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Low bone mineral density (BMD), osteopenia, and osteoporosis are frequent complications of celiac
disease (CD). The etiology of pathologic bone alterations in CD is multifactorial; however, two main
mechanisms are involved: intestinal malabsorption and chronic inflammation. A strict gluten-free
diet (GFD) is thought to be the only effective treatment for CD; but treating bone complications
related to CD remains complex.

The objective of this review is to elucidate the bones problems related to CD and to increase
awareness of osteoporosis development, considered as a sign of atypical CD presentation.
Currently, a question of whether GFD alone is an effective treatment to correct the bone alterations
in patients with CD is under debate. This review presents factors contributing to pathologic bone
derangement, recent research on the epidemiology of low BMD, osteoporosis, and fractures, and
the treatment of bone problems in patients with CD. The roles of calcium and transport mecha-
nisms are additionally presented.

� 2014 The Authors. Published by Elsevier Inc. Open access under CC BY license.
Introduction

The clinical picture of celiac disease (CD) is highly variable,
which complicates accurate diagnosis. In CD, the autoimmune
response is mainly targeted at the intestinal mucosa; however,
it can manifest itself with a variety of signs and symptoms
affecting any organ or tissue. Extra-intestinal symptoms, such as
low bone mineral density (BMD), reduced bone mass, and
increased bone fragility, leading to an increased prevalence of
fractures must be considered as a sign of atypical CD presenta-
tion. These bone alternations are the consequence of impaired
calcium and vitamin D absorption and secondary hyperpara-
thyroidism resulting principally from the loss of villous cells in
the proximal intestine, where calcium is most actively absorbed.
Several studies evaluated bone status in CD, both at diagnosis
and after gluten-free diet (GFD). Nevertheless, studies focusing
on the prevalence of bone derangement in patients with CD are
regarding the publication
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still inconclusive because both old and recent findings are widely
incongruous [1].

At present, the only effective treatment for CD is a strict
lifelong GFD. However, it is still unknown whether GFD alone is
sufficient to correct the bone alterations and whether these
metabolic bone diseases are reversible. Exploring the literature
concerning the effects of GFD on bone alteration in CD reveals
contradictory results. On one side, there are studies that suggest
that the risk of low BMD in patients with CD on a GFD is
considerably diminished [2,3]. Alternatively, the results of other
studies [4] showed that patients with persistent small-intestinal
mucosal villous atrophy, despite adherence to a strict GFD and
the absence of symptoms, had a high risk for osteoporosis. Un-
doubtedly, patients with CD and additional bone metabolism
alterations and bone mineral loss require appropriate manage-
ment. Early treatment might in part prevent complications of CD,
such as malignancies [5], osteoporosis [6], and autoimmune
diseases in general [7]. Considering that most bone mass is ac-
quired during the first 2 decades of life, early diagnosis of CD and
adherence to a GFD are fundamentally important to ensure
adequate bonemetabolism in such cases. Recent clinical trials for
some new treatment modalities for CD are still ongoing; how-
ever, these therapies are aimed at reduction of the need for a
strict GFD by the alteration of dietary food products, decrease of
gluten exposure by rapid enzymatic degradation, inhibition of
nse.
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small intestinal permeability, or modulation of the immune
response [8]. Currently, the human studies concerning the most
effective treatment for calcium deficiency and bone problems in
patients with CD are still lacking.

Celiac disease: Pathogenesis, prevalence, and mode
of presentation

CD is a lifelong intestinal disorder that occurs in genetically
predisposed individuals. The disease is characterized by an im-
mune reaction to the gliadin fraction of gluten, a protein
component found in wheat, rye, and barley. The tendency of CD
to run in families is well recognized. This multigene disorder is
strongly associated with the human leukocyte antigen (HLA)
genes. Approximately 90% to 95% of patients with CD inherit
alleles encoding HLA-DQ2, whereas most of the remaining pa-
tients have HLA-DQ8 [9,10]. The expression of HLA-DQ2 or
HLA-DQ8 is a necessary but not sufficient factor in CD patho-
genesis. Studies of identical twins have shown that one twin did
not develop CD in 25% of the cases studied [11], supporting the
role played by environmental factors in the etiology of this dis-
order. Breastfeeding and the timing of gluten ingestion com-
mencement [12], infections [13], some drugs [14], and smoking
[15] might contribute to disease occurrence.

Until recently, CD was thought to occur rarely in childhood;
however, current screening studies have demonstrated a much
higher prevalence of CD than previously thought. The occurrence
of biopsy-proven CD in Finnish and Italian schoolchildren was
reported to be 1:99 and 1:106, respectively [16,17]. Similar rates
of prevalence have been reported in adult populations in the
United Kingdom (1:87) and the United States (1:105) [18,19].
Such a rate establishes CD as one of the most common diseases,
affecting approximately 1% of the world’s population at any age,
although it is less common in most non-Caucasians and thought
to be rare in central Africa and East Asia. Recently, more cases are
being diagnosed as a consequence of widespread serological
testing and increased awareness, still most people with CD
remain undiagnosed as subclinical or atypical presentations are
more frequently encountered [20–22]. Adult presentations of CD
are more common than pediatric presentations, females pre-
dominate over males, and newly diagnosed CD occurs in young
adults and patients older than age 60 y.

CD primarily affects the mucosa of the proximal small intes-
tine with damage gradually decreasing in severity toward the
distal small intestine, although in severe cases the lesion extends
to the ileum and colon [23]. The clinical presentation of CD varies
widely and depends on the patient’s age, duration and extent of
disease, and presence of extra-intestinal manifestations [24].
Patients can be asymptomatic to severely symptomatic. One
study [25] defined major CD to be those patients complaining of
frank malabsorption symptoms often associated with concomi-
tant autoimmune diseases symptoms. In children, and similarly
in adolescents and adults, in addition to diarrhea, abdominal
distension, vomiting, constipation, weight loss, weakness, short
stature, flatus, muscle wasting and hypotonia, general irritability
and unhappiness are observed [26,27]. Hypocalcemia, low
vitamin D levels, low bone formation, enhanced bone resorption
markers, and low BMD are frequently found among children and
adolescents with untreated CD. In minor CD, on the other hand,
gastrointestinal (GI) symptoms are absent or not prominent.
Instead, patients might report unrelated symptoms such as
dyspepsia, abdominal discomfort and bloating, mild or occasional
altered bowel habits without malabsorption mimicking irritable
bowel syndrome, unexplained anemia, isolated fatigue, cryptic
hypertransaminasemia, infertility, peripheral and central neuro-
logic disorders, osteoporosis, short stature, dental enamel defects,
or dermatitis herpetiformis [28]. The silent form of CD is marked
by small intestinal mucosal abnormalities and in most cases by
positive serology, but it is apparently asymptomatic [29]. Most of
these individuals are relatives of patients with known CD or
members of the general population found to be positive for
antiendomysial antibodies or hTTG antibodies [25]. Screening
studies of first-degree relatives of patients with CD and other risk
groups (e.g., patients with various autoimmune diseases) have
demonstrated that serious intestinal damage may be present
without any symptoms [30]. Autoimmune and immune-mediated
diseases often are reported in association with CD, such as type 1
diabetes mellitus, autoimmune thyroiditis, or morphea [31].
Moreover, patients with Down, Turner, or Williams syndromes
also are at increased risk for development of CD [32].

Serological tests used as an initial non-invasive screen for
detecting CD include sensitive and specific serological markers,
such as anti-endomysial and anti-transglutaminase antibodies
[33]. Although positive test results can be supportive for a dia-
gnosis, upper GI tract biopsy is required because a definitive
diagnosis can be made only by the histologic demonstration
of compatible intestinal mucosal lesions [34]. The diagnosis de-
pends on the finding of characteristic changes including intra-
epithelial lymphocytosis, crypt hyperplasia, and various degrees
of reduced villous height together with symptomatic and histo-
logic improvementwhen gluten iswithdrawn [35]. The pathology
of the disease can range from infiltrative lesions characterized by
increased intraepithelial lymphocytes with normal architecture
to completely flat mucosa [36].

The keystone of CD management is the exclusion of gluten
from the diet [37]. It is generally accepted that in a GFD, wheat,
barley, and rye must be avoided as their prolamines (gliadin,
hordein, and secalin) are the major triggering factors of CD.
Clinical improvement is usually evident in the first few weeks
after gluten withdrawal, but it can take up to 2 y for complete
histologic resolution of the enteropathy [38]. However, some
patients show a lack of response to a GFD. Non-responsive
celiac disease (NRCD) is a clinical diagnosis defined by the
persistence of signs, symptoms, and/or laboratory abnormal-
ities typical of active CD despite treatment with a GFD for at
least 6 mo [39]. Among NRCD, the most serious is refractory
celiac disease (RCD), which can be complicated by significant
morbidity and mortality and carries a poor prognosis due to
severe malabsorption, malnutrition, and development of ul-
cerative jejunitis or enteropathy-associated T-cell lymphoma
[40]. The key information concerning CD is summarized in
Table 1.

Calcium: A “common denominator” of bone and intestine

Calcium is an essential ion necessary to maintain the proper
functionality of the circulatory and neuromuscular systems; it is
a cofactor for several hormones and enzymes and influences the
immunologic system. In bones and teeth, it plays a structure
function and provides mechanical strength. Additionally, cal-
cium is a physiologic link between bone and intestine. Bones,
being calcium salt reservoirs, have a metabolic function because
calcium is continuously exchanged between bone and blood and
can be released from bone to maintain extracellular calcium
concentrations, regardless of intake. Wherefore, intestinal cal-
cium absorption is essential to ensure that appropriate concen-
trations of intra- and extracellular calcium fluids are effectively
maintained without bone depletion [41,42].



Table 1
Essential characteristic of celiac disease

Coeliac disease

Prevalence General populations 0.5%–1.26%; Children 0.31%–0.9%
Female:male

ratio
Between 2:1 and 3:1

Trigger Gluten (gliadins and glutenins, hordeins, secalins)
Causation Genetic predisposition (HLA/Non-HLA genes);

Environmental factors (infant-feeding practice, infections,
drugs, socioeconomic factors)

Diagnosis Positive histologic testing (hyperplastic villous atrophy);
Positive serologic testing (EMA, TGA antibodies); Clinical
remission on a strict GFD

Clinical
presentation

Silent–asymptomatic, positive EMA or TGA antibodies;
Minor–unrelated symptoms or isolated symptoms of
autoimmune diseases; positive EMA or TGA antibodies;
Major–frank malabsorption symptoms;

Complications RCD types I and II EATL
Associated

disease
Type 1 diabetes mellitus; autoimmune thyroiditis;
autoimmune myocarditis; Sjögren’s syndrome;
autoimmune hepatitis; primary biliary cirrhosis; selective
IgA deficiency; Addison’s disease; Down syndrome;
Alopecia areata; Sarcoidosis; neurologic abnormalities;
asthma and atopy; IBD; systemic and cutaneous vasculitis;
psoriasis; inflammatory arthritis; vitiligo

Treatment GFD; supplementation of identified deficiencies

EATL, enteropathy-associated T-cell lymphoma; EMA, endomysium; GFD,
gluten-free diet; IBD, Inflammatory bowel disease; IgA, immunoglobulin A; RCD,
refractory coeliac disease; TGA, tissue transglutaminase
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Calcium absorption in the intestine, reabsorption from the
kidney, and exchange from bones is tightly controlled. To provide
calcium homeostasis, the coordinated actions of these three
organs and proper hormonal regulation are critical. Calcium
balance is regulated through the calciotropic hormones: para-
thyroid hormone (PTH), 1,25-dihydroxyvitamin D (1,25[OH]2D3),
and calcitonin. A previous study [42] reviewed the role of other
hormones on calcium transport mechanisms. PTH and
1,25(OH)2D3 exert complex coordinated activities to maintain
normal serum calcium levels. As the extracellular Ca2þ concen-
tration decreases, there is a rapid increase in PTH release that
promotes bone turnover and cortical bone loss. Hyperparathy-
roidism is common in patients newly diagnosed with CD (27% in
adults; 12%–54% in children) [43–46] and in those with RCD, but
is less common in patients who respond to a GFD [47]. High
levels of PTH increase the circulating levels of 1,25(OH)2D3 by
stimulating the renal production of 1-a-hydroxylase, the enzyme
responsible for the conversion of 25-hydroxy vitamin D (25[OH]
D) to the final hormone 1,25(OH)2D3. For this reason, increased 1,
25(OH)2D3 levels may be observed in CD [48]. Low BMD in adult
CD patients are related to secondary hyperparathyroism and
osteomalacia due to calcium and vitamin D malabsorption [49].
Vitamin D deficiency occurs in 64% of men and 71% of women
with CD [50]. Dietary vitamin D is absorbed through the small
intestine as a fat-soluble vitamin along with dietary fat and is
incorporated into chylomicrons. The primary etiology of vitamin
D deficiency in CD is malabsorption, however, an intestinal
mucosal lesion is also a decisive issue of hypovitaminosis D [51].

Of all the endocrine factors involved in calcium transport,
1,25(OH)2D3 is probably the most important and seems to
regulate most proteins that are involved in the overall transport
process. Regulation of 1,25(OH)2D3 through genomic actions
involving the classical vitamin D receptor (VDR) is widely
recognized [52], but its non-genomic regulation through a
separate membrane receptor, which was identified as the
1,25D3-MARRS (membrane-associated, rapid response, steroid
hormone-binding) receptor, is also now accepted [53]. VDR are
normally expressed in the duodenal mucosa of patients with CD,
notwithstanding mucosal damage and atrophy of the villi [54].
No difference in the frequency of VDR genotypes between pa-
tients with CD and controls has been found; therefore, low bone
density seems unrelated to a specific VDR genetic pattern in
patients with CD [55]. However, as normal intestinal mucosa is
required for optimal absorption, in the areas of damaged mucosa
defective enterocytes have reduced levels of calbindin and
calcium-binding protein, the vitamin D-regulated proteins that
actively take up calcium from the intestinal lumen [56]. There-
fore, they cannot respond to 1,25(OH)2D3, further potentiating
calcium loss and secondary hyperparathyroidism.

Calcium in food occurs as salts or is associated with other
dietary constituents in the form of complexes of calcium ions
(Ca2þ). Before it can be absorbed, calcium must be released in a
soluble and ionized form. Calcium absorption depends on its
chemical form and factors affecting its solubility. Low pH, basic
amino acids, lactose, organic acids, bile salts, and adequate cal-
cium/phosphorus ratio increase calcium absorption, whereas
higher pH, non-soluble dietary fiber, phytates, and oxalates
greatly cause its reduction. Under physiological conditions, the
majority of dietary calcium is absorbed in the small intestine,
accounting for approximately 90% of overall calcium absorption
[57]. Minor amounts of Ca2þ ions are absorbed from the stomach
and large intestine; the colon accounts for less than 10% of the
total Ca2þ absorbed. The major contributors to the amount of
calcium absorbed are the residence time and the rate of ab-
sorption in the particular segments of the GI tract. The order of
absorption rate is: duodenum > jejunum > ileum. Extracellular
concentrations of unbound calcium are approximately 1 mM,
whereas the intracellular free concentration under resting con-
ditions is in the range of 0.1 mM, creating a steep gradient be-
tween intra- and extracellular concentrations [41]. Moreover,
intracellular calcium can undergo large, rapid changes due to
either influx through the cell membrane or release from intra-
cellular stores, whereas extracellular calcium remains relatively
constant under normal circumstances [57]. The maintenance of
the extracellular Ca2þ concentration is of utmost importance for
many vital functions of the body. Differences between intra- and
extracellular calcium concentrations put severe constraints and
demands on the plasma membrane transport mechanism to
safeguard the integrity of the intracellular milieu.

In general, calcium transport is mediated by a complex array
of transport processes that are regulated by hormonal, deve-
lopmental, and physiological factors. Its movement across the
intestinal epithelium is based on two mechanisms: passive (par-
acellular) and active (transcellular). The transcellular calcium
transport is a three step metabolically energized process, con-
sisting of the apical uptake via the transient receptor potential
vanilloid family calcium channel 5 and 6 (TRPV5/6) and L-type
calcium channel Cav1.3, cytoplasmic translocation in a calbindin-
D9k-bound form, and the basolateral extrusion via the plasma
membrane Ca2þ-ATPase1b (PMCA1b) and Naþ/Ca2þexchanger 1
(NCX1) [57]. In contrast, the paracellular passive calcium transport
is dependent on the transepithelial calcium gradient and is absent
when both sides of the epithelium have equal calcium concen-
tration [41]. Paracellular calcium movement is regulated by the
tight junction, which contains several charge-selective proteins,
particularly claudin-2, claudin-3, and claudin-12, arranged in the
arrays of channel-like paracellular pores [58]. Additionally, the
integrity of the tight junction is regulated by tight junction pro-
teins, such as the zonula occludens-1 (ZO-1) and occludins [59].

Intestinal Ca2þ absorption varies according to the age
and physiological conditions of individuals. It is apparent that



Table 2
Conditions contributing to pathological bone alterations in celiac disease

Factor Mechanism of action

Hypocalcemia Malabsorption of calcium:
Vitamin D deficiency
Intestine mucosa damage (reduction in the
active absorption area)
Alterations in calcium-transport mechanism
(lost of calbindin and calcium-binding proteins)

Inadequate calcium intake
Reduced consumption of dairy products
(lactose intolerance)
Steatorrhea

Hypovitaminosis D Malabsorption of vitamin D:
Alterations in vitamin D metablism
Decreased level of vitamin D-binding proteins

Decreased intake of vitamin D
Steatorrhea

Bowel inflammation Chronic release of proinflammatory cytokines
Hormones PTH (secondary hyperparathyroidism)

Estrogens and androgens (modulation of
RANK/RANKL/OPG system)

Corticosteriods Reduction of intestinal calcium absorption
Increase of renal calcium excretion
Impairment of osteoblast function
Alteration of osteoclast resorption cycle

Additional risk
factors

Autoimmune alternations (autoimmune thyroiditis,
dermatitis Herpetiformis, type 1 diabetes mellitus)
Diagnosis in adult life
Lapses from GFD
Active disease
Low BMI
Lifestyle factors (lack of physical activity, smoking)

BMI, body mass index; GFD, gluten-free diet; PTH, parathyroid hormone
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paracellular calcium transport is predominant in the small in-
testine [41]. However, when calcium demand is markedly
increased, such as during growth, pregnancy and lactation, high
physical activity, and/or when dietary calcium supply is low,
passive Ca2þ absorption alone would be insufficient to maintain
optimal health status. Therefore, the contribution of transcellular
transport becomes more significant. Calcitriol is one of the main
regulators of active intestinal calcium absorption and increases
the gene transcription of several calcium transporters, including
TRPV6, Calbindin-D9k, Calbindin-D28k, and PMCA1b [60–62].
However, recent genetic studies question the critical role of
TRPV6 and calbindin-D9k in calcitriol-mediated intestinal cal-
cium absorption [63,64]. Indeed, duodenal calcium absorption is
not impaired in Trpv6�/� mice and calbindin-D9k/Trpv6 dou-
ble-null mice fed a normal calcium diet. Lieben et al. [65] indi-
cated that TRPV6 is redundant for intestinal calcium absorption
during normal calcium intake, and therefore is not necessary for
normal bone volume, morphology, or remodeling when dietary
calcium supply is sufficient. Nevertheless, authors demonstrated
that TRPV6 does contribute to the energy-dependent pathway of
intestinal calcium absorption and is essential to ensure adequate
calcium absorption during dietary calcium deprivation, thereby
avoiding excessive bone turnover and impaired bone minerali-
sation. The finding that TRPV6 is not essential for the mainte-
nance of serum calcium levels during normal/high calcium
intake indicates that other molecules contribute to active intes-
tinal calcium absorption. These factors may subsequently
compensate for the deficiency in TRPV6, providing an expla-
nation for the modest effects of TRPV6 deletion on intestinal
calcium absorption. Additionally, results of one study [66] sug-
gested that 1,25(OH)2D3 stimulates intestinal calcium absorption
via regulation of the paracellular pathway, at least in vitro.

Etiology of bone alterations in celiac disease

The relationship between bone derangements and CD was
recognized many years ago [67,68]. Patients newly diagnosed or
inadequately treated for CD often suffer from skeletal disorders,
have low BMD, reduced bone mass, and consequently increased
bone fragility leading to a high prevalence of bone fractures [69,
70]. The etiology of pathological bone alterations in CD is likely to
be multifactorial; however, the emphasis should be on the
portion of intestine most severely affected by this disease. CD
causes inflammation of the mucosa of the small bowel, from the
duodenum to the distal ileum; thus, intestinal absorption is
frequently altered leading tomalabsorption, which is observed in
acute CD. Both malabsorption and chronic intestine inflamma-
tion negatively affect bone health. The conditions contributing to
pathologic bone alterations in CD are presented in the Table 2.

Intestinal malabsorption

In CD, a subsequent immune-mediated enterocyte destruc-
tion with atrophic intestinal epithelium results in a decreased
surface area for absorption leading to not only to several mineral,
vitamin, and protein deficiencies (including albumin and im-
munoglobulins) but consequently to general malnutrition and a
reduced body mass index (BMI). Calcium and vitamin D are
generally absorbed throughout the small bowel, predominantly
in the proximal portion. Calcium malabsorption is a combined
result of steatorrhoea, alterations in calcium-transport mecha-
nisms (i.e., reduced levels of vitamin D-dependent calcium-
binding proteins), and lack of vitamin D [71]. Dietary vitamin
D, absorbed as a fat-soluble vitamin, along with dietary fat, is
secreted with bile and reabsorbed in the intestine. Steatorrhoea
may impair the reabsorption of 25(OH)D undergoing enter-
ohepatic circulation, thereby contributing to the development of
hypovitaminosis D, especially during acute exacerbations of CD.
Augmented hypocalcemia and vitamin D insufficiency are asso-
ciated with increased levels of serum PTH (secondary hyper-
parathyroidism), which accelerates bone turnover, bone loss, and
increases fracture risk [72,73]. In patients with symptomatic CD,
low BMD appears directly related to intestinal malabsorption of
calcium, vitamin D, and other nutrients essential to bone health.
However, low BMD is present even in atypical or asymptomatic
CD patients at the time of diagnosis.

Inflammatory and immunologic alterations

Bone alterationswere thought to result simple from intestinal
malabsorption and steatorrhoea, but now a more complex
interaction between cytokines and local/systemic factors influ-
encing bone formation and reabsorption is envisaged. Osteo-
tropic cytokines are involved in bone remodeling because they
regulate the differentiation and activation of osteoblasts and
osteoclasts. In inflammatory diseases, including CD, the chronic
release of proinflammatory cytokines is well known. Interferon
(IFN)-g is the dominant cytokine in the damaged intestinal
mucosa. A study [74] describing the involvement of proin-
flammatory cytokine network in pathogenesis of CD in children
pointed out the abundance of IFN-g in the intestinal mucosa;
additionally, the study’s researchers linked gluten intake with
the production of interleukin (IL)-15, IL-18, and IL-21. Recently,
another study [75] reviewed the involvement of tumor necrosis
factor (TNF)-a and IFN-g in bone remodeling and suggested that
their enhanced production and release during chronic inflam-
mation is associated with increased bone loss. Higher levels
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of serum cytokines that directly trigger osteoclasts (IL-1, IL-6, and
TNF-a) have been detected in individuals with untreated CD; at
the same time low levels of cytokines that play an inhibitory role
(IL-18 and IL-12) was observed [76,77]. High levels of serum IL-6
in active CD correlated inversely with lumbar BMD values [76].

Bone homeostasis is reached by a dynamic balance between
bone-reabsorbing activity performed by receptor activator of
nuclear factor kappa-B ligand (RANKL) and the effects of its
natural decoy receptor osteoprotegerin (OPG). OPG/RANKL ratio
was significantly lower in patients with CD with recovery of in-
testinal mucosa than in healthy controls and that positively
correlated with low BMD [78]. Results of one study [77] observed
a significant negative correlation between the BMD Z score and
RANKL/OPG ratio in CD patients. Recently, another study [79]
detected auto-antibodies against OPG in a man with CD and
severe osteoporosis and demonstrated the potential of the auto-
antibodies to block the inhibitory effect of OPG on RANKL.
Inversely, in another study [80], antibodies against OPGwere not
found in the serum of patients with CD. Therefore, the role and a
range of auto-antibodies against OPG in the pathogenesis of bone
derangement in patients with CD need to be clearly established
and other mechanisms should be investigated.

In patients with asymptomatic CD, factors related to chronic
intestinal inflammation (i.e., deficiency of growth factors,
increased production of cytokines, and possible autoimmune
alterations) may be the main factors leading to reduced BMD
[81]. Recent research [82] has demonstrated the association
between a genetic predisposition and low bone mass in patients
with CD. Authors have reported that single-nucleotide poly-
morphisms in the genes that encode cytokines of the IL-1 family
are associated with bone damage: The carriers of allele T of the
IL-1b gene (IL1B-511T) had a significantly lower bone mass (total
body) and a higher prevalence of osteopenia/osteoporosis. This
finding supports the postulated inflammation-associated bone
loss pathogenesis as one of the causes of bone weakness in CD.
Nutrition

Diet plays an important role in proper bones mineralization.
Generally, a diet based on gluten-free products is low in nutrients,
vitamins, and minerals, including calcium [83]. Dietary surveys
Table 3
Recent published studies on BMD in adult and pediatric celiac patients

Country Participants BMD

In adult CD patients
2005 England 43 CD Low BMD
2005 USA 24 CD 20 control BMD sign
2006 Norway 118 CD BMD sign
2009 Brazil 31 CD Low BMD
2011 Finland 35 CD Low BMD
2012 Italy 70 CD on GFD Low BMD

osteopen
In pediatric CD patients
2003 Brasil 30 CD (17 children; 13 adolescents)

23 control
BMD of a
in BMD o

2003 Turkey 62 CD 64 controls BMD < in
2004 Italy 22 CD 428 control BMD < in
2006 Argentina 24 CD Low BMD

reverted
2010 Slovenia 74 CD (55 strict GDF; 19 not strict GFD) BMD high

BMD belo
2012 Greece 81 CD (45 untreated; 36 on GFD) Increase o

populatio

BMD, bone mineral density; CD, celiac disease; GFD, gluten-free diet
have found that patientswith CDwho are on a GFD often consume
less than the recommended amounts of calcium and vitamin D.
One study [84] demonstrated that 76% to 88% of children and 85%
of adolescents with CD adhering to a GFD have inadequate cal-
cium intake. Similarly, another study [85] observed an inadequate
calcium intake among children and adolescents on GFD.

Calcium supply in the diet of patients with CD is reduced even
more due to a decreased intake of milk and dairy products in an
effort to avoid lactose. Secondary lactose intolerance resulting
from decreased lactase production by the damaged villi is com-
mon in patients with CD. Additionally, naturally gluten-free
products often are low in calcium, iron, zinc, magnesium, vita-
mins (B group vitamins and vitamin D) and fiber. Very few
gluten-free products are enriched in calcium as their wheat-
containing counterparts; however, it is possible to obtain a
good-quality calcium-enriched bread of pleasant sensory char-
acteristic and high-calcium content [86,87], which according to
the World Health Organization [88] could be considered an
excellent source of calcium.

Epidemiology of low BMD, osteoporosis, and fractures in CD

Low BMD and osteoporosis

Several studies have demonstrated low BMD in children and
adults with CD [44,50,89]. Skeletal diseases are reported in as-
sociation with CD as its non-intestinal presentation. In atypical
patients with CD, as well as in unrecognized cases, back pain,
diffuse musculoskeletal pain, and proximal muscle weakness
and osteomalacia are possible clinical manifestations of the
disease in addition to osteopenia and osteoporosis [90]. Osteo-
penia was found in suboptimally treated patients with CD [91],
subclinical patients [92], and asymptomatic adult patients [93].
One study [6] found that asymptomatic patients had significantly
lower bone density than symptomatic patients. Recent published
studies on BMD in adult and pediatric patients with CD are
presented in Table 3.

Adults

Early research [50] investigated the BMD and prevalence of
osteopenia and osteoporosis in adult patients with CD and found
References

in 5%; osteoporosis in 14%; Osteopenia in 40% Lewis and Scott, 2005 [94]
ificantly reduced in treated vs. control Pazianas et al. 2005 [95]
ificantly reduced (P < 0.001) at all sites Deressa et al. 2006 [96]
in 9% Motta et al. 2009 [97]
in 62% Vilppula et al. 2011 [99]
in 74% (among these: 24% osteoporosis; 76%

ia)
Larussa et al. 2012 [80]

dolescents lower than control; no differences
f children vs. control

Sdepanian et al. 2003 [84]

untreated vs. treated and control Kavak et al. 2003 [44]
untreated vs. control Barera et al. 2004 [102]
and osteopenia (17%) in untreated; axial BMD
to normal in most treated children under 4 y

Tau et al. 2006 [45]

er in CD on strict GFD vs. CD on not strict GFD;
w �1.0 in 71% CD on not strict GFD

Blazina et al. 2010 [85]

f BMD after 1 y of GFD; BMD < vs. normal
n

Margoni et al. 2012 [103]
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that 26% had osteoporosis of the lumbar spine. Also, a study [89]
analyzing a North American population with CD found that
osteoporosis (T score <�2.5) and low bone mass (T score be-
tween �1.0 and �2.5) were present in 27% to 36% and in 32% to
44% of patients, at the femoral neck and lumbar spine/radius,
respectively, at the time of CD diagnosis. More recent studies
indicated significantly reduced BMD in newly diagnosed patients
with CD [94–97]. A study that [98] tested bone density (lumbar
spine, total hip, trochanter, and femoral neck) in seropositive
tissue transglutaminase/immunoglobulin A endomysial anti-
body–positive women reported a 67.7% prevalence of osteopo-
rosis. Osteopenia or osteoporosis was found in 22 of 35 new
biopsy-proven CD patients in another study [99], which resul-
ted in a 62% prevalence of low BMD.

Children and adolescents

Children with CD are at risk for reduced BMD. Markedly
reduced bone mineral content (BMC) and BMD have been
repeatedly found in children and adolescents with untreated CD,
regardless of the clinical presentation [100,101]. A lower BMD,
significantly higher PTH, and lower serum calciumwas indicated
in untreated children with CD in comparison with treated and
controls [44]. Also, a previous study [102] showed significantly
lower BMD in untreated children with CD. Studies [45] on young
children with CD (mean age 4.9 y) showed lowered BMD and
even severe osteopenia (17%) at the time of diagnosis. A recent
study [103] assessed bone status in children with CD and found
BMD significantly lower than expected for the normal popula-
tion, even after 1 or at least 2 y of GFD.

Additionally, a risk for less-than-optimal peak bone mass
acquisition and a retarded growth in CD children must be
highlighted. The most rapid gain in bone mass occurs during
adolescence. Bone density increases until the end of puberty,
when it reaches its peak value. If normal peak bone mass is not
achieved, the individual is at a higher risk for developing oste-
oporosis; thus, the amount of bone accrued during the pediatric
years is an important predictor of an individual’s future resis-
tance to fractures [104]. The bone metabolism rate can be ass-
essed by biochemical tests performed on blood or urine samples,
which mirrors the ongoing bone metabolic processes [105];
however, only a few studies have monitored the bone meta-
bolism rate in young patients with CD [106,107]. The rate of bone
metabolismwas altered in childrenwith untreated CD, and these
alterations may be the cause of osteopathy [102]. Two studies
[108,109] in children with CD suggested a need for careful eval-
uation of growth and growth hormone (GH) secretion in those
without catch-up growth. Therefore, when evaluating BMD in
children with CD, an association between CD and GH deficiency
should be taken into consideration, not only to avoid a false
interpretation of the dual-energy X-ray absorptiometry (DXA)
data (apparently reduced BMD due to the short stature) but also
because of the major influence of GH on BMD increase.

Fracture risk

Bone resorption and osteoporosis, being a well-established
extra-intestinal manifestation of CD, calls attention to a possi-
ble increase in fracture risk. An earlier study [110] confirmed the
significant association between CD and increased fracture risk.
A previous study [69] and a more recent study [111] showed
a higher prevalence of fractures in the peripheral skeleton
before diagnosis that was associated with male sex and classic
clinical presentation. However, studies in smaller numbers of
selected patients drawn from hospital clinics are likely to over-
estimate risk and cannot be generalized to the CD population as a
whole.

Population-based cohort studies on fragility fractures in
individuals with CD, including those diagnosed in childhood,
indicated a relative risk for any fracture ranging widely from 0.9
[112] to 7 [113] and from 0.66 [114] to 1.9 for hip fractures [115].
In a general population-based cohort study [116] that included
individuals with CD (n ¼ 14 187) and reference individuals
(n ¼ 14 187), CD was positively associated with subsequent hip
fracture (hazard ratio [HR], 2.1; 95% confidence interval [CI],
1.8–2.4) and fractures of any type (HR,1.4; 95% CI,1.3–1.5). On the
other hand, a systematic reviewwith ameta-analysis that pooled
20 995 CD patients and 97 777 controls, from eight studies
published between 2000 and 2007, indicated that CD patients
have a 43% higher risk for fracture compared with people
without CD [117]. One study [118] questioned the rationale for
screening for CD in individuals with fractures, as available evi-
dence indicates that the risk for fragility fractures is only slightly
increased in CD and that the absolute risk for fracture in the
majority of these individuals is low.

Treatment of bone loss in CD

Gluten-free diet

The best treatment of calcium deficiency and bone problems
in patients with CD is debated. Nutritional status of these
patients depends on the length of time they have lived with
active but undiagnosed disease, the extent of damage to the GI
tract, and the degree of malabsorption [119]. A strict and lifelong
GFD can help recover normal bone density when a diagnosis of
CD is made in children and adolescents [100,101]; however, there
is no evidence that an optimal peak bone mass level can be
achieved or that it can be maintained for many years, as happens
in healthy individuals. An early start to treatment for pediatric
patients with CD ensures significantly higher bone metabolism
rates because the treatment reverses the inflammatory process
and prevents impairment of bone mass acquisition during the
most important period for its acquisition [44,120]. A longitudinal
study [121] in CD children with DXA-assessed low BMD at
diagnosis indicated that after 1 y on GFD, BMD became compa-
rable with healthy controls. Similarly, another study [44] in
children with CD confirmed that a strict GFD improved bone
mineralization even at 1 y. Another study [122] reported that
children and adolescents with CD, after being on a GFD for �3 y,
have normal or even higher radius BMD values than controls, but
the bone size remained reduced. One group of researchers
[84] evaluated BMD in young patients with CD on a GFD
and indicated that BMD of adolescents with CD was lower than
that of the control children, whereas no difference was found
between the BMD of children with CD and that of the control
group. The authors attributed these findings to the longer time
between symptoms and diagnosis in adolescents, due to which
they suffer more malnutrition and more bone damage than
children.

In the case of adult CD patients diagnosed with bones disease,
a GFD is still considered to be the most rational treatment
approach [123,124]. Nevertheless, a GFD rarely normalizes BMD
in adulthood [125,126]. A very recent study [80] indicated that
despite long-term strict adherence to GFD, 74% of patients dis-
played low BMD; among these 24% showed osteoporosis and 76%
osteopenia. Therefore, nutritional supplementation should be
considered for patients with CD.
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Calcium and vitamin D supplementation

Some patients with CD may not be able to meet the recom-
mended daily intake level for calcium and vitamin D through
GFD alone, and supplements may be indicated [127]. Few studies
tested calcium and vitamin D supplementation in patients with
CD. One study [89] observed that among postmenopausal
women, BMD was not better in patients taking calcium and
vitamin D supplements than in thosewhowere not.Whereas, 2 y
of calcium (1 g/d) and vitamin D (400 U/d) supplementation
increased the BMD of children and adolescents with CD, but it
did not reach the sex- and age-matched values for the control
population [128]. Another study [129] suggested that the daily
calcium intake for people with CD should be higher than the RDA
because of latent malabsorption in many patients. Increased
calcium intake could potentially compensate for the reduced
fractional calcium absorption in treated adult patients with CD
[95]. Multiple forms of calcium supplements are available [130];
medical conditions, such as lactose intolerance, impaired gastric
acid secretion, and high-risk for kidney stone formation, should
be taken into consideration before selection of a calcium sup-
plement. Currently, the dominant anions in the calcium sup-
plement market worldwide are carbonate and citrate [131].
Calcium citrate is better absorbed than calcium carbonate, cau-
sing a greater rise in serum calcium and a greater fall in serum
parathyroid hormone (PTH) [132,133]. Moreover, calcium citrate
is absorbed regardless of gastric acidity; thus, individuals pro-
ducing less gastric acids or taking drugs that lower acidity in the
stomach, like proton pump inhibitors [134], H2 blockers, ant-
acids, and anticholinergics, may utilize this salt form optimally.

Finally, in some special situations, such as severe osteoporosis,
it might be useful to begin treatment with hormone replacement
therapy (in postmenopausal women) or bisphosphonates; how-
ever, there are no systematic data on the efficacy of bisphosph-
onates or other drugs commonly used for osteoporosis in patients
with CD [70]. Additionally, a well-balanced diet and consumption
of dairy products or alternatively low-/free-lactose products need
to be encouraged; education on the importance of lifestyle
changes, such as regular exercise, smoking cessation, and exces-
sive alcohol intake should be provided; and a dietitian must be
part of the health care team to monitor the patient’s nutritional
status and compliance of a balanced diet.

Conclusions

The reviewed studies allow one to conclude that bone alter-
ations need to be considered as a sign of atypical CD presenta-
tion, especially in adults. Recognizing CD, it’s possible connection
with osteoporosis, and related fractures should always be taken
into account. The investigation on increased/corrected calcium
intake, the use of vitamin D metabolites, and the drugs
commonly given for primary osteoporosis are required.
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