Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

Available at —
www.ElsevierMathematics.com MATHEMATICAL

rowenes ov scrence @ vineer: ANALYSIS AND

ELSEVIER 3. Math. Anal. Appl. 201 (2004) 757-763 APPLICATIONS

www.elsevier.com/locate/jmaa

The failure of spectral synthesis on some types
of discrete Abelian groups

Laszl6 Székelyhidi

Institute of Mathematics and Informatics, University of Debrecen, Hungary
Department of Mathematics and Statistics, Sultan Qaboos University, Oman

Received 6 October 2003
Submitted by M. Laczkovich

Abstract

The problem of spectral synthesis on arbitrary Abelian groups is solved in the negative.
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Spectral analysis and spectral synthesis deal with the description of translation invari-
ant function spaces over localbompact Abelian groups. Translation invariant function
spaces appear in several different contexts: linear ordinary and partial difference and dif-
ferential equations with constant coefficients, theory of group representations, classical
theory of functional equations, etc. A fundamental problem is to discover the structure of
such spaces of functions, or more exactly, to find an appropriate class of basic functions,
the building blocls, which serve as “typical elements” of the space, a kind of basis. It turns
out that these building blocks are the so-called exponential monomials, which we shall
define later. We consider the spad@;) of all complex valued continuous functions on a
locally compact Abelian grougy, which is a locally convex topological linear space with
respect to the pointwise linear operations (addition, multiplication with scalars) and to the
topology of uniform convergence on compact sets. Suppose that a closed linear subspace
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in this space is given, which is translation invariant. This subspace may or may not contain
any basic function of the above mentioned form. If it contains, then we sappleatral
analysis holdgor the subspace in question. An exponential monomial in a subspace of this
type can be considered as a kind of spectral value together with its multiplicity. A famous
and pioneer result of L. Schwartz [4] exhibits the situation by stating that if the group
is the real line with the usual topology, then spectral values do exist, that is, any closed
translation invariant linear subspace of the function space mentioned above contains an
exponential function. Here the multiplicity refers to the highest exponent of the power
function which—multiplied by the exponé&al function—belongs to the subspace, too.
The complete description of the subspace means that all the exponential monomials cor-
responding to the spectral exponentials andr timeiltiplicities characterize the subspace:
their linear hull is dense in the sulzsge. If this happens, then we say thpéctral synthesis

holds for the subspacéctually this is L. Schwartz’s result: any closed translation invari-
ant linear space of continuous functions on the reals is synthesizable from its exponential
monomials in this way.

Let a locally compact Abelian grou@ be given. Continuous homomorphisms@f
into the additive topological group of compglaumbers, and into the multiplicative topo-
logical group of nonzero complex numbers are calidditive andexponential functions
respectively. Apolynomialis a finite linear combination of products of additive functions
(the empty product being 1) and axponential monomidk a product of a polynomial
and an exponential function. Now the problem of spectral analysis, and spectral synthesis
can be formulated: is it true, that any nonzelmsed, translation invariant linear subspace
of the spac& (G) contains an exponential function (spectral analysis), and is it true, that
in any subspace of this type the linear hull of all exponential monomials is dense (spec-
tral synthesis)? It is easy to see that we can go one step further: instead of the space of
continuous functions with the given topology one can start with other important function
spaces, which are translation invariant. Foranse, the space of inteajyle functions is the
natural setting in the Wiener—Tauberian theory: different versions of the Wiener—Tauberian
theorem can be stated as spectral analysis theorems.

An interesting particular case is presented by discrete Abelian groups. Here the prob-
lem seems to be purely algebraic: all complex functions are continuous, and convergence
is meant in the pointwise sense. The archetype is the additive group of integers: in this
case the closed translation invariant ftioo spaces can be characterized by systems of
homogeneous linear difference equations with constant coefficients. It is known that these
function spaces are spanned by exponential maalgroorresponding to the characteristic
values of the equation, together with their multiplicities. In this sense the classical theory
of homogeneous linear difference equations with constant coefficients can be considered
as spectral analysis and spectral synthesis on the additive group of integers.

The next simplest case is the case of systems of homogeneous linear difference equa-
tions with constant coefficients in several \aofes, or, in other words, spectral analysis
and spectral synthesis on free Abelian groups with a finite number of generators. As in this
case a structure theorem is available, namely, any group of this type is a direct product of
finitely many copies of the additive group of integers, it is not very surprising to have the
corresponding—nontrivial—result by M. Lefna [3]: on finitely generated free Abelian
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groups spectral analysis and spectral synthesis holds for any closed translation invariant
subspace.

Based on these results the natural question arises: what about other discrete Abelian
groups? In his 1965 paper [2] R.J. Elliot pressd a theorem on spectral synthesis for
arbitrary Abelian groups. However, in 1987 Z. Gajda drew my attention to the fact that
the proof of Elliot's theorem had several gaps. On the other hand, in [5] diverse applica-
tions of spectral analysis and spectral synthesis in the theory of functional equations have
been presented. In [7] spectral analysis for Abelian torsion groups was proved. In 2001
G. Székelyhidi in [8] presented a different approach to the result of Lefranc, and he ac-
tually proved that spectral analysis holdsaountably generated Abelian groups, further,
his method strongly supported the conjecture that spectral analysis—hence also spectral
synthesis—might fail to hold on free Abelian groups having no generating set with cardi-
nality less than the continuum. Our main restilheorem 2 shows that spectral synthesis
fails to hold on Abelian groups containing an isomorphic subgroutodisproving the
resultin [2]. However, the problem about spatanalysis on arbitrary Abelian groups still
remains unsolved.

2. Notation and ter minology

Let G be an Abelian group written additively. For any functigron G having values
in a setH thetranslate of f by the element in G is the functionT, f : G — H defined
by the equation

Iyf(x)=fx+y)

for eachx in G. A set of functions onG is calledtranslation invariantif all translates
of the functions in the set belong to the set, too. Clearly any intersection of translation
invariant sets is translation invariant. For a given Seif complex valued functions on
G the intersection of all tranation invariant subspaces 6{G) including S is calledthe
translation invariant subspace generated$y

Using the translation operators defined above we defifierence operators\, for
eachy in G in the usual way: given a complex valued functigron G we let

Ayfx)=fx+y)— fx)
for eachx in G. ThenA, f is a complex valued function oi. Symbolically we can write
Ay =T, —To,

where 0 is the zero element 6f. Translation and difference operators are linear operators
on the linear spacé(G). Iterates ofA , have the obvious meaning. For instance,

A2f(x)=f(x+2y) = 2f(x + )+ f(x),
and

Aff(x) =fx+3y)=3f(x+2y) +3f(x +y) — f(x)
holds for any complex valued functiofion G and for eachx, y in G.
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Obviously, we can consider as a locally compact Abelian group equipped with the
discrete topology, and(G) with the corresponding topology of pointwise convergence
(the Tychonoff topology). For a given sétof complex valued functions o the in-
tersection of all translation invariant closed subspacea3(6f) including S is calledthe
variety generated by. This is obviously a translation invariant closed subspaa®(6f),
the smallest one of these properties, which incluletn general, avariety onG is a
closed translation invariant linear subspac€ @¥). If S consists of a single function, say
S ={f}, then the variety generated ISyis calledthe variety generated by. The state-
ment that “the complex valued functignon G belongs to the variety generated gy
means thap is the pointwise limit of a net of furtons, each of them being a linear com-
bination of translates of . Functions in the variety generated pyare exactly the ones
which can be approximated in the sense of pointwise convergence by linear combinations
of translates off.

The concepts of additive and exponential functions, polynomials and exponential mono-
mials have their obvious meaning as defiria the preceding section on arbitrary lo-
cally compact Abelian groups. This means, that a polynomiatGohas the fornwx —
P(ai(x),az(x), ..., an(x)), whereP is a complex polynomial in variables andy is ad-
ditive fork = 1,2, ...,n. We say that this polynomial is afegree at mosw, if P is of
degree at mosV. For example, a polynomial of degree at most 1 is a linear combination
of additive functions plus a constant, hence it is an additive function plus a constant. The
general form of a polynomial of degree at most 2 is the following:

n m
pe) =)D e ar@)bi() + () +d. (1)
k=11=1
with some nonnegative integetsm, additive functionsu, b;, c: G — C and constants
ckl, d. The “leading term” of this polynomial can be obtained by applying difference oper-
ators according to the following simple identity:

n m
203 p) =) Y e ar(bi(y), ey
k=11=1
which can be verified by direct calculation. It follows, that in the representation (1) the
additive functionc and the constant are unique, too.
We need the concept of bi-additive functions. The functbrriG x G — C is called
bi-additive if the functionsx — B(x, y) andx — B(y, x) are additive for each fixed
in G. It is calledsymmetricif B(x,y) = B(y,x) for all x,y in G. It is easy to check
that if B: G x G — C is bi-additive,c: G — C is additive,d is a complex number and
f(x) = B(x,x) + c(x) + d, then we have the following generalization of (2):

202 f(x)=B(y.y)

for eachx, y in G. In particular, it follows thatB, ¢ andd are unique in the given repre-
sentation off. On the other hand, the argument we used in the preceding paragraph can
be extended to polynomials of higher degree: it a polynomial of the form

N
px) =Y Pi(ar(x), a2(x), ..., an(x)), 3)

k=0
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where P, is a homogeneous complex polynomial of degieen n variables, and
ai, az, ...,a, .G — Care additive functions, then a representatiop of the formp(x) =
B(x, x) + c¢(x) + d with a symmetric, bi-additive functio®: G x G — C, an additive
functionc: G — C and a constant is possible only withPy (a1(x), az(x), ..., a,(x)) =0
fork=3,4,..., N, P>(x)=B(x,x), P1(x) =c(x) and Pp(x) = d for eachx in G. For
more about polynomials on Abelian groups see, e.g., [5].

Here we recall a remarkable property of artslation invariantinear function space:
if it contains an exponential monomigln with a nonzero polynomiab, wherem is an
exponential, then it contains, too (see, e.g., [5, Theorem 3.4.8, p. 43]).

3. Thefailureof spectral synthesis
The following theorem is of fundamental importance.

Theorem 1. Let G be an Abelian group. If there exists a symmetric bi-additive function
B:G x G — C such that the variety generated by the function— B(x, x) is of infinite
dimension, then spectral synthesis fails to holdWor

Proof. Let f(x) = B(x, x) forall x in G. By the equation
fx+y)=Bx+y,x+y)=B(x,x)+2B(x,y) + B(y, ) (4)

we see that the translation invariant subspace generatgdsgenerated by the functions
1, f and all the additive functions of the form+— B(x, y), wherey runs throughG.
Hence our assumption oB is equivalent to the condition that there are infinitely many
functions of the formx — B(x, y) with y in G, which are linearly independent. This also
implies that there is no positive integesuch thatB can be represented in the form

B(x,y) =Y ar(x)bi(y),

k=1

whereay, b, : G — C are additive functionsk =1, 2, ..., n). Indeed, the existence of a
representation of this form would mean that the number of linearly independent additive
functions of the formx — B(x, y) is at most.

Itis clear that any translate gf, hence any functiog in V satisfies

AYg(x)=0 (5)

forall x, y in G: this can be checked directly fgr. Hence any exponential in V satisfies
the same equation, which implies

m(x)(m(y) - 1)3 =0

forall x, y in G, and this means that is identically 1. By the lasremark of the preceding
section it follows that any exponential monomiallinis a polynomial. By the results in [1]
(see also [5]) and by (5% can be uniquely represented in the following form:

gx) =A(x,x)+clx)+d
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for all x in G, whereA:G x G — C is a symmetric bi-additive function,: G — C is
additive and/ is a complex number. Here “uniqueness” means that the “monomial terms”
x = A(x,x), x — c(x) andd are uniquely determined, as we pointed out in the preceding
section. In particular, any polynomigl in V has a similar representation, which means
that it can be written in the form
n m
PO =) cuar()bi(e) + () +d = p2(x) +c(x) +d
k=11=1

with some positive integers, m, additive functionsy, b;, ¢ : G — C and constantsy;, d.
Suppose thap; is not identically zero. By assumptiop, is the pointwise limit of a net
formed by linear combinations of translatesfgfthat means, by functions of the form (4).
Linear combinations of functions of the form (4) can be written as

p(x)=cB(x,x)+ A(x)+ D,

with some additive functiom : G — C, and constants, D. Any net formed by these
functions has the form

@y (x)=cyB(x,x)+ A, (x)+ D,.

By pointwise convergence

1o 1.2
I|)r/n S8y () =ZA p(x) = p2(y)

follows for all x, y in G. On the other hand,
1, .
h;n 583y (x)=B(y,y) h)r/n Cy,

holds for allx, y in G, hence the limit lim) ¢, = c exists and is different from zero, which
givesB(x, x) = %pz(x) forall x in G, and this is impossible.

We infer that any exponential monomialin V is actually a polynomial of degree at
most 1, which satisfies

Alp(x)=0 (6)

for eachx, y in G, hence any function in the closed linear hull of the exponential monomi-
als inV satisfies this equation. Howevgrdoes not satisfy (6), hence the linear hull of the
exponential monomials i is not dense iV. O

Now we are in the position to present our main result. H&fedenotes the (non-
complete) direct sum of countably many copies of the additive group of integers, or, in
other words, the set of all finitely support&dvalued functions on the nonnegative inte-
gers.

Theorem 2. Spectral synthesis fails to hold on any Abelian group with torsion free rank at
leastw.
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Proof. First we show that there exists a symmetric bi-additive funcBoZ® x Z* — C
with the property that there are infinitely malinearly independent functions of the form
x — B(x, y), wherey is in Z®. For any nonnegative integeiet p,, denote the projection
of the direct sunZ® onto thenth copy ofZ. This means that for any in Z“ the number
pn(x) is the coefficient of the characteristic function of the singletehin the unique
representation of. It is clear that the functiong,, are additive and linearly independent
for different choices of. Let

B(x,y) =) pa(X)pa(y)

for eachx, y in Z®. The sum is finite for any fixed, y, and obviouslyB is symmetric and
bi-additive. On the other hand, jf; is the characteristic function of the singlet@s, then
we have

BOx, xa) =) pa(X) (i) = pr(x),

n

hence the functions — B(x, xx) are linearly independent for different nonnegative inte-
gersk.

The next step is to show that & is an Abelian groupH is a subgroup ofz and
B:H x H — C is a symmetric, bi-additive function, thel extends to a symmetric bi-
additive function onG x G. Then the extension obviously satisfies the property given
in Theorem 1 and our statement follows. O tother hand, the existence of the desired
extension is proved in [6, Theorem 2].

The proofis complete. O

In the light of this theorem Lefranc’s result is the best possible for free Abelian groups:
spectral synthesis holds exactly on the finitely generated ones. However, the following
problem arises: is it true that if spectral synthesis fails to hold on an Abelian group, then
its torsion free rank is at least?
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