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Summary

Objective: Sixty percent of synovial fluids from patients with severe osteoarthritis (OA) contain calcium pyrophosphate dihydrate (CPPD) or
basic calcium phosphate (BCP) crystals. These bioactive crystals can be particularly difficult to accurately identify in complex biologic
systems, such as in vitro models of crystal formation. We sought to determine if synchrotron Fourier Transform Infrared spectroscopy (sFTIR)
could be used to identify and characterize calcium-containing crystals in mineralization models.

Methods: CPPD and BCP crystals from porcine models of crystal formation were examined with an FTIR Microscope attached to a synchrotron
light source. As a comparison, crystals from human synovial fluids were also examined. The sFTIR spectra generated were compared with
known spectra of multiple forms of BCP and CPPD crystals, as well as spectra generated by synthetic CPPD and BCP crystals and cartilage
proteoglycans, alone and in mixtures.

Results: sFTIR readily identified CPPD and BCP crystals in porcine models as well as in fresh synovial fluids. Brushite was also present in
human and porcine samples, and whitlockite was seen in some porcine samples. Mixtures of minerals were commonly found in a single crystal
aggregate in both human and porcine samples. In spectra from many CPPD crystals, the peak at the 1134 cm�1 found on the standard
spectrum for CPPD was diminished. Addition of spectra from cartilage proteoglycans to those of synthetic CPPD crystals dampened the
peak at this frequency region, much as this peak was diminished in biologically derived CPPD crystals.

Conclusion: sFTIR analysis allows for accurate identification of CPPD and BCP crystals generated in vitro and will be a useful research tool to
study articular crystals.
ª 2008 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Osteoarthritis (OA) is the most common form of arthritis in
adults and currently affects over 20 million Americans.
Calcium-containing crystals, including calcium pyrophos-
phate dihydrate (CPPD) and hydroxyapatite-like basic
calcium phosphate (BCP) crystals are found in 60% of
synovial fluids from unselected patients at the time of
knee replacement for OA1,2. BCP crystals are also associ-
ated with a severe destructive shoulder arthropathy known
as Milwaukee Shoulder Syndrome3. The presence of CPPD
and BCP crystals predict severe radiologic damage and
rapid progression of arthritis2,4.

In the laboratory, CPPD and BCP crystals have cata-
bolic effects on articular tissues. CPPD crystals can
induce a vigorous inflammatory response in the joint,
inducing the release of catabolic cytokines and proteases
from neutrophils and monocytes5. BCP crystals are also
inflammatory under certain conditions6. Independent of
inflammation, both CPPD and BCP crystals have direct
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catabolic effects on chondrocytes and synovial cells.
They induce synovial cell mitogenesis7, and release
collagenase and other matrix-degrading proteases from
synoviocytes and chondrocytes8e10.

Much about the development of CPPD and BCP crystals in
OA is poorly understood11. The current paradigm involves an
alteration of the chondrocyte phenotype, induced by aging,
injury or OA. These chondrocytes assume characteristics
similar to those of the hypertrophic chondrocytes that produce
bone mineral during epiphyseal growth, such as overproduc-
tion of pyrophosphate (PPi), the anionic component of CPPD
crystals12. They also display altered production of key matrix
components involved in mineral formation13. PPi is generated
from exogenous adenosine triphosphate (ATP) by a variety of
ectoenzymes, and complexes with ambient calcium to form
CPPD crystals14. Inorganic phosphate can also be generated
by chondrocyte ectoenzymes. When phosphate rather than
PPi predominates, BCP mineral is generated. Mineral forma-
tion occurs in the pericellular matrix, and is facilitated by small
chondrocyte-derived extracellular organelles known as articu-
lar cartilage vesicles (ACVs)15.

Progress in understanding the role of calcium-containing
crystals in OA has been hampered by difficulties in their
identification particularly in model systems16. In clinical
samples of joint fluid and cartilage, CPPD crystals can be
identified by their characteristic rhomboid morphology and
positive birefringence under compensated polarizing light16.
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Alizarin red S staining can be used to detect BCP crystals in
synovial fluid, but is difficult to interpret and also stains other
calcium-containing particulates17. Neither of these tech-
niques is sufficiently sensitive or accurate for research use.

Two well characterized models of calcium crystal forma-
tion include a model involving isolated ACVs15, and a chon-
drocyte tissue culture model18. In these models, crystals
tend to be very small, relatively sparse, and to be
surrounded by debris enriched in proteins, carbohydrates
and lipids, which interfere with many identification tech-
niques. Thus, difficulties conclusively identifying the nature
and type of calcium crystals produced in these models have
limited their use.

Synchrotron Fourier Transform Infrared spectroscopy
(sFTIR) has been used to study mineralizing tissues,
such as bone, as well as cartilage19,20. It has proven use-
ful in the study of various factors influencing matrix miner-
alization in that it can be used quantitatively to estimate
amounts and quality of mineral formed21,22. Among the
many advantages of sFTIR are its high signal to noise ra-
tio (SNR), its ability to focus on very small areas in com-
plex specimens, and its usefulness with fresh wet
samples, requiring minimal preparation. In addition, the
ability to carefully map and characterize substances in
the areas in and around individual crystals has great
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Fig. 1. Representative sFTIR spectra from human synovial fluids
demonstrating CPPD and BCP crystals. The crosshairs in the
visible images indicate the points at which the measurements
were obtained. The top sample spectrum was collected with
a 10� 10-mm2 aperture and 64 scans, while the bottom sample
spectrum was collected with an 8� 8-mm2 aperture and 64 scans.
For the latter crystal, the sample is clearly smaller than the
8� 8-mm2 aperture, but is completely within the field of view. The
infrared signatures produced by the synovial fluid crystals clearly
match the standard spectra of BCP and CPPD crystals, respec-
tively. The additional peaks on the synovial fluid crystal spectra
suggest the presence of biologic material mixed with the crystals.
potential for yielding important information about crystal
formation and identifying modifiers of this process.

sFTIR can identify calcium-containing crystals generated
by in vitro models of crystal formation and illustrates their
remarkable similarity to crystals from human synovial fluids.
sFTIR will be a useful research tool to further explore the
formation and role of calcium-containing crystals in OA.
Methods
MATERIALS
Synthetic CPPD crystals were generated in our laboratory using the
method of Brown et al.23. BCP crystals were a kind gift from Dr Neil Mandel
(National VA Crystal Identification Center, Zablocki VA Medical Center,
Milwaukee, WI). Cartilage proteoglycans from human cartilage were
purchased from MD Biosciences (St Paul, MN). All other reagents were
from Sigma Chemical Co. (St. Louis, MO), unless otherwise specified.
PORCINE CARTILAGE
Porcine articular cartilage obtained from the knees of adult pigs (Johnson-
ville Foods, Inc., Watertown, WI) was used to generate chondrocytes for the
tissue culture model and ACVs for the ACV model.
TISSUE CULTURE MODEL
A model of CPPD crystal formation in chondrocyte monolayers was
described by Ryan et al.18. In this system, high density primary cultures of
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Fig. 2. Representative sFTIR spectra from human synovial fluid
demonstrating brushite alone and in combination with CPPD crys-
tals. Two crystals from human synovial fluids were characterized
and compared to a brushite standard. The top spectrum represents
a crystal containing both CPPD and brushite components, while the
bottom spectrum appears to be pure brushite. The bottom spectrum
was measured with an 8� 8-mm2 aperture, and the top one was
measured with a 10� 10-mm2 aperture. Both measurements were

collected with 64 scans.
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normal articular chondrocytes generate CPPD crystals after 3e5 days of
incubation with 1-mM ATP. b-glycerophosphate is used as a control for
added phosphate. Cartilage pieces were enzymatically treated to remove
matrix as previously described and plated at 4� 105 cells/cm2 for 2e3
days24 in Dulbecco’s Modified Eagle’s Medium (DMEM, Mediatech, Hern-
don, VA) with 10% fetal calf serum. Media were replaced with serum-free
media for 24 h, and subsequently exposed to serum-free media containing
1-mM ATP, 1-mM b-glycerophosphate, or no additives for 3e5 days. Media
were then removed, and the cell layer was scraped from the plate and
subjected to sFTIR analysis.
ACV MODEL
Cartilage pieces were sequentially exposed to hyaluronidase, trypsin,
trypsin inhibitor and collagenase as previously described15. After an
overnight incubation with 0.05% collagenase, the mixture was filtered,
centrifuged at 500 g for 15 min to remove cells, then at 37,000 g for
15 min to remove large cell fragments and organelles. The supernatant
was then centrifuged at 120,000 g for 60 min to pellet the ACV fraction.
Protein concentrations were determined by the Lowry assay25. The ACV-
containing pellet was re-suspended in DMEM to a protein concentration
of 12e15 mg/ml and mineralized with calcifying salt solution15 with or
without added ATP or b-glycerophosphate for 3e5 days. After incubation,
the crystal-containing pellets were centrifuged, and the supernatants were
removed.
HUMAN SYNOVIAL FLUIDS
Samples of human synovial fluids from discarded synovial fluid taken for
therapeutic or diagnostic purposes were obtained in accordance with the Insti-
tutional Review Board (IRB) at the Zablocki VA Medical Center. Five knee
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Fig. 3. Representative sFTIR spectra from porcine ACVs. ACVs
were incubated for 3e5 days with either 1-mM ATP or 1-mM b-glyc-
erophosphate. The crosshair identifies the point at which the image
was collected for each sample. The top sample spectrum was col-
lected a 15� 15-mm2 aperture as shown and 64 scans, while the bot-
tom sample spectrum was collected with a 12� 12-mm2 aperture as
shown and 64 scans. The data for the mCPPD standard and the
ACV-generated CPPD-like crystal have been multiplied by two and
offset below 1500 cm�1 to emphasize the comparison between the
spectra. The spectrum for the top sample is similar to BCP and

that the spectrum for the bottom sample is similar to mCPPD.
fluids containing CPPD crystals as determined by examination under polariz-
ing light microscopy were sealed to prevent drying, refrigerated for further use,
and used within 2 weeks of procurement. Two shoulder fluids from patients
with clinical Milwaukee Shoulder syndrome in which we expected to find
BCP crystals were similarly stored and used. Two knee fluids without CPPD
crystals from patients with OA were also examined for crystals using sFTIR.
FTIR STANDARDS
Standard spectra of BCP, calcium phosphate (tribasic), and calcium phos-
phate (monobasic) crystals were obtained from the National Institute for
Standards and Technology (NIST) Chemistry Webbook. Standard spectra
of triclinic and monoclinic CPPD and orthorhombic calcium pyrophosphate
trihydrate (O-CPPT) were obtained from the VA Crystal Identification Library
at the Zablocki VA Medical Center.

Spectra of synthetic crystals and cartilage proteoglycans were obtained
with a Bruker 66V FTIR spectrometer. Standard samples of crystals and/or
cartilage proteoglycans were compressed into Potassium Bromide (KBr)
pellets in a ratio of w19-mg KBr:1-mg Sample. The measurements were
taken in transmission with 8-cm�1 resolution and a 6-mm aperture. The infra-
red spectra were obtained, via mathematical methods available with all
commercial infrared spectrometers, from the interferogram (i.e., the raw
data), using a fourpoint apodization function, which is a mathematical
construct to reduce spectral artifacts.
sFTIR
Drop-sized samples from the porcine models or human synovial fluids
were applied to Kevley infrared (IR) reflective slides and examined with plain
and compensated polarized light microscopy to locate birefringent or dense
materials. These areas were photographed and marked so that the same
areas could be examined with sFTIR. The samples were measured with
A
b

s
o

r
b

a
n

c
e

3500 3000 2500 2000 1500 1000
Wavenumbers (cm-1)

Monolayer + ATP

Synovial Fluid

Fig. 4. Representative sFTIR spectra from porcine chondrocyte
monolayers compared to human synovial fluid. Chondrocyte mono-
layers were incubated with ATP for 72 h. A crystal from these
monolayers was compared with a CPPD crystal from human
synovial fluid. The chondrocyte spectrum was collected with
a 12� 12-mm2 aperture and 64 scans. The synovial fluid spectrum
was collected with a 10� 10-mm2 aperture and 64 scans. These

spectra are virtually identical.
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a Thermo Fisher Continuum FTIR microscope coupled to an infrared beam-
line at the Synchrotron Radiation Center (SRC) in Stoughton, WI. Measure-
ments were taken in reflectance, acquiring reflection-absorbance results.
The detector was a mercuryecadmium telluride detector. Both individual
spot-measurements and spatially resolved maps of the samples were mea-
sured with apertures ranging from 8� 8 to 15� 15-mm2. The number of
scans was selected to optimize the SNR. Visible images were collected con-
currently. The infrared results were visually compared to reference spectra of
multiple forms of calcium-containing crystals and cartilage proteoglycans.
Results
SYNOVIAL FLUID CPPD AND BCP CRYSTALS AND OTHER

CRYSTALLINE FORMS ARE EASILY IDENTIFIED BY sFTIR
Figure 1 displays the absorption standard spectra of BCP
and CPPD crystals, as well as visible images from synovial
fluid samples. The crosshairs in the visible images indicate
the points at which the measurements were obtained. The
top sample spectrum was collected with a 10� 10-mm2 ap-
erture and 64 scans, while the bottom sample spectrum
was collected with an 8� 8-mm2 aperture and 64 scans.
The infrared signatures produced by the synovial fluid crys-
tals clearly match the standard spectra of monoclinic BCP
and CPPD crystals, respectively.

Most CPPD crystals in synovial fluids were monoclinic in
morphology. Hydroxyapatite, rather than octacalcium phos-
phate or tricalcium phosphate accounted for the majority of
the BCP crystals in synovial fluid. Brushite (Ca (HPO4)
2H2O) was also identified in several synovial fluids
(Fig. 2). It occurred alone and in combination with CPPD.
As illustrated in Fig. 1, amine peaks at 1598e1710 cm�1,
and 1492e1598 cm�1 were commonly seen in association
with crystals, supporting the presence of protein in or
around crystals. The carbohydrate peak characteristic of
proteoglycans is typically seen at 950e1150 cm�1, 26, and
overlaps one of the signature CPPD peaks.
Monolayer 

BOTH CPPD AND BCP CRYSTALS ARE PRESENT

IN MINERALIZED ACV SAMPLES
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Two images of spectra from crystals formed by ACVs are
shown in Fig. 3, along with the standard infrared spectra for
BCP and CPPD crystals. The crosshair identifies the point
at which the image was collected for each sample. The
data for the CPPD standard and ACV-generated crystal
have been multiplied by two and offset below 1500 cm�1

to emphasize the comparison between the spectra. One
can see that the spectrum for the top sample is similar to
BCP and that the spectrum for the bottom sample is similar
to monoclinic CPPD (mCPPD). Thus, not surprisingly,
ACVs are capable of generating both types of crystals.
While both forms of crystals were seen in many samples
regardless of the phosphate source, CPPD predominated
in samples incubated with ATP, and BCP crystals in sam-
ples incubated with b-glycerophosphate. Brushite and whit-
lockite were also noted in these samples (data not shown).
As in synovial fluids, crystal-containing spectra in the ACV
preparations tended to include amine (protein) peaks.
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Wavenumbers (cm-1)

Fig. 5. Representative sFTIR spectrum from a crystal generated by
CPPD CRYSTALS IDENTICAL TO THOSE FOUND IN SYNOVIAL

FLUID ARE PRESENT IN CHONDROCYTE MONOLAYERS

INCUBATED WITH ATP
chondrocyte monolayers and a mixture of BCP, CPPD and proteo-
glycans. The sFTIR spectrum from a crystal generated by chondro-
cyte monolayers was compared with an FTIR spectrum generated
by a combination of 50% cartilage proteoglycans, 30% mCPPD,

and 20% BCP.
Figure 4 shows a comparison of spectra for CPPD
crystals produced in porcine chondrocyte monolayers and
CPPD crystals in human synovial fluid. The bottom spec-
trum was collected from chondrocyte monolayers incubated
with ATP. The top spectrum was collected from a sample of
human synovial fluid. Note that the infrared absorbance is
very similar for the samples from the two models. However,
one of characteristic features of the CPPD spectrum, the
asymmetric stretch of the phosphorous-oxygen-phospho-
rous (POP) functional group represented by the peak
seen at 916e972 cm�1, is slightly weaker on the crystal cre-
ated from the chondrocyte monolayers that those from
ACVs or synovial fluids. Whether this is related to the orien-
tation of the crystal at the time at which it was measured is
not clear, but this possibility is currently being investigated.

Unlike ACVs, chondrocyte monolayers do not appear to
generate pure BCP crystals. Although an exhaustive search
for BCP crystals was not undertaken, BCP mineral only
appeared in conjunction with CPPD mineral.
CRYSTALS IN PORCINE MODELS AND SYNOVIAL FLUIDS

CONTAIN MANY REGIONS THAT ARE MIXTURES

OF MINERAL AS WELL AS PROTEOGLYCANS
We also noted that many individual crystals contained
regions that did not exactly match either pure CPPD or
pure BCP crystals, and investigated the possibility that
these regions contained both CPPD and BCP minerals.
Figure 5 shows a typical spectrum from a crystal gener-
ated by chondrocyte monolayers treated with ATP. It
was almost an identical match to a combination of 30%
CPPD and 20% BCP (data not shown). However, we fre-
quently noted that the peak at 1134 cm�1 of CPPD in both
human and porcine samples was often blunted compared
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to the spectra generated by synthetic mCPPD crystals,
and wondered about the contribution of carbohydrate
moieties to this blunting. The carbohydrate peak is located
at 950e1150 cm�1 and might logically alter the CPPD
peak at 1134 cm�1. Figure 5 shows a spectrum from this
crystal compared with a standard spectrum generated
from a combination of 50% proteoglycans, 30% mCPPD,
and 20% BCP. The addition of the proteoglycan spectrum
resulted in blunting of the CPPD peak at 1134 cm�1 sim-
ilar to that seen in the biologic samples. These findings
support the presence of proteoglycans on or near CPPD
crystals and explain the altered morphology of this signa-
ture peak in many biologic samples.
THIS TECHNOLOGY ALLOWS FOR CAREFUL

MAPPING OF AN INDIVIDUAL CRYSTAL
BCP and CPPD crystals, as well as mixtures of the two,
were found within close proximity to each other. Figure 6 is
a map from a crystal generated by ACVs, while Fig. 7 is
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For the synovial fluid crystal (Fig. 7), profiles indicating
the absorbance of a particular functional group were
calculated on the map for different functional groups spe-
cific to BCP and CPPD, respectively. The functional group
used to identify BCP occupied the region from 985 to
1155 cm�1, and this is shown in panel A, while the func-
tional group specific to CPPD occupied the region from
1125 to 1201 cm�1 is shown in panel C. Panel B represents
the visible image. The map suggests superimposed or
adjacent areas of CPPD and BCP minerals in a single crys-
tal aggregate.
Discussion

We show here that sFTIR can be used to conclusively
identify CPPD and BCP crystals in low frequency, high
background samples such as biologic models. Clearly,
while this technology will remain a research tool, it has
important implications for our understanding of these crys-
tals in disease. sFTIR has many advantages over traditional
methods of crystal identification. In contrast to X-ray dif-
fraction and traditional FTIR, it requires minimal sample
preparation, limiting concerns about creating artifactual
crystals or further reducing already sparse crystals. It can
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These studies reinforce the validity of these in vitro
models of crystal formation and provide important informa-
tion about these models. While conventional FTIR studies
demonstrated the presence of CPPD and BCP crystals in
ACVs, until now, CPPD crystals in the monolayer model
had only been putatively identified18. The absence of pure
BCP crystals in the monolayer model also has important
implications about the process of crystal formation. This cor-
roborates previous studies showing that adding phosphate to
Point 6

BCP

t 5

P

Point 3

M-CPPD

t 2
A

b
s
o

r
b

a
n

c
e

A
b

s
o

r
b

a
n

c
e

Integrated over 1125-1201 cm-1
3 2 1

 B Panel C

000 1000
s (cm-1)

4000 3000 2000 1000
Wavenumbers (cm-1)

2000 1000

rs (cm-1)

4000 3000 2000 1000

Wavenumbers (cm-1)

ntire area were collected with a 12� 12-mm2 aperture and 64 scans
es in panels C and E are dominated by the absorbance of functional
. Red areas on the infrared images indicate high absorption intensity
e areas indicate low absorption and relative scarcity of the functional
a in a given pixel for the pixels identified in the infrared images. The
f CPPD and BCP in a single crystal aggregate.



1401Osteoarthritis and Cartilage Vol. 16, No. 11
chondrocyte monolayers produces no increase in calcifica-
tion, while adding ATP strongly stimulates mineralization13.
In contrast, ACVs mineralize with the addition of phosphate
or ATP. While monolayers and ACVs share similar mineral-
ization regulating enzymes, it is likely that the extracellular
matrix surrounding chondrocytes in monolayer culture per-
mits CPPD crystal formation in the presence of ATP, but
prevents BCP mineral from forming.

We were quite surprised at the numbers of crystal aggre-
gates that contained both CPPD and BCP minerals.
Although CPPD and BCP crystals commonly co-exist clini-
cally27, their relationship to one another etiologically and in
cartilage remains controversial. For example, in intact
human cartilage, Pritzker et al. found only two of 23 sam-
ples of cartilage with CPPD crystal deposits also contained
BCP crystals28. They based their findings on morphologic
differences between the crystal types as well as electron
diffraction results obtainable only with sufficient hydroxyap-
atite loads. Synovial fluid studies, however, suggest a much
more common coexistence, and Gordon et al. noted
frequent calcifications in cartilage affected by OA, but
were unable to further characterize these deposits29. While
a paucity of pure BCP crystals was certainly reflected in our
monolayer model, many CPPD crystals from both human
and porcine samples contained some BCP mineral. PPi
can inhibit BCP crystal growth30, but whether BCP crystals
can coat the surface and limit the size of CPPD crystals
remains unclear.

Crystals were always found in association with protein,
and in the case of CPPD crystals, proteoglycans were of-
ten present. The interference of the carbohydrate peak
with one of the characteristic spectral peaks of CPPD, ex-
plains why the peaks of biologic crystals may not exactly
match reference FTIR spectra. It also suggests that pro-
teoglycans, which are traditionally considered inhibitors
of mineralization, are found in close contact with crystals.
It is difficult to discern from our data whether crystals are
coated with protein or proteoglycan or these substances
are mixed within the crystal itself. Further work to deter-
mine the spatial relationships of crystal components by
measuring spectra in transmission rather than reflectance,
is ongoing in our laboratory and may yield this important
information.

Previous studies have used FTIR with or without
a synchrotron light source to investigate cartilage in OA.
For example, Bi et al. recently used a similar technique
without a synchrotron-generated beam to non-invasively
characterize changes in articular cartilage in a model of
rabbit OA26. They correlated collagen and proteoglycan
content with the area under certain peaks and could also
examine collagen degradation using a peak at 1338 cm�1.
Other studies have used sFTIR to measure mineral quantity
in bone as well as to determine the matrix to mineral ratio,
a key measure of bone ‘‘quality’’. It is hoped that the
application of this technique to crystals in situ in articular
cartilage may yield similar quantitative information as well
as important information about changes in the extracellular
matrix that may regulate mineral formation.

We were also able to document the presence of brushite
in both human and porcine samples. Brushite is a hydrated
form of calcium phosphate that has an inflammatory poten-
tial similar to that of hydroxyapatite31. It has also been pro-
posed to be one of the earliest forms of calcium phosphate
crystal generated during bone mineralization32 and may
appear similar radiographically to chondrocalcinosis33.
The role of brushite in arthritis and the conditions favoring
its formation certainly warrant further investigation.
Whitlockite was seen in the porcine samples but not in
synovial fluid samples, and the significance of this finding
is uncertain. Whitlockite and other magnesium-containing
calcium phosphate crystals are well documented in normal
and osteoarthritic articular cartilage34, and recently have
been seen in human intervertebral discs alone and in asso-
ciation with CPPD crystals35. They are less inflammatory
then non-magnesium-containing calcium crystals36. These
interesting crystals are also found in cases of metastatic
pulmonary calcification complicating end stage renal dis-
ease37, as well as in other forms of pathologic calcification38.

In summary, we show here that sFTIR can be used to
identify small and sparse calcium-containing crystals in
models of crystal formation as well as in human synovial
fluids. Brushite and whitlockite were identified in these
samples. These findings reinforce the frequent occurrence
of both CPPD and BCP crystals in a single crystal aggre-
gate. They emphasize the common association of crystals
with proteins and proteoglycan and validate the monolayer
model of CPPD crystal formation. Further application of this
exciting technology should give us additional information
about these important crystals.
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