greater than 2 in H must be contained in G_{0} because of the four $z-V\left(S_{0}\right)$ paths. But then it is easy to see that the planar graph G_{0} contains a subdivision of K_{5} or $K_{3,3}$, a contradiction.

We shall need a more general definition of a web. Let G_{0} be a finite or countably infinite graph containing a 4 -cycle $S_{0}: x_{1} x_{2} y_{1} y_{2} x_{1}$ such that the following hold:
(i) G_{0} is planar and S_{0} is a facial cycle,
(ii) the addition to G_{0} of any edge distinct from $x_{1} y_{1}$ and $x_{2} y_{2}$ results in a non-planar graph, and
(iii) either G_{0} has four vertices and five edges or G_{0} is 3 -connected and has no separating 3 -cycle.

Now we add, for each facial 3-cycle S of G_{0} a finite or infinite (possibly empty) complete graph K^{S} and join it completely to $V(S)$, and for every edge e of G_{0} which is not contained in a 3 -cycle we add a finite or infinite (possibly empty) complete graph K^{e} and join it completely to the ends of e. The resulting graph is called an ($x_{1}, x_{2}, y_{1}, y_{2}$)-web with rib G_{0}. It is easy to give examples showing that G_{0} need not contain any facial 3-cycle.

We can now extend Theorem 1 to infinite graphs.
Theorem 3. The graphs which have no $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-linkage and which are edgemaximal under this condition are precisely the $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-webs.

Proof. Suppose G is a graph with no ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage and suppose G is maximal under this condition. Clearly G contains the cycle $S_{0}: x_{1} x_{2} y_{1} y_{2} x_{1}$. As in the proof of Theorem 1 we show that G is 2 -connected and if A is a minimal separating set of two or three vertices such that a component H of $G-A$ does not intersect S_{0}, then A induces a complete subgraph of G, H is complete and is completely joined to A, and $G-A$ has only one such component H. Moreover, in this case there is no minimal separating set $A^{\prime} \neq A$ with two or three vertices such that $G-A^{\prime}$ has a component H^{\prime} which intersects A but not S_{0}. For any such minimal set A^{\prime} would not intersect H and hence H^{\prime} would contain H. But H^{\prime} (and hence also H) is joined completely to A^{\prime}, which is clearly a contradiction. In other
words, any vertex z of A either belongs to $V\left(S_{0}\right)$ or is connected to $V\left(S_{0}\right)$ by four paths having only z in common pair by pair.

Now we define G_{0} as the subgraph of G induced by $V\left(S_{0}\right)$ and all vertices z which are connected to $V\left(S_{0}\right)$ by four paths having only z in common pair by pair. From the reasoning above it follows that G_{0} contains every vertex of any minimal separating set A with two or three vertices such that a component of $G-A$ does not intersect S_{0}. We prove that for any vertex $z \in V\left(G_{0}\right) \backslash V\left(S_{0}\right)$ there are in G_{0} four $z-V\left(S_{0}\right)$ paths having only z in common pair by pair. By definition of G_{0}, there are such four paths $P_{1}, P_{2}, P_{3}, P_{1}$ in G. We select these paths such that the total number of edges in these paths is the least possible. Then these paths are contained in G_{0}. For if a vertex z^{\prime} of P_{1} is not in G_{0}, then G contains a (minimal) set A of two or three vertices separating z^{\prime} from $V\left(\boldsymbol{S}_{0}\right)$. One of these vertices is on the segment of P_{1} from z^{\prime} to $V\left(S_{0}\right)$ and another is on the segment of P_{1} from z^{\prime} to z. Since $G(A)$ is complete we can replace P_{1} by a shorter path, a contradiction to the choice of $P_{1}, P_{2}, P_{3}, P_{4}$.

From the connectivity property of G_{0} established above it follows easily that G_{0} either has four vertices only or else G_{0} is 3 -connected and has no separating 3-cycle. So G_{0} satisfies condition (iii). Also, by Lemma 1, G_{0} contains no subdivision of K_{5} or $K_{3,3}$. By a result of Halin [2, Theorems 9.1, 9.4] any uncountable 3-connected graph contains a subdivision of $K_{3,3}$ so G_{0} is countable. Now G_{0} is planar by Kuratowski's theorem. Moreover, S_{0} is a facial cycle of G_{0} for otherwise G_{0} would contain an ($x_{1}, x_{2}, y_{1}, y_{2}$)linkage consisting of two paths one of which is in the interior and the other in the exterior of S_{0} in some planar representation of G_{0}. So G_{0} satisfies condition (i).

Now consider any vertex x not in G_{0}. Then there exists a (smallest) set A of two or three vertices of G such that the component of $G-A$ containing x does not intersect S_{0}. Then $A \subseteq V\left(G_{0}\right), G(A)$ is complete, and x is joined to all vertices of A. Since G_{0} is 3-connected and has no separating 3 -cycle, x is not joined to any other vertex of G_{0}. So A consists precisely of the vertices of G_{0} adjacent to x. If another vertex x^{\prime} not in G_{0} is joined to $A^{\prime} \subseteq V\left(G_{0}\right)$ and $A^{\prime} \subseteq A$, then the maximality property of G implies that $A^{\prime}=A$ and x^{\prime} and x are adjacent. Also, if A consists of two vertices u, v only, then the maximality property of G also implies that the edge $u v$ is not contained in a 3-cycle of G_{0}.
In order to prove that G is an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-web with rib G_{0} it only remains to prove that G_{0} satisfies condition (ii). If we add an edge e to $G_{0}\left(e \neq x_{1} y_{1}, e \neq x_{2} y_{2}\right)$ and $G_{0} \cup\{e\}$ is still planar, then S_{0} is facial cycle of this graph and hence $G_{0} \cup\{e\}$ has no $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ linkage. But then it is easy to see that also $G \cup\{e\}$ has no such linkage. This contradiction shows that (ii) is satisfied.

We have proved that every maximal graph with no ($x_{1}, x_{2}, y_{1}, y_{2}$)-linkage is an $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$-web. The converse is proved as in Theorem 1.

5. k-Linkages and Weak k-Linkages in Infinite Graphs

Larman and Mani [8] and Jung [7] proved that a $2 k$-connected graph which contains a subdivision of a complete graph with $3 k$ vertices is k-linked. This also holds for infinite graphs but, as pointed out by Mader [12], there are infinite planar graphs of arbitrarily high finite connectivity which are not 2 -linked. However, these graphs are countable, and by using a result of Halin [5], we can get a best possible sufficient condition, in terms of connectivity, for an uncountable graph to be k-linked.
The webs of Section 4 may be uncountable and 3-connected so we conclude, as in the remark preceding Conjecture 2 that, for each $k \geqslant 2$, there are uncountable ($2 k-1$)connected graphs which are not k-linked. So the following result is best possible.

Theorem 4. Every uncountable $2 k$-connected graph G is k-linked.

Proof. Let $Z=\left(x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{k}\right)$ be any ordered set of $2 k$ distinct vertices of G. By a result of Halin [5, Theorems 9.1, 9.4], G contains a subdivision H of the complete bipartite graph with $2 k$ vertices in one class (which we denote by A) and countably many vertices in the other class. Now we consider $2 k$ disjoint $Z-A$ paths. These paths contain only finitely many vertices of H, and so we can extend the $Z-A$ paths into a Z-linkage using appropriate paths of H.

We believe that Conjecture 1 is also valid for infinite graphs and that an infinite directed multigraph is weakly k-linked if and only if it is k-edge-connected.

References

1. J. Edmonds, Minimum partition of a matroid into independent subsets, J. Res. Nat. Bur. Standards Sect. B 69 (1965), 67-72.
2. J. Edmonds, Edge-disjoint branchings, in Combinatorial Algorithms, Academic Press, New York, 1973, pp. 91-96.
3. S. Even, A. Itai, and A. Shamir, On the complexity of time-table and multi-commodity flow problems, SIAM J. Comput. 5 (1976), 691-703.
4. S. Fortune, J. Hopcroft, and J. Wyllie, The directed subgraph homeomorphism problem, to appear.
5. R. Halin, Simplicial decompositions of infinite graphs, Ann. Discrete Math. 3 (1978), 93-109.
6. T. C. Hu, Multicommodity network flows, Oper. Res. 11 (1963), 344-360.
7. H. A. Jung, Eine Verallgemeinerung des n-fachen zusammenhangs für Graphen, Math. Ann. 187 (1970), 95-103.
8. D. G. Larman and P. Mani, On the existence of certain configurations within graphs and the 1 -sceletons of polytopes, Proc. London Math. Soc. 20 (1970), 144-160.
9. L. Lovász, Problem 5, Period. Math. Hungar. 4 (1973), 82.
10. L. Lovász, On two minimax theorems in graph, J. Combin. Theory Ser. B 21 (1976), 96-103.
11. W. Mader, Hinreichende Bedingungen für die Existenz von Teilgraphen, die zu einem vollständigen Graphen homöomorph sind, Math. Nachr. 53 (1972), 145-150.
12. W. Mader, Connectivity and edge-connectivity in finite graphs, in Surveys in Combinatorics (B. Bollobás, ed.), London Math. Soc. Lecture Note Series 38 (1979), 66-95.
13. C. St. J. A. Nash-Williams, On orientations, connectivity and odd-vertex-pairings in finite graphs, Canad. J. Math. 12 (1960), 555-567.
14. C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961), 445-450.
15. S. Seshu and M. B. Reed, Linear Graphs and Electrical Networks, Addison-Wesley, London, 1961.
16. P. D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980), 293-309.
17. Y. Shiloach, A polynomial solution to the undirected two paths problem, J. Assoc. Comput. Mach. 3 (1980), 445-456.
18. C. Thomassen, Note on circuits containing specified edges, J. Combin. Theory Ser. B 22 (1977), 279-280.
19. C. Thomassen, Planarity and duality of finite and infinite graphs, J. Combin. Theory Ser. B 29 (1980), 244-271.
20. C. Thomassen, 2-linked graphs, Preprint Series 1979/80, No. 17, Matematisk Institut, Aarhus Universitet, 1979.
21. W. T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961), 221-230.
22. W. Watkins, On the existence of certain disjoint arcs in graphs, Duke Math. J. 35 (1968), 231-246.
23. D. R. Woodall, Circuits containing specified edges, J. Combin. Theory Ser. B 22 (1977), 274-278.

Received 15 December 1979 and in revised form 22 September 1980
C. Thomassen

Matematisk Institüt, Aarhus Universität, 8000 Aarhus C. Denmark

