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We define a weak bimonad as a monad T on a monoidal category
M with the property that the Eilenberg–Moore category M T

is monoidal and the forgetful functor M T → M is separable
Frobenius. Whenever M is also Cauchy complete, a simple set
of axioms is provided, that characterizes the monoidal structure
of M T as a weak lifting of the monoidal structure of M .
The relation to bimonads, and the relation to weak bimonoids
in a braided monoidal category are revealed. We also discuss
antipodes, obtaining the notion of weak Hopf monad.
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Introduction

Bialgebras (say, over a field) have several equivalent characterizations. One of the most elegant is
due to Pareigis, who proved that an algebra A over a field K is a bialgebra if and only if the category
of (left or right) A-modules is monoidal and the forgetful functor from the category of A-modules
to the category of K -vector spaces is strict monoidal. This fact extends to bialgebras in any braided
monoidal category [12].

Pareigis’ characterization of a bialgebra was the starting point of Moerdijk’s generalization in [14]
of bialgebras to monoidal categories possibly without a braiding. He defined a bimonad (originally
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called a Hopf monad) as a monad T on a monoidal category M , such that the Eilenberg–Moore cat-
egory M T of T -algebras is monoidal and the forgetful functor M T → M is strict monoidal. That
is, the monoidal structure of M lifts to M T . Because liftings of functors (respectively, of natural
transformations) are described by 1-cells (respectively, by 2-cells) in the 2-category Mnd(Cat) of mon-
ads (in the notation of [18]), Moerdijk’s definition says that a monad is a bimonad if and only if the
functor induced by the monoidal unit of M , from the terminal category to M , and the functor pro-
vided by the monoidal product of M , from M × M to M , both admit the structure of a 1-cell in
Mnd(Cat), and the coherence natural isomorphisms in M are 2-cells in Mnd(Cat). In [11], McCrudden
showed that a bimonad is the same as an opmonoidal monad, that is, a monad in the 2-category
of monoidal categories, opmonoidal functors and opmonoidal natural transformations. Equivalently,
bimonads are the same as monoids in a multicategory of monads on a monoidal category.

Pareigis’ characterization of a bialgebra was generalized to a weak bialgebra [15,4] by Szlachányi
in [21]. He proved that an algebra A over a field K is a weak bialgebra if and only if the category of
(left or right) A-modules is monoidal and the forgetful functor from the category of A-modules to the
category of K -vector spaces obeys the so-called separable Frobenius condition. The latter means that
the forgetful functor admits both a monoidal and an opmonoidal structure that satisfy some compat-
ibility relations: see Definition 1.1. These (op)monoidal structures are no longer strict. In particular,
the monoidal unit of the category of A-modules is not K as a vector space but a non-trivial retract
of A. Also, the monoidal product of two A-modules is not their K -module tensor product but a linear
retract of it.

Weak bialgebras can be defined in any braided monoidal category, see [1] and [16], as objects
possessing both a monoid and a comonoid structure, subject to compatibility axioms that generalize
those in [15] and [4] in the case of a symmetric monoidal category of vector spaces. The resulting
category of modules was investigated in [16].

The aim of this paper is to generalize weak bialgebras to monoidal categories possibly without a
braiding. Inspired by Szlachányi’s characterization of a weak bialgebra, we define a weak bimonad as
a monad T on a monoidal category M , with extra structure making M T monoidal and the forgetful
functor M T → M separable Frobenius.

For a weak bimonad T , the forgetful functor M T → M is no longer strict monoidal, hence the
monoidal structure of the domain category M does not lift to M T , and so the monoidal unit
and the monoidal product of M are no longer 1-cells in Mnd(Cat). However, the notion of lifting
F :M T → M ′ T ′

of a functor F :M → M ′ was weakened in [3] by replacing commutativity of the
diagram of functors

M T
F

U

M ′ T ′

U ′

M
F

M ′

by the existence of a split natural monomorphism i : U ′ F → F U . A weak lifting of a natural trans-
formation is defined as a natural transformation between the lifted functors that commutes with
the natural monomorphisms i in the evident sense. Weak liftings of functors and of natural trans-
formations in a locally Cauchy complete 2-subcategory of Cat, are related to 1-cells and 2-cells in a
2-category Mndi(Cat) in [3], extending Mnd(Cat).

In Section 1 we give an interpretation of the axioms of a weak bimonad (on a Cauchy complete
monoidal category), similar to the interpretation of a bimonad in [14]. While for a bimonad T the
monoidal structure of M T is given by lifting of the monoidal structure in the domain category M ,
for a weak bimonad T the monoidal product in M T is a weak lifting of the monoidal product in M ,
the monoidal unit is a weak lifting of the functor 1 → M T−→ M , the associativity constraint is a
weak lifting of the associativity constraint in M and the unit constraints are weak liftings of certain
morphisms in M constructed from the other data.

By results in [16], a weak bimonoid in a braided monoidal category can be described as a quantum
category over a separable Frobenius base monoid. Extending this result in Section 2, we establish an
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equivalence between the category of weak bimonads on a Cauchy complete monoidal category M
and the category of bimonads on bimodule categories over separable Frobenius monoids in M .

In Section 3 we show that weak bimonoids in a braided monoidal category (cf. [16,1]) induce
weak bimonads. In certain braided monoidal categories the converse can also be proved: if a monoid
induces a weak bimonad then it admits the structure of a weak bimonoid.

In Section 4, using the result in Section 2 that any weak bimonad (on a Cauchy complete monoidal
category) can be regarded as a bimonad (on another monoidal category), we define a weak right Hopf
monad to be a weak bimonad such that the associated bimonad is a right Hopf monad in the sense
of [5] and [7]; there is a companion result involving weak left Hopf monads and left Hopf monads.
A weak bimonoid in a Cauchy complete braided monoidal category is shown to induce a weak right
Hopf monad by tensoring with it on the right if and only if it is a weak Hopf monoid in the sense
of [1] and [16]; once again there is a companion result with left in place of right.

Notation and conventions. The monoidal categories in this paper are not necessarily strict but in or-
der to simplify our expressions, we omit explicit mention of their coherence isomorphisms wherever
possible.

Recall that, for an opmonoidal functor F : (N ,�, R) → (M ,⊗, K ) with opmonoidal structure
i X,Y : F (X � Y ) → F X ⊗ F Y and i0 : F R → K , the diagram

F (X � Y � Z)
i X�Y ,Z

i X,Y �Z

F (X � Y ) � F Z

i X,Y �F Z

F X � F (Y � Z)
F X�iY ,Z

F X � F Y � F Z

commutes. We sometimes write i(3)
X,Y ,Z for the common composite, and we use an analogous notation

for monoidal functors.
We say that a category is Cauchy complete provided that idempotent morphisms in it split.

1. Weak bimonads and their Eilenberg–Moore category of algebras

The definition of weak bimonad is based on the notion of separable Frobenius functor introduced
in [21]:

Definition 1.1. A functor F from a monoidal category (N ,�, R) to a monoidal category (M ,⊗, K )

is said to be separable Frobenius when it is equipped with a monoidal structure p X,Y : F X ⊗ F Y →
F (X � Y ), p0 : K → F R and an opmonoidal structure i X,Y : F (X � Y ) → F X ⊗ F Y , i0 : F R → K such
that, for all objects X , Y , Z in N , the following diagrams commute:

F X ⊗ F (Y � Z)
F X⊗iY ,Z

p X,Y �Z

F X ⊗ F Y ⊗ F Z

p X,Y ⊗F Z

F (X � Y � Z)
i X�Y ,Z

F (X � Y ) ⊗ F Z

F (X � Y ) ⊗ F Z
i X,Y ⊗F Z

p X�Y ,Z

F X ⊗ F Y ⊗ F Z

F X⊗pY ,Z

F (X � Y � Z)
i X,Y �Z

F X ⊗ F (Y � Z)

F X ⊗ F Y
p X,Y

F (X � Y )

i X,Y

F (X � Y )
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Example 1.2. (1) Strong monoidal functors are clearly separable Frobenius.
(2) The composite of separable Frobenius functors is separable Frobenius, cf. [8].
(3) In a monoidal category (M ,⊗, K ) possessing (appropriate) coequalizers preserved by ⊗, one

may consider the monoidal category RMR of bimodules over a monoid R in M . The monoidal
product is provided by the R-module tensor product and the monoidal unit is R . Justifying the ter-
minology, the forgetful functor RMR → M is separable Frobenius if and only if R is a separable
Frobenius monoid; that is, a Frobenius monoid in the sense of [19] such that, in addition, composing
its comultiplication R → R ⊗ R with its multiplication R ⊗ R → R yields the identity morphism R .

Definition 1.3. A weak bimonad on a monoidal category (M ,⊗, K ) is a monad (T ,m, u) on M
equipped with a monoidal structure on the Eilenberg–Moore category M T and a separable Frobe-
nius structure on the forgetful functor M T → M .

The main aim of this section is to find an equivalent formulation of Definition 1.3 – in the spirit
of the descriptions of bimonads in [14] and [11] (there called Hopf monads).

If a monad T possesses a monoidal Eilenberg–Moore category (M T ,�, (R, r)) then, for any T -
algebras (A,a) and (B,b), there is a T -algebra (A,a) � (B,b) that we denote by (A � B,a � b). (Note
that by definition a�b is a morphism T (A � B) → A � B in M , while a � b is a morphism (T A,mA)�
(T B,mB) → (A,a)� (B,b) in M T ; that is, a morphism T A � T B → A � B in M . Note also that A � B
depends not just on A and B but on the algebras (A,a) and (B,b).)

In order to get started, we need the following basic observation:

Proposition 1.4. Consider a monad (T ,m, u) on a monoidal category (M ,⊗, K ) equipped with a monoidal
Eilenberg–Moore category (M T ,�, (R, r)). If the forgetful functor U :M T → M admits both a monoidal
structure (p, p0) and an opmonoidal structure (i, i0) then T is opmonoidal, with τ0 and τX,Y given, respec-
tively, by the composite morphisms

T K
T p0

T R
r

R
i0

K and (1.1)

T (X ⊗ Y )
T (u X ⊗uY )

T (T X ⊗ T Y )
T pT X,T Y

T (T X � T Y )
mX�mY

T X � T Y
iT X,T Y

T X ⊗ T Y . (1.2)

Proof. Since U is monoidal, its left adjoint F is opmonoidal. Since U is also opmonoidal, so is T = U F .
The explicit form of the structure morphisms (1.1) and (1.2) is immediate. �

At this point we can now state one characterization of weak bimonads:

Theorem 1.5. Let T = (T ,m, u) be a monad on a monoidal category (M ,⊗, K ) in which idempotents split. To
give T the structure of a weak bimonad is equivalently to give the endofunctor T the structure of an opmonoidal
functor (T , τ , τ0) in such a way that the following conditions hold:

T 2(X ⊗ T K )
T τX,T K

T (T X ⊗ T 2 K )
T (T X⊗mK )

T (T X ⊗ T K )
T (T X⊗τ0)

T 2 X

mX

T (X ⊗ T K )

T u X⊗T K

τX,T K
T X ⊗ T 2 K

T X⊗mK
T X ⊗ T K

T X⊗τ0
T X

(1.3)
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T 2(T K ⊗ X)
T τT K ,X

T (T 2 K ⊗ T X)
T (mK ⊗T X)

T (T K ⊗ T X)
T (τ0⊗T X)

T 2 X

mX

T (T K ⊗ X)

T uT K⊗X

τT K ,X
T 2 K ⊗ T X

mK ⊗T X
T K ⊗ T X

τ0⊗T X
T X

(1.4)

X ⊗ T (Y ⊗ Z)
X⊗τY ,Z

X ⊗ T Y ⊗ T Z
u X⊗T Y ⊗T Z

T (X ⊗ T Y ) ⊗ T Z
τX,T Y ⊗T Z

T X ⊗ T 2Y ⊗ T Z

T X⊗mY ⊗T Z

X ⊗ Y ⊗ Z

X⊗uY ⊗Z

u X⊗Y ⊗Z
T (X ⊗ Y ⊗ Z)

τX⊗Y ,Z
T (X ⊗ Y ) ⊗ T Z

τX,Y ⊗T Z
T X ⊗ T Y ⊗ T Z

(1.5)

T (X ⊗ Y ) ⊗ Z
τX,Y ⊗Z

T X ⊗ T Y ⊗ Z
T X⊗uT Y ⊗Z

T X ⊗ T (T Y ⊗ Z)
T X⊗τT Y ,Z

T X ⊗ T 2Y ⊗ T Z

T X⊗mY ⊗T Z

X ⊗ Y ⊗ Z

u X⊗Y ⊗Z

u X⊗Y ⊗Z
T (X ⊗ Y ⊗ Z)

τX⊗Y ,Z
T (X ⊗ Y ) ⊗ T Z

τX,Y ⊗T Z
T X ⊗ T Y ⊗ T Z

(1.6)

T 2(X ⊗ Y )
T τX,Y

mX⊗Y

T (T X ⊗ T Y )
τT X,T Y

T 2 X ⊗ T 2Y

mX ⊗mY

T (X ⊗ Y )
τX,Y

T X ⊗ T Y

(1.7)

We shall spend the rest of the section proving this theorem as well as formulating a further
characterization in terms of weak lifting. One half of the theorem we prove immediately:

Proposition 1.6. For any weak bimonad, Eqs. (1.3)–(1.7) hold when the endofunctor is given the opmonoidal
structure of Proposition 1.4.

Proof. (R, r) is the monoidal unit in M T and the coherence natural isomorphisms in M T are T -
algebra morphisms. For any morphisms f : (A,a) → (A′,a′) and g : (B,b) → (B ′,b′) of T -algebras,
f � g is a morphism of T -algebras, so that

T (A � B)

a�b

T ( f �g)

T (A′ � B ′)

a′�b′

A � B
f �g

A′ � B ′

(1.8)
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commutes. By (1.2) and unitality of the T -action mX � mY , the diagram

X ⊗ Y

u X⊗Y

u X ⊗uY
T X ⊗ T Y

pT X,T Y

T X � T Y

iT X,T Y

T (X ⊗ Y )
τX,Y

T X ⊗ T Y

(1.9)

commutes, for any objects X , Y of M . Hence a straightforward computation, using these facts to-
gether with the unitality of m and with the opmonoidality of (U , i, i0), shows that both routes
around (1.3) are equal to

T (X ⊗ T K )
T (X⊗T p0)

T (X ⊗ T R)
T (X⊗r)

T (X ⊗ R)
T (u X ⊗R)

T (T X ⊗ R)
T pT X,R

T 2 X
mX

T X .

Equality (1.4) is proved symmetrically. In view of (1.9), the bottom path of (1.5) is equal to

X ⊗ Y ⊗ Z
u X ⊗uY ⊗u Z

T X ⊗ T Y ⊗ T Z
p(3)

T X,T Y ,T Z

T X � T Y � T Z
i(3)
T X,T Y ,T Z

T X ⊗ T Y ⊗ T Z .

This expression is checked to be equal also to the upper path of (1.5), by applying (1.9) repeatedly,
and using monoidality of (U , p, p0) and the first property in Definition 1.1 of the separable Frobenius
functor U . Equality (1.6) is proved symmetrically, using the second property in Definition 1.1 of the
separable Frobenius functor U instead of the first one. Finally, by (1.2), by naturality of i and p,
by (1.8), and by unitality of m, we deduce that (mX ⊗ mY ) ◦ τT X,T Y = iT X,T Y ◦ (mX � mY ) ◦ T pT X,T Y .
Hence (1.7) follows by the third property in Definition 1.1 of the separable Frobenius functor U and
associativity of the action mX � mY : T (T X � T Y ) → T X � T Y . �
Lemma 1.7. Let (T , τ , τ0) be an opmonoidal endofunctor of a monoidal category (M ,⊗, K ), and (T ,m, u)

a monad on M , and suppose that Eq. (1.3) holds. Then the morphism

� := (
T K

uT K

T 2 K
τK ,T K

T K ⊗ T 2 K
T K⊗mK

T K ⊗ T K
T K⊗τ0

T K
)

is idempotent, and the diagram

T 2 K
T �

mK

T 2 K
mK

T K

�

T K � T K

(1.10)

commutes.
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Proof. In the diagram

T K
�

uT K

T K
uT K

T 2 K

τK ,T K

T 2 K
τK ,T K

τK ,T K

T K ⊗ T 2 K
T K⊗T �

T K⊗τK ,T K

T K ⊗ T 2 K

T K⊗mK

T K ⊗ T 2 K
τK ,K ⊗T 2 K

T K ⊗ T K ⊗ T 2 K
T K⊗T K⊗mK

T K⊗τ0⊗T 2 K

T K ⊗ T K ⊗ T K
T K⊗T K⊗τ0

T K⊗τ0⊗T K

T K ⊗ T K

T K⊗τ0

T K ⊗ T 2 K
T K⊗mK

T K ⊗ T K
T K⊗τ0

T K

the squares at the bottom and the region at the top commute by naturality, the triangle and the
square above it commute since (T , τ , τ0) is opmonoidal, and the remaining region is seen to commute
by taking X = K in Eq. (1.3) and then tensoring on the left by T K . The composite of the top path
is ��, and that of the bottom path is �.

As for commutativity of the displayed diagram, in the following diagram

T K

uT K

T 2 K
mK

uT 2 K

T �
T 2 K

mK

T 2 K

τK ,T K

T 3 K

τK ,T 2 K

T K

uT K

T K ⊗ T 2 K T K ⊗ T 3 K
T K⊗T mK

T K⊗mT K

T K⊗T 2�
T K ⊗ T 3 K

T K⊗mT K

T K⊗T mK

T 2 K

τK ,T K

T K ⊗ T 2 K

T K⊗τK ,T K

T K⊗T �
T K ⊗ T 2 K

T K⊗mK

T K ⊗ T 2 K

T K⊗mK

T K ⊗ T K ⊗ T 2 K
T K⊗T K⊗mK

T K⊗τ0⊗T 2 K

T K ⊗ T K ⊗ T K
T K⊗T K⊗τ0

T K⊗τ0⊗T K

T K ⊗ T K

T K⊗τ0

T K ⊗ T 2 K

T K⊗mK

T K ⊗ T 2 K
T K⊗mK

T K ⊗ T K
T K⊗τ0

T K

the large regions at the top commute by naturality, the pentagonal region in the middle commutes
by the case X = K of Eq. (1.3), and remaining regions commute by naturality, associativity of m, and
the opmonoidal functor axioms. �
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Lemma 1.8. Consider a weak bimonad (T ,m, u) on a monoidal category (M ,⊗, K ), with opmonoidal struc-
ture τ0 in (1.1) and τ in (1.2). Then the idempotent morphism

� := (
T K

uT K

T 2 K
τK ,T K

T K ⊗ T 2 K
T K⊗mK

T K ⊗ T K
T K⊗τ0

T K
)

factorizes through an epimorphism T K → R and a section of it, where R denotes the object in M underlying
the monoidal unit (R, r) of M T .

Proof. The desired epimorphism is constructed as

P := (T K
T p0

T R
r

R) (1.11)

with a section

I := (R
uR

T R
τK ,R

T K ⊗ T R
T K⊗r

T K ⊗ R
T K⊗i0

T K ), (1.12)

where (p, p0) denotes the monoidal structure and (i, i0) denotes the opmonoidal structure of the
forgetful functor U :M T → M . �
Lemma 1.9. For a weak bimonad T and any T -algebras (A,a) and (B,b), the idempotent morphism

E A,B := (
A ⊗ B

u A⊗B
T (A ⊗ B)

τA,B
T A ⊗ T B

a⊗b
A ⊗ B

)

is equal to i A,B ◦ p A,B , where τ is the natural transformation (1.2), (p, p0) denotes the monoidal structure and
(i, i0) denotes the opmonoidal structure of the forgetful functor U :M T → M .

Proof. This is immediate by (1.2) and unitality of the T -actions a, b and mA � mB . �
The 2-category Mnd(Cat) of monads was extended in [3] to a 2-category Mndi(Cat), as follows. The

objects of Mndi(Cat) are the monads in Cat. The 1-cells from a monad (T ,m, u) on a category C to a
monad (T ′,m′, u′) on C ′ , are pairs consisting of a functor V :C → C ′ and a natural transformation
ψ : T ′V → V T , such that the diagram below on the left commutes, while the 2-cells (V ,ψ) → (W ,ϕ)

are natural transformations ω : V → W such that the diagram on the right commutes.

T ′T ′V
T ′ψ

m′V

T ′V T
ψT

V T T

V m

T ′V
ψ

V T

T ′T ′V
T ′ψ

T ′V T
T ′ωT

T ′W T
ϕT

W T T

W m

T ′V

T ′u′V

ψ
V T

ωT
W T

There is a variant, Mndp(Cat), of this 2-category which has the same objects and 1-cells but in
which a 2-cell (V ,ψ) → (W ,ϕ) is a natural transformation ω : V → W such that ϕ ◦ T ′ω = W m ◦
ϕT ◦ u′W T ◦ ωT ◦ ψ .

For a monad T on C and a monad T ′ on C ′ , we say that a functor V :C T → C ′ T ′
is a weak

lifting of a functor V :C → C ′ if there exists a split natural monomorphism i : U ′V → V U (where
U :C T → C and U ′ :C ′ T ′ → C ′ are the forgetful functors). Associated to a 1-cell (V ,ψ) in Mndi(Cat),
there is an idempotent natural transformation V U → V U . Evaluated on a T -algebra (A,a), it is the
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morphism V a ◦ ψ A ◦ u′V A : V A → V A. Whenever it splits (that is, it factorizes through some natural
epimorphism V U → V 0 and a section), the resulting functor V 0 :C T → C ′ has a lifting to a functor
V :C T → C ′ T ′

, which is clearly a weak lifting of V . Conversely, every weak lifting V :C T → C ′ T ′

of a functor V :C → C ′ arises in this way from a unique 1-cell (V ,ψ) in Mndi(Cat) such that the
corresponding idempotent natural transformation splits: see [3, Theorem 4.4].

A natural transformation ω : V → W between weakly lifted functors is said to be a weak i-lifting of
a natural transformation ω : V → W provided that ωU ◦ i = i ◦ U ′ω. By [3, Proposition 4.3], a natural
transformation has a weak i-lifting if and only if it is a 2-cell in Mndi(Cat). Symmetrically, ω is said
to be a weak p-lifting of ω provided that p ◦ ωU = U ′ω ◦ p, in terms of a natural retraction p of i.
By [3, Proposition 4.3], a natural transformation has a weak p-lifting if and only if it is a 2-cell in
Mndp(Cat).

Theorem 1.10. Let (T ,m, u) be a monad on a monoidal category (M ,⊗, K ), where (T , τ , τ0) : (M ,⊗, K ) →
(M ,⊗, K ) is an opmonoidal functor. Then Eqs. (1.3)–(1.7) hold if and only if the following conditions are sat-
isfied:

(i) The functor 1 K−→ M T−→ M and the natural transformation T 2 K
mK−−→ T K �−→ T K constitute a 1-cell

1 → T in Mndi(Cat).
(ii) The functor M ×M

⊗−→ M and the natural transformation T (•⊗•)
τ−→ T (•)⊗ T (•) constitute a 1-cell

T × T → T in Mndi(Cat).
(iii) The natural transformations

M × M
M×T

⇓M×τ0

M × M

⊗

M × M
T ×M

⇓τ0×M

M × M

⊗

M

M×K

M
M M

K×M

M
M

are 2-cells in Mndi(Cat).
(iv) The idempotent natural transformations ET X,T Y and E(3)

T X,T Y ,T Z which are respectively the composites

T X ⊗ T Y
uT X⊗T Y

T (T X ⊗ T Y )
τT X,T Y

T 2 X ⊗ T 2Y
mX ⊗mY

T X ⊗ T Y and

T X ⊗ T Y ⊗ T Z
uT X⊗T Y ⊗T Z

T (T X ⊗ T Y ⊗ T Z)
τ

(3)
T X,T Y ,T Z

T 2 X ⊗ T 2Y ⊗ T 2 Z

mX ⊗mY ⊗mZ
T X ⊗ T Y ⊗ T Z ,

make the following diagram commute:

T X ⊗ T Y ⊗ T Z
ET X,T Y ⊗T Z

E(3)
T X,T Y ,T Z

T X⊗ET Y ,T Z

T X ⊗ T Y ⊗ T Z

T X⊗ET Y ,T Z

T X ⊗ T Y ⊗ T Z
ET X,T Y ⊗T Z

T X ⊗ T Y ⊗ T Z

for any objects X , Y , Z in M .
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Proof. Using the definition of 1-cells in Mndi(Cat), assertion (i) is seen to be equivalent to the equa-
tion � ◦ mK ◦ T � = � ◦ mK which by Lemma 1.7 holds whenever Eq. (1.3) does. Assertion (ii) is clearly
equivalent to (1.7). Condition (iii) depends on the 1-cells in Mndi(Cat) constructed in parts (i) and (ii).
Now τ0 ◦ � = τ0 by opmonoidality of T , and then the two conditions in (iii) are equivalent to (1.3)
and (1.4). Similarly the two conditions in (iv) are equivalent to (1.5) and (1.6). �

Our next aim is to prove the other half of Theorem 1.5, which we state as:

Proposition 1.11. Consider a monad (T ,m, u) on a monoidal category (M ,⊗, K ) and an opmonoidal struc-
ture (τ , τ0) on the functor T . Assume that the identities (1.3)–(1.7) hold and that the following idempotent
morphisms split:

� := (
T K

uT K

T 2 K
τK ,T K

T K ⊗ T 2 K
T K⊗mK

T K ⊗ T K
T K⊗τ0

T K
)

(1.13)

and

E A,B := (
A ⊗ B

u A⊗B
T (A ⊗ B)

τA,B
T A ⊗ T B

a⊗b
A ⊗ B

)
, (1.14)

for any T -algebras (A,a) and (B,b). Then T is a weak bimonad.

Proof. We prove this claim by constructing a monoidal structure on M T weakly lifting that of M ,
and by showing that with respect to this monoidal structure the forgetful functor U :M T → M is
separable Frobenius.

By Theorem 1.10 (ii), (⊗, τ ) is a 1-cell in Mndi(Cat) (equivalently, in Mndp(Cat)) and so induces a
weak lifting � :M T × M T → M T ; that is, a functor � equipped with natural transformations

M T × M T
�

U×U

M T

U⇓ip⇑

M × M ⊗ M

such that p ◦ i is the identity natural transformation. Explicitly, for T -algebras (A,a) and (B,b), the to-
be-tensor product (A,a) � (B,b) = (A � B,a � b) is given by splitting the idempotent (1.14) to obtain
A � B , via maps i A,B : A � B → A ⊗ B and p A,B : A ⊗ B → A � B , and then a � b is the composite

T (A � B)
T i A,B

T (A ⊗ B)
τA,B

T A ⊗ T B
a⊗b

A ⊗ B
p A,B

A � B.

By coassociativity of τ , the associativity isomorphism in M is an invertible 2-cell both in
Mndi(Cat) and Mndp(Cat). So it weakly lifts to an associativity isomorphism for � such that the
following diagrams, with the associativity isomorphisms on the vertical arrows, commute.

(A � B) � C
i A�B,C

(A � B) ⊗ C
i A,B⊗C

(A ⊗ B) ⊗ C

A � (B � C)
i A,B�C

A ⊗ (B � C)
A⊗iB,C

A ⊗ (B ⊗ C)

(A ⊗ B) ⊗ C
p A,B⊗C

(A � B) ⊗ C
p A�B,C

(A � B) � C

A ⊗ (B ⊗ C)
A⊗pB,C

A ⊗ (B � C)
p A,B�C

A � (B � C)
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That is, p and i satisfy the associativity conditions that will be needed to make U a monoidal and an
opmonoidal functor. The pentagon identity for � follows from that for ⊗ and commutativity of either
of the diagrams above.

Next we construct the unit object for the monoidal category M T . By Theorem 1.10 (i), (T K ,

� ◦ mK ) is a 1-cell in Mndi(Cat) and so gives an object (R, r) of M T . Explicitly, R is obtained by
splitting the idempotent � via maps I : R → T K and P : T K → R , and r is the composite

T R
T I

T 2 K
mK

T K
P

R.

The unit constraints for M T are constructed by applying Theorem 1.10 (iii). The 2-cells of
Mndi(Cat) therein induce morphisms �A : A � R → A and λA : R � A → A of T -algebras, natural in
the T -algebra (A,a). Explicitly, �A and λA are given by the composites

A � R
i A,R

A ⊗ R
A⊗I

A ⊗ T K
A⊗τ0

A,

R � A
iR,A

R ⊗ A
I⊗A

T K ⊗ A
τ0⊗A

A, (1.15)

respectively. Since A � R was constructed by splitting the idempotent E A,R , to show that �A is invert-
ible, it will suffice to show that

A ⊗ R
E A,R

A ⊗ R
A⊗I

A ⊗ T K
A⊗τ0

A

is the epimorphism part of a splitting for E A,R . We claim that the other half of the splitting can be
taken to be

A
u A

T A
τA,K

T A ⊗ T K
a⊗P

A ⊗ R.

By commutativity of the following diagram, one composite yields the identity morphism on A.

A
u A

u A

T A
τA,K

uT A

T A ⊗ T K
a⊗P

A ⊗ R

u A⊗R

T 2 A
T τA,K

mA

T (T A ⊗ T K )
T (a⊗P )

τT A,T K

T (A ⊗ R)

τA,R

T 2 A ⊗ T 2 K
T a⊗T P

mA⊗mK

T A ⊗ T R

a⊗r

A ⊗ R

A⊗I

T A
τA,K

T A ⊗ T K
a⊗�

a⊗τ0

A ⊗ T K

A⊗τ0

A

The top two squares on the right-hand side commute by naturality. The third (pentagonal) region
below them commutes by the associativity of a, definition of r and (1.10). The other pentagonal region
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on its left commutes by (1.7) and the region on the left of that commutes by the unitality condition
on a monad. The triangle at the bottom commutes by the (straightforward) fact that τ0 ◦ � = τ0. The
bottom-left region commutes by the opmonoidality of T and unitality of a.

Composition in the opposite order yields E A,R by commutativity of

A ⊗ R

A⊗I

A ⊗ R

E A,R

A ⊗ T K

A⊗P

E A,T K

E A,T K

u A⊗T K
A ⊗ T K

A⊗P

A⊗�

T (A ⊗ T K )

τA,T K

T A ⊗ T 2 K

a⊗mK
A ⊗ T K

A⊗τ0

A
A⊗uK

u A

A ⊗ T K
E A,T K

A ⊗ T K
A⊗P

A ⊗ R

T A
τA,K

T A ⊗ T K
a⊗T K

The leftmost vertical path is equal to (A ⊗ τ0) ◦ (A ⊗ I) ◦ E A,R since by the definition of r, τ0 ◦ I ◦ r =
τ0 ◦mK ◦ T I . The regions surrounded by the curved arrows commute by (1.14). The triangle at the top
commutes by the definitions of I and P . The concave quadrangle below it commutes by naturality
of E , since P is a morphism of T -algebras by (1.10). The large polygon at the bottom-left involves the
morphism

� := (τ0 ⊗ T K ) ◦ ET K ,T K ◦ (T K ⊗ uK ) = (τ0 ⊗ T K ) ◦ (mK ⊗ T K ) ◦ τT K ,K ◦ uT K ,

where the last equality follows by (1.14). In order to see that this polygon commutes, note that asso-
ciativity of a together with (1.3) implies

E A,T K ◦ (A ⊗ τ0 ⊗ T K ) ◦ (E A,T K ⊗ T K ) = (A ⊗ τ0 ⊗ T K ) ◦ E(3)
A,T K ,T K .

Using the first one of the equivalent forms of � above, this implies commutativity of the bottom-left
polygon. In order to see that the triangle on its right commutes, use the second form of �. By (1.4)
and opmonoidality of T , it obeys τ0 ◦mK ◦ T � = τ0 ◦mK which implies �◦� = � hence commutativity
of the triangle in question.

The case of λ is similar. We record here the explicit forms of �−1
A and λ−1

A as

A
u A

T A
τA,K

T A ⊗ T K
a⊗P

A ⊗ R
p A,R

A � R,

A
u A

T A
τK ,A

T K ⊗ T A
P⊗a

R ⊗ A
pR,A

R � A, (1.16)

respectively.
To conclude that M T is a monoidal category, we only need to prove that the triangle condition

holds. This follows by functoriality of weak lifting because both morphisms
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(A � R) � B A � (R � B)
A�λB

A � B and (A � R) � B
�A�B

A � B

are weak i-liftings of (A ⊗ τ0) ⊗ B : (A ⊗ T K ) ⊗ B → A ⊗ B , for any T -algebras A and B .
It remains to show that the forgetful functor U :M T → M is separable Frobenius. We already

have the binary parts of the monoidal and opmonoidal structures, in the form of morphisms p A,B : A⊗
B → A � B and i A,B : A � B → A ⊗ B . We already proved that they satisfy the associativity, respectively,
coassociativity conditions. A counit i0 for U , so that (U , i, i0) becomes an opmonoidal functor, is
constructed as the composite

R
I

T K
τ0

K

and the counit laws then reduce to Eqs. (1.15) defining λ and �. The unit p0 for the monoidal struc-
ture of U will be the composite

K
uK

T K
P

R.

One of the unit laws follows by commutativity of the diagram below; the other is similar and left to
the reader.

A
A⊗uK

u A

A ⊗ T K
A⊗P

u A⊗T K

A ⊗ R
p A,R

u A⊗R

A � R

i A,RT A
T (A⊗uK )

τA,K

T (A ⊗ T K )
T (A⊗P )

τA,T K

T (A ⊗ R)

τA,R

T A ⊗ T K
T A⊗T uK

T A ⊗ T 2 K
T A⊗T P

T A⊗mK

T A ⊗ T R
a⊗r

A ⊗ R

A⊗I

T A ⊗ T K
a⊗�

T A⊗τ0

A ⊗ T K

A⊗τ0

T A
a

A

The four squares in the top left corner commute by naturality; the large region in the top right
corner by definition of i and p; the triangle by one of the unit laws for a monad, the region to its
right by definition of r and (1.10), and the bottom region by the equation τ0 ◦ � = τ0 once again. The
left/bottom path yields an identity morphism by opmonoidality of T and unitality of a.

The separability condition p A,B ◦ i A,B = A � B holds by construction. As for the Frobenius con-
ditions in Definition 1.1, by (1.14) we have E A,B�C = (A ⊗ pB,C ) ◦ E(3)

A,B,C ◦ (A ⊗ iB,C ), and now the
first Frobenius condition follows by Theorem 1.10 (iv); the other Frobenius condition is proved simi-
larly. �
2. Weak bimonads vs. bimonads over a separable Frobenius base

The aim of this section is to study the category of weak bimonads on a given Cauchy complete
monoidal category M . As a main result, we prove that it is equivalent to an appropriate category of
bimonads on bimodule categories over separable Frobenius monoids in M .
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Recall that if T is a bimonad then M T can be given a monoidal structure so that the forgetful
functor U :M T → M is strict monoidal. Conversely, any monad T for which U :M T → M is strong
monoidal can be made into a bimonad; and these two processes are, in a suitable sense, mutually
inverse. Similarly, if g : T → T ′ is a morphism of bimonads and M T and M T ′

are made monoidal as
above, then the induced functor g∗ :M T ′ → M T is strict monoidal; and conversely if g : T → T ′ is a
morphism of monads for which the induced functor g∗ is opmonoidal, compatibly with the forgetful
functors, then g can be made into a morphism of bimonads.

For the entire section, we introduce the following notation. We work in a monoidal category M ,
with monoidal product ⊗ and monoidal unit K . For a weak bimonad T , the monad structure is de-
noted by m : T 2 → T and u :M → T . The opmonoidal structure of T is denoted by τX,Y : T (X ⊗ Y ) →
T X ⊗ T Y and τ0 : T K → K . The forgetful functor M T → M is called U . The monoidal unit of M T

is denoted by (R, r). By the separable Frobenius property of U , R is a separable Frobenius monoid
in M . Its monoid structure is denoted by (μ : R ⊗ R → R, η : K → R) and for the comonoid structure
we write (δ : R → R ⊗ R, ε : R → K ). (See their explicit expressions in terms of (m, u) and (τ , τ0) be-
low.) For the monoidal category of R-bimodules, the forgetful functor is denoted by V : RMR → M .
We use the notation � introduced in (1.13), E in (1.14) and E(3) in Theorem 1.10 (iv). For other
(weak) bimonads T ′ , T̃ , etc., we use the same symbols introduced for T , distinguished by prime,
tilde, etc.

Our starting point is the following result due to Szlachányi.

Theorem 2.1. (See [21, Theorem 2.2 and Lemma 6.2].) Any separable Frobenius functor U , from a monoidal
category N with unit R, to a Cauchy complete monoidal category M , factorizes through the forgetful functor
U RMU R → M via a strong monoidal functor N → U RMU R .

In particular, for a weak bimonad T on a Cauchy complete monoidal category M , the forgetful
functor U :M T → M factorizes through a strong monoidal functor Ũ from M T to the bimodule
category RMR for the monoidal unit R of M T and the forgetful functor V : RMR → M . Explicitly,
the monoid structure of R comes out as

μ := (R ⊗ R
E R,R

R ⊗ R
R⊗I

R ⊗ T K
R⊗τ0

R), η := (K
uK

T K
P

R)

(2.1)

and its comonoid structure is given by

δ := (R
R⊗uK

R ⊗ T K
R⊗P

R ⊗ R
E R,R

R ⊗ R), ε := (R
I

T K
τ0

K ).

(2.2)

By (1.15), Ũ takes a T -algebra (A,a) to the R ⊗ • ⊗ R-algebra (A,�A) with the structure morphism

�A = (R ⊗ A ⊗ R
E(3)

R,A,R
R ⊗ A ⊗ R

I⊗A⊗I
T K ⊗ A ⊗ T K

τ0⊗A⊗τ0
A), (2.3)

where T K
P

R
I

T K denotes a chosen splitting of the idempotent morphism � of (1.13). (Re-
call that R ⊗•⊗ R-algebras (M,�M) are in bijection with R-bimodules (M,αM : M ⊗ R → M, βM : R ⊗
M → M) via the correspondence �M = αM ◦ (βM ⊗ R) = βM ◦ (R ⊗ αM).)

Next we compare the monadicity properties of the functors in the factorization in Theorem 2.1.



G. Böhm et al. / Journal of Algebra 328 (2011) 1–30 15
Lemma 2.2. For a separable Frobenius monoid R in a Cauchy complete monoidal category M with forgetful
functor V : RMR → M , any V -contractible pair is a split coequalizer pair. (For the terminology we refer
to [2].)

Proof. Consider a Cauchy complete category C and an adjunction L 
 V :C → M in which the
counit n : LV → 1 is split by a natural monomorphism n. Under these assumptions, any V -contractible
pair is a split coequalizer pair. Indeed, if for some morphisms μ,ν : M → N in C , the first diagram in

V M

V μ

V ν

V N,ξ M

μ

ν

NnM◦Lξ◦nN

is a contractible pair, then so is the second one. Hence by Cauchy completeness of C , the coequalizer
of μ and ν exists.

We conclude by applying this observation to the adjunction R ⊗ • ⊗ R 
 V : RMR → M , whose
counit is given by the R ⊗ • ⊗ R-action �M : R ⊗ M ⊗ R → M , for any object (M,�M) of RMR , hence
by separable Frobenius property of R it is split by (R ⊗ �M ⊗ R) ◦ (δ ◦ η ⊗ M ⊗ δ ◦ η). �
Proposition 2.3. Let R be a separable Frobenius monoid in a Cauchy complete monoidal category M . Then
for a Cauchy complete category C , a functor W :C → RMR is monadic if and only if its composite with the
forgetful functor V : RMR → M is monadic.

Proof. This is proved by applying Beck’s theorem [2, Theorem 3.14].
Assume first that W is monadic. Then it is immediate by monadicity of V that V W has a left

adjoint and that it is conservative. It remains to show that the Beck condition holds. For a V W -
split coequalizer pair (α,β) in C , (W α, W β) is in particular V -contractible. Hence by Lemma 2.2
it is a split coequalizer pair (evidently preserved by V ). Then by monadicity of W , there exists the
coequalizer of α and β and it is preserved by W , so also by V W .

Conversely, assume that V W is monadic. Since V W is conservative by assumption, so is W . As for
the Beck condition, a W -split coequalizer pair (α,β) is also a V W -split coequalizer pair. Hence by
monadicity of V W , its coequalizer exists and it is preserved by V W . Since V is faithful, this implies
that W preserves the coequalizer of α and β . Thus we need only to check that W has a left adjoint.
This holds by a standard adjoint-lifting argument [2], made particularly simple here since the relevant
coequalizers are split. In more detail, let L be the left adjoint of V W , with counit n : LV W → 1 and
unit u : 1 → V W L. Consider the mate of V �W for � : R ⊗ V (•) ⊗ R → RMR under the adjunction
L 
 V W ; that is, the morphism

λX := (
L(R ⊗ X ⊗ R)

L(R⊗u X ⊗R)
L(R ⊗ V W L X ⊗ R)

LV ρW L X
LV W L X

nL X
L X

)
(2.4)

for any object X of M . Whenever the coequalizer of L�M , λM : L(R ⊗ M ⊗ R) → LM exists for any
object (M,�M) of RMR , it defines a left adjoint for the lifting W of V W ; see [2]. By the separable
Frobenius property of R , the morphism λX is split by the natural monomorphism λR⊗X⊗R ◦ L(δ ◦ η ⊗
X ⊗ δ ◦ η). Since the diagram

L(R ⊗ M ⊗ R)
L�M

λM

LM

LM
λM◦L((R⊗�M⊗R)◦(δ◦η⊗M⊗δ◦η))

LM

λR⊗M⊗R◦L(δ◦η⊗M⊗δ◦η)

LM
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is serially commutative, and the coequalizer of the bottom pair exists by Cauchy completeness of C ,
it follows that it is also a coequalizer of the top pair, defining a left adjoint of W . �
Remark 2.4. Proposition 2.3 implies a relation between weak bimonads on a Cauchy complete
monoidal category M and bimonads on RMR , for some separable Frobenius monoid R in M .
Namely, for a weak bimonad T , the separable Frobenius forgetful functor U :M T → M factorizes
through a strong monoidal functor Ũ :M T → RMR for a separable Frobenius monoid R , and the for-
getful functor V : RMR → M ; see Theorem 2.1. By Proposition 2.3, Ũ is also monadic hence together
with its left adjoint L̃, it induces a bimonad T̃ := Ũ L̃ on RMR , whose Eilenberg–Moore category is
equivalent to M T ; see [9]. Conversely, for a bimonad T̃ on a bimodule category RMR over a sep-
arable Frobenius monoid R , the composite U of the forgetful functor Ũ : (RMR)T̃ → RMR and the
forgetful functor V : RMR → M is separable Frobenius; cf. Example 1.2. It is also monadic by Propo-
sition 2.3, hence together with its left adjoint L, it induces a weak bimonad T := U L on M such that
M T is equivalent to (RMR)T̃ . What is more, by uniqueness of a left adjoint up to natural isomor-
phism, T and V T̃ (R ⊗ • ⊗ R) differ by an opmonoidal isomorphism of monads (or in fact they can be
chosen equal).

Remark 2.5. Consider a weak bimonad T on a Cauchy complete monoidal category M . By (the
proof of) Proposition 2.3, the left adjoint L̃ of the strong monoidal functor Ũ :M T → RMR (oc-
curring in the factorization of the forgetful functor U :M T → M ) is constructed by choosing a

splitting LM L̃(M,�M) LM of the idempotent natural transformation

λM ◦ L
(
(R ⊗ �M ⊗ R) ◦ (δ ◦ η ⊗ M ⊗ δ ◦ η)

)
: LM → LM, (2.5)

for any object (M,�M) of RMR , where λM is as in (2.4). Applying U , this yields a split idempotent

natural transformation U LV = T V
q

U L̃ = V T̃
j

T V = U LV . What is more, also as a monad,

T̃ = Ũ L̃ is a weak q-lifting of T hence by [3, Proposition 3.7], the Eilenberg–Moore categories M T

and (RMR)T̃ are in fact isomorphic. Explicitly, there is an isomorphism Ξ :M T → (RMR)T̃ , taking
a T -algebra (A,a) to the R ⊗ • ⊗ R-algebra A described in (2.3), with a T̃ -algebra structure provided
by the unique morphism ã : T̃ A → A for which ã ◦ qA = a. On the morphisms, Ξ acts as the identity
map. The inverse of Ξ takes an object ((A,�A), ã ) of (RMR)T̃ to the T -algebra A, with structure
morphism T A

qA−−→ V T̃ A ã−→ A, and it also acts on the morphisms as an identity map. In particular,
also the Eilenberg–Moore categories (RMR)T̃ and M V T̃ (R⊗•⊗R) are isomorphic, for any bimonad T̃
on a bimodule category RMR over a separable Frobenius monoid R .

The final aim of this section is to extend the correspondence in Remark 2.4 between weak bi-
monads on one hand, and bimonads over separable Frobenius base monoids on the other hand, to an
equivalence of categories.

Definition 2.6. A morphism of weak bimonads on a monoidal category M is defined as an opmonoidal
morphism of monads; that is, as a natural transformation g : T → T ′ which is opmonoidal in the sense
that, for any objects X and Y in M ,

T (X ⊗ Y )
gX⊗Y

τX,Y

T ′(X ⊗ Y )

τ ′
X,Y

T X ⊗ T Y
gX ⊗gY

T ′ X ⊗ T ′Y

T K
gK

τ0

T ′K

τ ′
0

K K
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and which is a morphism of monads in the sense that, for any object X in M ,

T 2 X
T gX

mX

T T ′ X
gT ′ X

T ′2 X

m′
X

T X
gX

T ′ X

X

u X

X

u′
X

T X
gX

T ′ X .

Weak bimonads on M (as objects) and their morphisms (as arrows) constitute a category Wbm(M ),
which contains the category of bimonads on M as a full subcategory.

Example 2.7. Any monoid R in a monoidal category M , induces a monad R ⊗ • ⊗ R on M . If R is a
separable Frobenius monoid in a Cauchy complete monoidal category M , then R ⊗ • ⊗ R is a weak
bimonad; see Example 1.2 (3). Its opmonoidal structure is provided by the maps

R ⊗ R
ε◦μ

K and R ⊗ X ⊗ Y ⊗ R
R⊗X⊗δ◦η⊗Y ⊗R

R ⊗ X ⊗ R ⊗ R ⊗ Y ⊗ R,

for any objects X , Y in M , where (μ,η) and (δ, ε) denote the monoid and comonoid structures of R ,
respectively. A morphism γ : R → R ′ of separable Frobenius monoids in M induces a morphism of
weak bimonads γ ⊗ • ⊗ γ : R ⊗ • ⊗ R → R ′ ⊗ • ⊗ R ′ .

Lemma 2.8. Consider any morphism g : T → T ′ of weak bimonads on a Cauchy complete monoidal cate-
gory M , with monoidal units R, respectively R ′ , of the Eilenberg–Moore categories M T and M T ′

. There is
a unique isomorphism γ : R → R ′ of separable Frobenius monoids such that the following diagram of functors
commutes,

(R ′MR ′)T̃ ′ ∼= M T ′ g∗

Ũ ′

M T ∼= (RMR)T̃

Ũ

R ′MR ′
γ ∗

V ′

RMR

V

M

(2.6)

where the bimonads T̃ and T̃ ′ are associated to the weak bimonads T and T ′ as in Remark 2.4.

Proof. By Lemma 1.8, for weak bimonads T and T ′ , the associated idempotent morphisms � and �′

in (1.13) split through R and R ′ , respectively; thus there are epi-mono pairs T K
P

R
I

T K

and T ′K
P ′

R ′ I ′
T ′ K . Using the fact that a morphism g : T → T ′ of weak bimonads is an

opmonoidal natural transformation as well as a morphism of monads, one checks that for any objects
X , Y in M , the two diagrams on the left
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T K
gK

�

T ′K

�′

T K
gK

T ′K

T X ⊗ T Y
gX ⊗gY

ET X,T Y

T ′ X ⊗ T ′Y

E ′
T ′ X,T ′Y

T X ⊗ T Y
gX ⊗gY

T ′ X ⊗ T ′Y

T K
gK

T ′K

P ′

R

I

γ
R ′

(2.7)

commute and so the morphism γ defined by the diagram on the right is compatible both with
the monoid and with the comonoid structures of R and R ′ , written out explicitly in (2.1) and (2.2).
That is, γ is a morphism of separable Frobenius monoids. By [16, Proposition A.3], any morphism
of Frobenius monoids is an isomorphism hence so is γ . It obviously renders commutative the lower
triangle in (2.6). It renders commutative also the upper square by commutativity of the following
diagram, for any T ′-algebra (A,a).

R ⊗ A ⊗ R
uR⊗A⊗R

γ ⊗A⊗γ

T (R ⊗ A ⊗ R)
τ

(3)
R,A,R

T (γ ⊗A⊗γ )

T R ⊗ T A ⊗ T R
T R⊗g A⊗T R

Tγ ⊗T A⊗Tγ

T R ⊗ T ′ A ⊗ T R

r⊗a⊗r

R ′ ⊗ A ⊗ R ′ uR′⊗A⊗R′

u′
R′⊗A⊗R′

T (R ′ ⊗ A ⊗ R ′)
τ

(3)

R′,A,R′

gR′⊗A⊗R′
T R ′ ⊗ T A ⊗ T R ′

gR′⊗g A⊗gR′
R ⊗ A ⊗ R

γ ⊗A⊗γ
ε⊗A⊗ε

T ′(R ′ ⊗ A ⊗ R ′)
τ

′ (3)

R′,A,R′
T ′R ′ ⊗ T ′ A ⊗ T ′R ′

r′⊗a⊗r′ R ′ ⊗ A ⊗ R ′
ε′⊗A⊗ε′ A

(2.8)

The two squares in the upper left corner commute by naturality and the square below them com-
mutes by the opmonoidality of g . The triangles in the bottom row commute since g is a monad
morphism, and since γ is a comonoid morphism, respectively. The remaining region commutes by
commutativity of the following diagram,

T R
T I

T I (1.10)

r

Tγ

T T K
mK

T K
P

R

I

γ

T T K

T gK (2.7)

T T K

T P

mK

T gK

T K

gK

T T ′K

T P ′

T T ′K
T P ′

gT ′ K
T ′T ′K

T ′ P ′

m′
K

(1.10)

T ′K

P ′

T R ′
gR′ T ′R ′

T ′ I ′

r′

T ′T ′K
m′

K

T ′K
P ′ R ′

(2.9)

where the undecorated region in the middle commutes since g is a morphism of monads. It remains
to show that γ is unique with the stated property. The upper part of the diagram in (2.6) commutes
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if and only if, for any T ′-algebra (A,a) and the corresponding T -algebra (A,a ◦ g A), the R ⊗ • ⊗ R-
action �A and the R ′ ⊗ • ⊗ R ′-action �′

A in (2.3) obey �A = �′
A ◦ (γ ⊗ A ⊗ γ ); see (2.8). Applying it in

the case where (A,a) is the monoidal unit (R ′, r′) of M T ′
and composing the resulting identity on

the right with η ⊗η′ ⊗ R , we deduce that γ = (R ′ ⊗ ε) ◦ E R ′,R ◦ (η′ ⊗ R). Thus γ renders commutative
the last diagram in (2.7) by the forms of P ′ and I in (1.11) and (1.12), the form of E R ′,R in (1.14), and
naturality. �

On the other hand, any isomorphism of separable Frobenius monoids clearly induces a strict
monoidal isomorphism between the categories of bimodules, which can be seen as a particular case
of the following:

Lemma 2.9. If g : T → T ′ is a morphism of weak bimonads on a Cauchy complete monoidal category M then
the induced functor g∗ :M T ′ → M T is strong monoidal and (2.6) is a commutative diagram of separable
Frobenius monoidal functors.

Proof. If T and T ′ are bimonads then the monoidal structures on M T and M T ′
are lifted from

that on M , and so clearly g∗ :M T ′ → M T is strong (in fact strict) monoidal. If T is only a weak
bimonad then the monoidal structure on M T is only weakly lifted from that on M , but it is lifted,
up to equivalence, from that on RMR . Thus if g : T → T ′ is a morphism of weak bimonads, then
the isomorphism γ : R → R ′ of the previous lemma induces a strict monoidal isomorphism R ′MR ′ →
RMR , and now the strong monoidal structure on the composite M T ′ → R ′MR ′ → RMR lifts to a
strong monoidal structure on g∗ :M T ′ → M T . Explicitly, this is given by

γA,B := (
A � B

i A,B
A ⊗ B

p′
A,B

A �′ B
)
,

and γ : R → R ′ . �
We now turn to our category of bimonads on categories of bimodules over separable Frobenius

monoids in M .

Definition 2.10. For a monoidal category M , the category Sfbm(M ) is defined to have objects which
are pairs (R, T̃ ), consisting of a separable Frobenius monoid R in M and a bimonad T̃ on RMR .
Morphisms (R, T̃ ) → (R ′, T̃ ′) are pairs (γ ,Γ ), consisting of an isomorphism γ : R → R ′ of separable
Frobenius monoids (inducing a strong monoidal isomorphism γ ∗ : R ′MR ′ → RMR ), and a morphism
of bimonads Γ : T̃ → γ ∗ T̃ ′(γ ∗)−1 (that is, an opmonoidal morphism of monads, in the sense expli-
cated in Definition 2.6).

There is an evident functor Ψ : Sfbm(M ) → Wbm(M ) defined as follows. The object map is given
by associating to a pair (R, T̃ ) the weak bimonad induced by the composite of the forgetful functors
Ũ : (RMR)T̃ → RMR and V : RMR → M , as described in Remark 2.4; explicitly, Ψ (R, T̃ )X = V T̃ (R ⊗
X ⊗ R). A morphism (γ ,Γ ) : (R, T̃ ) → (R ′, T̃ ′) in Sfbm(M ) gives rise to a commutative diagram of
functors

MΨ (R ′,T̃ ′) ∼= (R ′MR ′)T̃ ′

Ũ ′

Γ ∗
(RMR)T̃ ∼= MΨ (R,T̃ )

Ũ

R ′MR ′
γ ∗

V ′

RMR

V

M
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and so in particular to a morphism of monads g :Ψ (R, T̃ ) → Ψ (R ′, T̃ ′), explicitly, g X : V T̃ (R ⊗ X ⊗
R) → V ′ T̃ ′(R ′ ⊗ X ⊗ R ′) is given by

V T̃ (R ⊗ X ⊗ R)
V ΓR⊗X⊗R

V γ ∗ T̃ ′(γ ∗)−1(R ⊗ X ⊗ R)

V ′ T̃ ′(γ ∗)−1(R ⊗ X ⊗ R)
V ′ T̃ ′(γ ⊗X⊗γ )

V ′ T̃ ′(R ′ ⊗ X ⊗ R ′)

and it is opmonoidal since V , V ′ , and T̃ ′ are opmonoidal functors, and Γ and γ ⊗ X ⊗γ : (γ ∗)−1(R ⊗
X ⊗ R) → R ′ ⊗ X ⊗ R ′ are opmonoidal natural transformations.

Theorem 2.11. If M is a Cauchy complete monoidal category, the functor Ψ : Sfbm(M ) → Wbm(M ) is an
equivalence of categories.

Proof. First we show that Ψ is fully faithful. Suppose then that objects (R, T̃ ) and (R ′, T̃ ′) of
Sfbm(M ) are given. We must show that any morphism g :Ψ (R, T̃ ) → Ψ (R ′, T̃ ′) of weak bimon-
ads is induced by a unique morphism (γ ,Γ ) : (R, T̃ ) → (R ′, T̃ ′) in Sfbm(M ). The existence of a
unique isomorphism γ : R → R ′ of monoids, inducing an isomorphism γ ∗ : R ′MR ′ → RMR of cat-
egories rendering commutative (2.6), is given by Lemma 2.8. By Lemma 2.9, g induces a strong
monoidal functor g∗ :M T ′ → M T . By commutativity of the upper square in (2.6) as a diagram of
strong monoidal functors, it is necessarily of the form Γ ∗ for a unique opmonoidal monad morphism
Γ : T̃ → γ ∗ T̃ ′(γ ∗)−1. This proves that Ψ is fully faithful. It is essentially surjective on objects by
Remark 2.4. �

Bimonads are monads in the 2-category OpMon of monoidal categories, opmonoidal functors and
opmonoidal natural transformations; cf. [11]. That is, they can be regarded as 0-cells in the 2-category
Mnd(OpMon). Clearly, for a Cauchy complete monoidal category M , the category Sfbm(M ) is a sub-
category in the opposite of the category underlying Mnd(OpMon). We may consider also the full
subcategory of the underlying category of Mnd(OpMon), with objects the bimonads on bimodule cat-
egories over separable Frobenius monoids R in Cauchy complete monoidal categories. In this way
(using the correspondence in Remark 2.4), we can define more general morphisms between weak bi-
monads than the arrows in Wbm(M ) for a fixed M . These more general morphisms do not need to
preserve the underlying separable Frobenius monoid R .

3. An example: Weak bimonoids in braided monoidal categories

In this section we show that weak bimonoids in a Cauchy complete braided monoidal category M
induce weak bimonads on M .

Theorem 3.1. For a monoid (B,μ,η) in a Cauchy complete braided monoidal category (M ,⊗, K , c), there is
a bijection between

(1) weak bimonoids of the form (B,μ,η, δ, ε) in M ;
(2) weak bimonads (• ⊗ B,• ⊗ μ,• ⊗ η,τ , τ0) on M for which the diagram

X ⊗ Y ⊗ B
X⊗Y ⊗τK ,K

τX,Y

X ⊗ Y ⊗ B ⊗ B

X⊗cY ,B⊗B

X ⊗ B ⊗ Y ⊗ B

(3.1)

commutes for all objects X , Y of M .
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Remark 3.2. Consider a monoid B in a Cauchy complete braided monoidal category (M ,⊗K , c) such
that •⊗ B is a weak bimonad on M . By naturality, for all morphisms f : K → X , g : K → Y , h : K → B ,
the natural transformation τX,Y : X ⊗ Y ⊗ B → X ⊗ B ⊗ Y ⊗ B makes

K
f ⊗g⊗hh

f ⊗g⊗h
X ⊗ Y ⊗ B

X⊗Y ⊗τK ,K
X ⊗ Y ⊗ B ⊗ B

X⊗cY ,B⊗BB
τK ,K

X ⊗ Y ⊗ B
τX,Y

B ⊗ B
f ⊗B⊗g⊗B

X ⊗ B ⊗ Y ⊗ B

commute. Hence (3.1) holds provided that the monoidal unit K is a ‘cubic generator’ in the following
sense: If, for some morphisms p,q : X ⊗Y ⊗ Z → W in M , the equality p ◦( f ⊗ g ⊗h) = q◦( f ⊗ g ⊗h)

holds, for all morphisms f : K → X , g : K → Y , h : K → Z , then p = q.
The monoidal unit is a ‘cubic generator’, for example, in the symmetric monoidal category

Mod(k) of modules over a commutative ring k. With this observation in mind, Theorem 3.1 includes
Szlachányi’s description in [21, Corollary 6.5] of weak bialgebras over k as weak bimonads on Mod(k).

Proof of Theorem 3.1. Suppose that (B,μ,η, δ, ε) is a weak bimonoid in M . By [16, Proposition 3.8],
the category of B-modules is monoidal and there is a strong monoidal functor from it to a certain bi-
module category RMR . Furthermore, the resulting monoid R is a separable Frobenius monoid by [16,
Proposition 1.4]. In view of Example 1.2, this proves that • ⊗ B is a weak bimonad. Its opmonoidal
structure comes out with τX,Y equal to the composite

X ⊗ Y ⊗ B
X⊗Y ⊗δ

X ⊗ Y ⊗ B ⊗ B
X⊗cY ,B⊗B

X ⊗ B ⊗ Y ⊗ B

and τ0 = ε. Hence (3.1) is satisfied.
Assume conversely that (2) holds. We claim that (B,μ,η, δ := τK ,K , ε := τ0) is a weak bimonoid

in M . The functor • ⊗ B is opmonoidal and so sends comonoids to comonoids; in particular, it
sends the comonoid K in M to a comonoid, which turns out to be (B, δ, ε). Use (3.1) to write
τX,Y as (X ⊗ cY ,B ⊗ B) ◦ (X ⊗ Y ⊗ δ), for any objects X , Y of M . Substituting this expression in
conditions (1.3)–(1.7), we obtain the following commutative diagrams.

B2
B⊗η⊗B

B⊗δ

B3
B⊗δ⊗B

B4
B⊗c−1

B,B⊗B

B4

μ⊗μ

B3

B⊗c−1
B,B

B2

ε⊗B

B3
μ⊗B

B2
ε⊗B

B

B2
B⊗η⊗B

B⊗δ

B3
B⊗δ⊗B

B4

μ⊗μ

B2

ε⊗B

B3
μ⊗B

B2
ε⊗B

B

(3.2)

K

η⊗η

η
B

δ

B2

δ⊗B

B2
δ⊗δ

B4

B⊗c−1
B,B⊗B

B4
B⊗μ⊗B

B3

K

η⊗η

η
B

δ

B2

δ⊗B

B2
δ⊗δ

B4
B⊗μ⊗B

B3

(3.3)
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B4
B⊗cB,B⊗B

B4

μ⊗μ

B2

δ⊗δ

μ
B

δ
B2

(3.4)

Condition (3.4) is identical to axiom (b), and the identities in (3.3) are identical to axiom (w) in the
definition of a weak bimonoid in [16, Definition 2.1]. Thus we only need to show that, whenever the
diagrams in (3.2), (3.3), and (3.4) commute, then axiom (v) in [16, Definition 2.1] holds; that is, the
following diagram commutes.

B3
B⊗δ⊗B

B⊗δ⊗B

μ2

B4
B⊗c−1

B,B⊗B

B4

μ⊗μ

B

ε

B2

ε⊗ε

B4
μ⊗μ

B2
ε⊗ε

K

(3.5)

Commutativity of the lower triangle in (3.5) follows by commutativity of

B3

B⊗δ⊗B

B3
B⊗μ

B⊗η⊗B2

B2

B⊗η⊗B

B2
μ

B⊗δ

B

ε

B4

B⊗δ⊗B2

B3

B⊗δ⊗B

(3.2)

B3

μ⊗BB4

μ⊗B⊗B

(3.2) B5

μ⊗μ⊗B

B4

μ⊗μ

B3

ε⊗B⊗B

B2

ε⊗B

B2

ε⊗B

B3
ε⊗B⊗B

B2
μ

B B
ε

K .

The undecorated regions commute by naturality, counitality of δ and by associativity of μ. Commuta-
tivity of the upper triangle in (3.5) is proved similarly, making use of the first identity in (3.2). �
4. The antipode

The first attempt to equip Moerdijk’s bimonad with an antipode, i.e. to define a Hopf monad, was
made by Bruguières and Virelizier in [6]. Here the authors studied bimonads on autonomous monoidal
categories such that the (left/right) duals lift to the Eilenberg–Moore category. This generalizes finite
dimensional Hopf algebras to the categorical setting.

A more general notion of Hopf monad was introduced in [5] (see also [7]). This is based on the
observation of Lawvere [10] that a right adjoint preserves internal homs precisely when Frobenius
reciprocity holds; this Frobenius reciprocity condition also appeared in [17, Theorem & Definition 3.5]
in the context of Takeuchi bialgebroids. Based on this result, the following definition was proposed
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also for monoidal categories which are not necessarily closed. For any monad (T ,m, u) on a monoidal
category (M ,⊗, K ) such that T admits an opmonoidal structure (τ , τ0) (hence in particular for any
(weak) bimonad T on M ), there is a canonical natural transformation, given for any objects X , Y
of M by

canX,Y := (
T (T X ⊗ Y )

τT X,Y

T 2 X ⊗ T Y
mX ⊗T Y

T X ⊗ T Y
)
. (4.1)

By the terminology in [5], a bimonad is called a right Hopf monad whenever the associated natural
transformation (4.1) is invertible. Similarly, a bimonad is a left Hopf monad when the analogous natural
transformation T (X ⊗ T Y ) → T X ⊗ T Y is invertible, and a Hopf monad when it is both left and right
Hopf.

In this section we propose a definition of a right weak Hopf monad T on a monoidal category M –
characterized by the property that, whenever M is also Cauchy complete, the associated bimonad T̃
(on another monoidal category) in Remark 2.4, is a right Hopf monad, with analogous definitions for
left weak Hopf monads and weak Hopf monads.

Suppose that T is a weak bimonad on a Cauchy complete monoidal category M , and R the corre-
sponding separable Frobenius monoid, with forgetful functor V : RMR → M and G 
 V . To say that
T̃ is right Hopf is to say that for all X̃, Ỹ ∈ RMR , the canonical morphism

T̃ (T̃ X̃ ⊗R Ỹ )
c̃an X̃,Ỹ

T̃ X̃ ⊗R T̃ Ỹ

is invertible. Since every X̃ ∈ RMR is (naturally) a retract of one of the form G X , this will be the case
precisely when

T̃ (T̃ G X ⊗R GY )
c̃anG X,GY

T̃ G X ⊗R T̃ GY

is invertible. Now

T̃ (T̃ G X ⊗R GY ) ∼= T̃
(
T X ⊗R (R ⊗ Y ⊗ R)

) ∼= T̃ (T X ⊗ Y ⊗ R)

and V T̃ (T X ⊗ Y ⊗ R) is a retract of T (T X ⊗ Y ) by construction of T̃ , while

V (T̃ G X ⊗R T̃ GY ) ∼= T X � T Y

which is a retract of T X ⊗ T Y . Thus we obtain a composite map

T (T X ⊗ Y )
qX,Y

V T̃ (T̃ G X ⊗R GY )
c̃anG X,GY

V (T̃ G X ⊗R T̃ GY )
iT X,T Y

T X ⊗ T Y (4.2)

which turns out to be the canonical map canX,Y associated to T itself.
Now the inclusion T X � T Y → T X ⊗ T Y is the section for a splitting of the idempotent E T X,T Y on

T X ⊗ T Y defined in (1.14).
On the other hand, the quotient T (T X ⊗ Y ) → V T̃ (T̃ G X ⊗R GY ) is the retraction of a splitting of

an idempotent F X,Y on T (T X ⊗ Y ) defined by

T (T X ⊗ Y )
T (δ◦η⊗T X⊗Y ⊗η)

T (R ⊗ R ⊗ T X ⊗ Y ⊗ R)
T (R⊗βT X ⊗Y ⊗R)

T (R ⊗ T X ⊗ Y ⊗ R)

λT X⊗Y
T (T X ⊗ Y ), (4.3)
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where βT X denotes the left R-action on T X and λ is the natural transformation in (2.4).
To say that c̃an is invertible, is to say that can induces an isomorphism between the splittings of

the idempotents F X,Y and ET X,T Y . We then call T a weak right Hopf monad:

Definition 4.1. A weak bimonad T on a monoidal category (M ,⊗, K ) is said to be a weak right Hopf
monad provided that there is a natural transformation χX,Y : T X ⊗ T Y → T (T X ⊗ Y ) such that, for
the canonical natural transformation can of T in (4.1), for the idempotent morphisms E T X,T Y and
F X,Y (4.3), and for any objects X , Y of M ,

χX,Y ◦ ET X,T Y = χX,Y = F X,Y ◦ χX,Y , χX,Y ◦ canX,Y = F X,Y , canX,Y ◦ χX,Y = ET X,T Y .

(4.4)

The definition just given makes sense for any monoidal category M , but is motivated by the
following theorem, which requires M to be Cauchy complete.

Theorem 4.2. For any weak bimonad T on a Cauchy complete monoidal category (M ,⊗, K ), and the associ-
ated bimonad T̃ in Remark 2.4, the following assertions are equivalent.

(1) The canonical natural transformation c̃an of T̃ as in (4.1), is an isomorphism; that is, T̃ is a right Hopf
monad.

(2) There is a natural transformation χX,Y : T X ⊗ T Y → T (T X ⊗ Y ) obeying (4.4); that is, T is a weak right
Hopf monad.

Proof. The equations in (4.4) state exactly that the morphism induced by χX,Y between the splittings
of F X,Y and ET X,T Y is inverse to the morphism c̃anX,Y induced by canX,Y between the splittings of
ET X,T Y and F X,Y . �
Remark 4.3. Consider a weak right Hopf monad T on a Cauchy complete monoidal category M with
corresponding separable Frobenius monoid R . By Theorem 4.2 and [5, Theorem 3.6] we conclude that
whenever the category of R-bimodules is right closed, this closed structure lifts to the Eilenberg–
Moore category M T . The category of R-bimodules is right closed whenever M is right closed (in
which case the internal homs are defined by splitting an appropriate idempotent natural transforma-
tion).

Next we show that, as expected, a weak bimonoid B in a Cauchy complete braided monoidal
category M , induces a right weak Hopf monad • ⊗ B on M if and only if it is a weak Hopf monoid
in the sense of [1,16].

Lemma 4.4. For an arbitrary category C , consider a functor T :C → C which admits both a monad struc-
ture T = (T ,m, u) and a comonad structure T = (T ,d, e). Denote by U :C T → C and by U :C T → C the

corresponding forgetful functors with respective left adjoint F :C → C T and right adjoint F :C → C T . The
following monoids (in Set) are isomorphic.

(1) The monoid of natural transformations F U → F U , with multiplication given by the composition of natural
transformations.

(2) The monoid of those natural transformations γ : F T → F T for which Fm ◦ γ T = γ ◦ Fm, with multipli-
cation given by the composition of natural transformations.

(3) The monoid of natural transformations T → T , with multiplication given by the ‘convolution product’
ϕ ∗ ϕ′ := m ◦ Tϕ′ ◦ ϕT ◦ d.

Proof. (1) ∼= (2) The stated isomorphism is given by the maps Nat(F U , F U )  β �→ β F , with the
inverse γ �→ F Uκ ◦ γ U ◦ F uU , where κ is the counit of the adjunction F 
 U .

(1) ∼= (3) This is the adjunction isomorphism Nat(F U , F U ) ∼= Nat(U F , U F ). �
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For a functor T as in Lemma 4.4, one may consider the so-called ‘fusion operator’ in [20],

γ := (
T 2 dT

T 3
T m

T 2
)
. (4.5)

Clearly, it belongs to the monoid in Lemma 4.4 (2). The corresponding element of the isomor-
phic monoid in Lemma 4.4 (3) is the identity natural transformation T → T . (Hence, incidentally,
Lemma 4.4 provides an alternative proof of [13, Theorem 5.5].)

Lemma 4.5. For a weak bimonoid (B,μ,η, δ, ε) in a Cauchy complete braided monoidal category (M ,⊗,

K , c), and its induced weak bimonad T := • ⊗ B, the following assertions hold, for any objects X , Y of M .

(i) For the natural transformation (4.1) of T = • ⊗ B,

canX,Y = (X ⊗ cY ,B ⊗ B) ◦ (X ⊗ Y ⊗ γK ) ⊗ (
X ⊗ c−1

Y ,B ⊗ B
)
,

where γ is the fusion operator (4.5) for the monad and comonad • ⊗ B.
(ii) The idempotent natural transformation ET X,T Y on T X ⊗ T Y (1.14) satisfies

ET X,T Y = (X ⊗ cY ,B ⊗ B) ◦ (X ⊗ Y ⊗ ET K ,T K ) ⊗ (
X ⊗ c−1

Y ,B ⊗ B
)
. (4.6)

Moreover, • ⊗ ET K ,T K belongs to the monoid in Lemma 4.4 (2) and the corresponding element of the
isomorphic monoid in Lemma 4.4 (3) is • ⊗ t, where t is the composite

B
B⊗η

B2
B⊗δ

B3
cB,B⊗B

B3
B⊗μ

B2
B⊗ε

B.

(iii) The idempotent natural transformation F X,Y on T (T X ⊗ Y ) (4.3) satisfies

F X,Y = (X ⊗ cY ,B ⊗ B) ◦ (X ⊗ Y ⊗ F K ,K ) ◦ (
X ⊗ c−1

Y ,B ⊗ B
)
. (4.7)

Moreover, • ⊗ F K ,K belongs to the monoid in Lemma 4.4 (2) and the corresponding element of the iso-
morphic monoid in Lemma 4.4 (3) is • ⊗ r, where r is the composite

B
η⊗B

B2
δ⊗B

B3
B⊗cB,B

B3
μ⊗B

B2
ε⊗B

B.

(iv) If in addition T := • ⊗ B is a weak right Hopf monad; that is, there exists a natural transformation χ
obeying (4.4), then

χX,Y = (X ⊗ cY ,B ⊗ B) ◦ (X ⊗ Y ⊗ χK ,K ) ⊗ (
X ⊗ c−1

Y ,B ⊗ B
)

(4.8)

and • ⊗ χK ,K belongs to the monoid in Lemma 4.4 (2).

Proof. Assertion (i) is immediate by relation (3.1) between the opmonoidal structure τX,Y of T = •⊗ B
and the comultiplication δ = τK ,K in B = T K .

(ii) Eq. (4.6) follows from the formula (1.14) for E T X,T Y and ET K ,T K . Then the morphism

ET K ,T K = (
B2

B2⊗η

B3
B2⊗δ

B4
B⊗cB,B⊗B

B4
μ⊗μ

B2
)



26 G. Böhm et al. / Journal of Algebra 328 (2011) 1–30
renders commutative the first diagram in

B3
B⊗ET K ,T K

μ⊗B

B3

μ⊗B

B2
ET K ,T K

B2

B2

B⊗δ

ET K ,T K

B2

B⊗δ

B3
ET K ,T K ⊗B

B3

(4.9)

by associativity of μ. By self-duality of the axioms of a weak bimonoid, the dual of (3.2) holds; that
is, the first diagram in

B
η⊗B

η⊗B

B2
δ⊗B

B3
B⊗c−1

B,B

B3

B⊗μB2

δ⊗δ

B4

B⊗c−1
B,B⊗B

B4
B⊗μ⊗B

B3
B⊗ε⊗B

B2

B3
ET K ,T K ⊗B

B3

B⊗ε⊗B

B2

B⊗δ

ET K ,T K
B2

commutes. Tensoring on the left with B and then composing with μ ⊗ B gives commutativity of the
diagram on the right. It follows by coassociativity of δ that also the second diagram in (4.9) commutes.
This proves that • ⊗ ET K ,T K belongs to the monoid in Lemma 4.4 (2). The corresponding element of
the isomorphic monoid in Lemma 4.4 (3) is (B ⊗ ε) ◦ E T K ,T K ◦ (η ⊗ B) = t as stated, by unitality of μ.

(iii) Similarly to part (ii), one easily checks that

F X,Y = (X ⊗ cY ,B ⊗ B) ◦ (
X ⊗ Y ⊗ (μ ⊗ ε ◦ μ ⊗ B) ◦ (

B ⊗ c−1
B,B ◦ δ ◦ η ⊗ δ

)) ◦ (
X ⊗ c−1

Y ,B ⊗ B
)
,

which proves (4.8). By associativity of μ and by coassociativity of δ,

F K ,K = (
B2

B⊗η⊗B
B3

B⊗δ⊗δ

B5
B⊗c−1

B,B⊗B2

B5
μ⊗μ⊗B

B3
B⊗ε⊗B

B2
)

makes commute both diagrams in

B3
B⊗F K ,K

μ⊗B

B3

μ⊗B

B2
F K ,K

B2

B2

B⊗δ

F K ,K

B2

B⊗δ

B3
F K ,K ⊗B

B3.

(4.10)

Thus • ⊗ F K ,K is an element of the monoid in Lemma 4.4 (2). By unitality of μ and counitality of δ,
the corresponding element (B ⊗ ε) ◦ F K ,K ◦ (η ⊗ B) of the isomorphic monoid in Lemma 4.4 (3) is the
stated morphism r.

(iv) In (4.2) we have seen a relationship between the canonical morphism can of T and the canon-
ical morphism c̃an of the weakly lifted bimonad T̃ . Using this along with part (i), we deduce that
c̃anR⊗X⊗R,R⊗Y ⊗R is equal to

pT X,T Y ◦ (X ⊗ cY ,B ⊗ B) ◦ (X ⊗ Y ⊗ iT K ,T K ◦ c̃anR⊗R,R⊗R ◦ qK ,K ) ◦ (
X ⊗ c−1

Y ,B ⊗ B
) ◦ j X,Y
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where pT X,T Y is the epi part of the splitting of ET X,T Y , and j X,Y is the mono part of the splitting
of F X,Y . Hence in view of (4.6) and (4.7), c̃an−1

R⊗X⊗R,R⊗Y ⊗R is equal to

qX,Y ◦ (X ⊗ cY ,B ⊗ B) ◦ (
X ⊗ Y ⊗ jK ,K ◦ c̃an−1

R⊗R,R⊗R ◦ pT K ,T K
) ◦ (

X ⊗ c−1
Y ,B ⊗ B

) ◦ iT X,T Y .

Thus for χX,Y = j X,Y ◦ c̃an−1
R⊗X⊗R,R⊗Y ⊗R ◦ pT X,T Y , the required condition (4.8) holds.

We need to show that χK ,K induces a natural transformation as in Lemma 4.4 (2). By part (i),
canK ,K = γK induces such a natural transformation. Hence in view of (4.2), since iT X,T Y is a morphism
of left B-modules and of right B-comodules, and by (4.10),

(μ ⊗ B) ◦ (B ⊗ jK ,K ) ◦ (
B ⊗ c̃an−1

R⊗R,R⊗R

) = jK ,K ◦ c̃an−1
R⊗R,R⊗R ◦ (μ ⊗R B) and

(B ⊗ δ) ◦ jK ,K ◦ c̃an−1
R⊗R,R⊗R = ( jK ,K ⊗ B) ◦ (

c̃an−1
R⊗R,R⊗R ⊗ B

) ◦ (B ⊗R δ).

Since pT K ,T K is a morphism of left B-modules and of right B-comodules, this implies that χK ,K =
jK ,K ◦ c̃an−1

R⊗R,R⊗R ◦ pT K ,T K belongs to the monoid in Lemma 4.4 (2). �
Theorem 4.6. For a weak bimonoid B in a Cauchy complete braided monoidal category (M ,⊗, K , c), the
induced functor • ⊗ B is a weak right Hopf monad if and only if B is a weak Hopf monoid.

Proof. By Lemma 4.5, • ⊗ B is a weak right Hopf monad if and only if (using the same notation in
the lemma) there is an element X ⊗ Y ⊗ χK ,K : X ⊗ Y ⊗ B ⊗ B → X ⊗ Y ⊗ B ⊗ B of the monoid in
Lemma 4.4 (2), such that

χK ,K ◦ ET K ,T K = χK ,K = F K ,K ◦ χK ,K , χK ,K ◦ canK ,K = F K ,K , canK ,K ◦ χK ,K = ET K ,T K .

By Lemma 4.4, this is equivalent to the existence of a morphism ν : B → B , such that

ν ∗ r = ν = t ∗ ν, ν ∗ B = t, B ∗ ν = r,

where the morphisms t, r : B → B are introduced in Lemma 4.5 and ∗ denotes the convolution product
f ∗ g = μ ◦ ( f ⊗ g) ◦ δ, for any morphisms f , g : B → B in M . �

Finally we turn to connections between right weak Hopf monads and left weak Hopf monads. Con-
ditions (1.3)–(1.7) are invariant under replacing the monoidal product ⊗ with the opposite product ⊗.
That is, if (T ,m, u, τ0, τ ) is a weak bimonad on a monoidal category (M ,⊗, K ), then (T ,m, u, τ 0, τ )

is a weak bimonad on (M ,⊗, K ), where τ 0 = τ0 : T K → K and τ X,Y = τY ,X : T (X ⊗ Y ) = T (Y ⊗ X) →
T Y ⊗ T X = T X ⊗ T Y . We say that a weak bimonad (T ,m, u, τ0, τ ) is a left weak Hopf monad
on a monoidal category (M ,⊗, K ) provided that (T ,m, u, τ 0, τ ) is a right weak Hopf monad on
(M ,⊗, K ). Clearly, this means that the left canonical map

T (X ⊗ T Y )
τX,T Y

T X ⊗ T 2Y
T X⊗mY

T X ⊗ T Y

induces an isomorphism between the retracts of T (X ⊗ T Y ) and T X ⊗ T Y defined as above.
Some known facts about right weak Hopf monads immediately translate to left weak Hopf mon-

ads: obviously, for a weak Hopf monoid (B,μ,η, δ, ε, ν) in a braided monoidal category (M ,⊗, K , c),
the same data (B,μ,η, δ, ε, ν) describe a weak Hopf monoid in (M ,⊗, K , c), where the braiding is
given by c X,Y = cY ,X : X ⊗ Y = Y ⊗ X → X ⊗ Y = Y ⊗ X . From Theorem 4.6 we deduce

Proposition 4.7. For a weak bimonoid B in a Cauchy complete braided monoidal category (M ,⊗, K , c), the
following assertions are equivalent:
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(1) the weak bimonad • ⊗ B on (M ,⊗, K ) is a right weak Hopf monad;
(2) the weak bimonad • ⊗ B = B ⊗ • on (M ,⊗, K ) is a left weak Hopf monad;
(3) B is a weak Hopf monoid in (M ,⊗, K , c);
(4) B is a weak Hopf monoid in (M ,⊗, K , c).

In particular, the equivalence of the second and fourth assertions says that a weak bimonoid in a
Cauchy complete braided monoidal category is a weak Hopf monoid if and only if it induces a left
weak Hopf monad by tensoring on the left.

Our next aim is to describe those weak bimonoids (B,μ,η, δ, ε) in a Cauchy complete braided
monoidal category (M ,⊗, K , c) for which • ⊗ B is both a right and a left weak Hopf monad.

Consider the weak bimonoid Bop in (M ,⊗, K , c−1) with the same comonoid structure (δ, ε) of B ,
multiplication μop := μ ◦ c−1

B,B and unit η. Observe that via c•,B :• ⊗ B → B ⊗ •, the weak bimonads
• ⊗ B and Bop ⊗ • are isomorphic. Hence the following assertions on B are equivalent:

(1) the weak bimonad • ⊗ B on (M ,⊗, K ) is a left weak Hopf monad;
(2) the weak bimonad Bop ⊗ • on (M ,⊗, K ) is a left weak Hopf monad;
(3) Bop is a weak Hopf monoid in (M ,⊗, K , c−1);
(4) there is a morphism νop : B → B (the antipode for Bop) such that the following diagrams commute.

B
δ

η⊗B

B2
νop⊗B

B2

c−1
B,B

B2

δ⊗B

B2

μ

B3
B⊗μ

B2
B⊗ε

B

B
δ

B⊗η

B2
B⊗νop

B2

c−1
B,B

B2

B⊗δ

B2

μ

B3
μ⊗B

B2
ε⊗B

B

B
δ2

νop

B3

νop⊗B⊗νop

B3

(μ◦c−1
B,B )2

B B

We shall use the notations s, r, t in weak Hopf monoids, as in [16]; the forms of t and r are recalled
in Lemma 4.5 above. The left-bottom path in the first diagram in (4) above (playing the role of top)
is equal to s. The left-bottom path in the second diagram is conveniently denoted by rop . The four
morphisms s, t , r, rop obey the following four equations

ν ◦ s = r, ν ◦ rop = t, s ◦ ν = t, rop ◦ ν = r. (4.11)

The first one is (15) in Appendix B of [16], and the others are proved by similar steps.
Finally we are ready to provide the desired characterization:

Theorem 4.8. For a weak bimonoid B in a Cauchy complete braided monoidal category (M ,⊗, K , c), the
following conditions are equivalent:

(1) the weak bimonad • ⊗ B on (M ,⊗, K ) is both a right and a left weak Hopf monad;
(2) B is a weak Hopf monoid in (M ,⊗, K , c) and Bop is a weak Hopf monoid in (M ,⊗, K , c−1);
(3) B is a weak Hopf monoid in (M ,⊗, K , c) with an invertible antipode ν;
(4) Bop is a weak Hopf monoid in (M ,⊗, K , c−1) with an invertible antipode νop.

In case (3), ν−1 will be an antipode for Bop; in case (4), (νop)−1 will be an antipode for B.

Proof. We have already seen that (1) and (2) are equivalent. We show that (3) is equivalent to (2);
the equivalence of (4) and (2) is similar.

Assume first that the (3) holds: B is a weak Hopf monoid in (M ,⊗, K , c) with an invertible
antipode ν . In order to see that ν−1 provides an antipode for the weak Hopf monoid Bop , compose
with ν−1 on the left the antipode axioms for B . The first two antipode axioms for Bop follow from
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the respective axiom for B , using the anti-multiplicativity of ν [16, (17)] and the identities ν ◦ s = r
and ν ◦ rop = t , respectively. The third antipode axiom for Bop follows from the corresponding axiom
for B by [16, (17), (6)]. Thus (2) holds.

Conversely, assume that (2) holds: B admits an antipode ν and Bop admits an antipode νop . In
order to see that νop is a left inverse of ν , use associativity of the multiplication, and coassociativity
of the comultiplication in B to compute the convolution product (νop ◦ ν) ∗ ν ∗ B = μ2 ◦ ((νop ◦ ν) ⊗
ν ⊗ B) ◦ δ2 in two different ways. On one hand,

((
νop ◦ ν

) ∗ ν
) ∗ B = (

μ ◦ c−1
B,B ◦ (

B ⊗ νop) ◦ δ ◦ ν
) ∗ B = (

rop ◦ ν
) ∗ B = r ∗ B = B.

The first equality follows by anti-comultiplicativity of ν , cf. [16, (16)]. The second equality is a
consequence of one of the antipode axioms for Bop . The third equality follows by the identity
rop ◦ ν = r (4.11) and the last equality is easily derived from the form of r and axiom (b) in [16].
On the other hand,

(
νop ◦ ν

) ∗ (ν ∗ B) = (
νop ◦ ν

) ∗ t = (
νop ◦ ν

) ∗ (s ◦ ν) = μ ◦ c−1
B,B ◦ (

s ⊗ νop) ◦ δ ◦ ν = νop ◦ ν.

The first equality follows by one of the antipode axioms for B . The second equality follows by the
identity s ◦ν = t (4.11) and the third one follows by anti-comultiplicativity of ν , cf. [16, (16)]. The last
equality follows by the weak Hopf monoid identity t ∗ ν = ν applied to Bop . A symmetrical reasoning
shows that νop is also a right inverse of ν: By [16, (17)], one of the antipode axioms for Bop , the
identities ν ◦ s = r (4.11) and r ∗ B = B ,

((
ν ◦ νop) ∗ ν

) ∗ B = B.

On the other hand, by one of the antipode axioms for B , the identity ν ◦ rop = t (4.11), by [16, (17)]
and the weak Hopf monoid identity ν ∗ r = ν applied to Bop ,

(
ν ◦ νop) ∗ (ν ∗ B) = ν ◦ νop.

Thus (3) holds. �
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