
J. LOGIC PROGRAMMING 1988:5:277-342 271

THE TRANSPARENT PROLOG MACHINE (TPM):
AN EXECUTION MODEL AND GRAPHICAL DEBUGGER
FOR LOGIC PROGRAMMING*

MARC EISENSTADT AND MIKE BRAYSHAW

D An augmented AND/OR tree representation of logic programs is presented
as the basis for an advanced graphical tracing and debugging facility for
PROLOG. An extension of our earlier work on “retrospective zooming”,
this representation offers several distinct advantages over existing tracing
and debugging facilities: (1) it naturally incorporates traditional AND/OR

trees and Byrd box models (call/exit/fail/redo procedural models) as
special cases; (2) it can be run in slow-motion, close-up mode for novices or
high-speed, long-distance mode for experts with no attendant conceptual
change; (3) it serves as the uniform basis for textbook material, video-based
teaching material, and an advanced user interface for experienced PROLOG
programmers; (4) it tells the truth about clause head matching and deals
correctly with the cut. One of the key insights underlying the work is the
realization that it is possible to display an execution space of several
thousand nodes in a meaningful way on a modem graphics workstation. By
enhancing AND/OR trees to include “status boxes” rather than simple
“nodes”, it is possible to display both a long-distance view of execution and
the full details of clause-head matching. Graphical “collapsing” techniques
enable the model to deal with user-defined abstractions, higher-order predi-
cates such as setof, and definite-clause grammars. The current implementa-
tion runs on modern graphics workstations and is written in PROLOG. a

1. INTRODUCTION

The need for clear and consistent models of program execution has received great
attention not only from the human-computer interaction community (e.g. [7]), but
also from the software engineering and AI communities (e.g. [18,24,25]). The

Address correspondence to Marc Eisenstadt, Human Cognition Research Laboratory, The Open
University, Milton Keynes MK7 6AA, U.K.

Received 20 December 1986; accepted 23 October 1987.
*We gratefully acknowledge the support of the U.K. Science and Engineering Research Council

(grant nos. GR/C/69344 and GR/E/2333.3). Work is continuing on this project under an Alvey
research contract shared with Expert Systems International, Ltd.

THE JOURNAL OF LOGIC PROGRAMMING

QElsevier Science Publishing Co., Inc., 1938

655 Ave. of the Americas, New York, NY 10010 0743-1066/88/$3.50

278 MARCEISENSTADTANDMIKEBRAYSHAW

benefits of such models are both pedagogical and practical: the whole
development/debugging cycle can be streamlined when the programmer is equipped
with facilities for clearly visualizing and monitoring program execution.

Logic programming is no exception, although to date most of the emphasis on
debugging logic programs has been placed either on a deep understanding of the
declarative semantics (e.g. [26,21,16]) or reasoning about the rationale underlying
the debugging process [20]. Attempts to build software engineering environments in
which PROLOG is embedded (e.g. [15,13]) have resulted in facilities which encour-
age a clean top-down programming style reinforced either by shell commands or by
a syntax-directed editor, but which are nevertheless strongly wedded to the “glass-
teletype” environment in which they were conceived. Despite the import of these
studies, PROLOG programmers today are still confined in their daily practice to a
rather tedious view of program execution obtained by using the built-in “spy” trace
packages available in most implementations. Our belief is that declarative debug-

ging can most fruitfully be incorporated within the scope of a larger logic-program-
ming environment such as that proposed in the remainder of this paper. We
concentrate on the procedural side of PROLOG, because (for better or worse) that
is the weak link in the program development and debugging cycle for both new
students and experienced users, and therefore is worthy of at least some short-term
remedial attention.

Bundy and his colleagues at the University of Edinburgh have provided an
excellent account of the many tradeoffs involved in trying to develop a good
“PROLOG story” which could be used both for teaching PROLOG and for
providing a view of execution in the context of writing and debugging large
PROLOG programs [l, 191. The basic tenet of the “Edinburgh Stories” school, as
we shall call it, is that an AND/OR tree provides the best overall account of what is
happening during PROLOG execution, but that it needs to be combined with a view
of the database and a resolution table to explicate the links to the user’s original
code and to the all-important variable instantiations which occur during execution.
The Edinburgh Stories account argues that although there is not normally enough
room to show the execution of very large programs, this might be possible through
the principled use of multiple-window displays.

The problem of designing a purpose-built graphical tracer for PROLOG pro-
grams was addressed by Dewar and Cleary [8]. Their system attempts to provide an
intuitive “zooming” facility for examining PROLOG execution in detail. Although
it incorporates a very nice display of clause-head selection and the active goal-sub-
goal hierarchy, it suffers from four deficiencies:

(1)

(2)

Every goal invocation involves a complete replication of the icons depicting
the relevant portion of the database. Although zooming techniques can
render these very small, the space they occupy rapidly grows out of all
proportion to their importance in understanding the behavior of the running
program. For example, the execution of a simple grandfather&Y) example
(eight facts, two rules) fills the screen, whereas a practical tracer needs to be
able to display thousands of nodes at a time and have them meaningfully
visible.

The logical structure of the AND/OR tree, acknowledged by Dewar and
Clear-y to be important, is sacrificed for practical reasons. It is a commonly
held view that an AND/OR tree would be “nice”, but that it is “too

THE TRANSPARENT PROLOG MACHINE 279

(3)

(4)

impractical”. Below we show how our notation overcomes such practical
restrictions, thereby maintaining the logical clarity of an AND/OR tree.

The mapping between the user’s source code and the running invocations is
sacrificed in order to provide a concise display, including user-defined icons.
This is a difficult tradeoff. The user-defined aspects of the display are very
important, but we feel that it is critical to have the terms which appear in the
display reflect precisely the terms which the user wrote in the original
program.

The actual implementation runs too slowly to be used on anything other than
“toy” examples. Although we are in complete sympathy with the need to

pursue important theoretical and design issues within the realms of small test
examples, we feel very strongly that solutions to toy problems simply do not
scale up to the enormous size of serious logic-programming applications.
Large-scale problems are themselves therefore of fundamental importance to
work of the type described herein.

Rajan’s work [23] is an inspiring attempt to “Cell the truth” about PROLOG
execution, and to do so in a way which conforms to the way the user has written his
or her own code. Rajan’s single-stepper works its way through code by highlighting
relevant portions in the database at the appropriate moments, and by instantiating
clause bodies in their entirety “in place” in the code being traced. By showing
unification in painstaking detail, a clear account of execution can be presented to
novices. However, Rajan’s single-stepper doesn’t fully show variable renaming.
Although this was not necessary for the class of beginners he was addressing, it is
essential for users of the system we are developing. Moreover, the execution spaces
for such a textually derived system are inherently small. Our efforts at displaying
“slow motion” unification are analogous to (and influenced by) Rajan’s, but we
depart from his emphasis (1) on textually derived displays and (2) the need to
highlight source code in its original edit window. Regarding (l), we move strongly in
the direction of high-resolution graphical displays to show “execution space” trees.
As far as (2) is concerned, we leave it up to the user to inspect source code (in an
on-screen window, if so desired), and instead allow inspection of the detailed
aspects of unification by user-initiated request at specific nodes in the execution
tree.

Our own earlier work [lo, 111 and the work of Plummer [22] concentrated on
enhancing the “Byrd box” execution model [3] to the point where it would give
more precise symptomatic information so that the programmer could home in more
readily on trouble spots. In [ll] we added a top-level supervisory program which
could detect characteristic “symptom clusters” produced behind the scenes by the
trace package in order to spot bugs. The current effort is an attempt to provide a
significant boost to the practical debugging of very large programs by highly
experienced PROLOG programmers. The underlying philosophy of “retrospective
zooming” introduced in [ll] still applies, but now we apply the modern graphical
techniques which the earlier work only hinted at. Moreover, our approach incorpo-
rates ideas gained from teaching introductory PROLOG, and thereby provides
facilities in a clear and consistent manner so that they are useful to experts and
novices alike.

The work described herein starts with two premises: (1) it is essential to show the
full execution space of large PROLOG programs; (2) it is essential to base a tracing

280 MARCEISENSTADTANDMIKEBRAYSHAW

package on an “extended execution model” which discriminates between clause-head
matching and clause-body execution. We have stuck with these two premises, partly
because of the challenge of resolving their underlying contradiction: premise (1)
involves a global view of things, while premise (2) involves a very close-up view. Our
aim has been to reconcile these differences without losing the advantages provided
by either premise. We feel strongly that different levels of detail (i.e. different grain
sizes of analysis) involve different conceptual views of what is happening, and
therefore a simple “aerial view/close-up zoom” facility (such as that used in the
tracer of [8]) does not provide a magical solution, particularly when programs other
than toy examples are involved. It is nevertheless possible to accommodate both
premises. The key insights which enable this accommodation, and which drive the
whole of the work described in this paper, are the following:

It is possible to display an execution space involving thousands of nodes on
today’s graphics workstations.

When a PROLOG programmer is debugging a program which he or she has

personally been developing over a period of weeks or months, an overall
graphical view of the execution space of that program is highly meaningful to
that programmer, because it conveys its own gestalt. (We have a strong hunch
that this is true up to a limit of several thousand nodes, although this needs to
be tested empirically.)

The concept of a “node” in a traditional AND/OR tree is needlessly impover-
ished. With just a few enhancements, and for a very small computational
overhead, a simple node can become a “status box” which concisely encapsu-
lates a goal’s history, including detailed clause-head matching information.

The traditional AND/OR tree does not reveal the difference between one clause
containing a disjunction and two separate clauses. More specifically, the
distinction between clause head and clause body is not shown in AND/ OR

trees, despite the overwhelming importance of the head/body distinction in
the debugging of PROLOG programs. A minor notational variant enables us

to overcome this problem.

Section 2 describes the underlying principles involved in the design and develop-
ment of our view of PROLOG execution, which we dub the “transparent PROLOG
machine” (TPM). TPM serves as the basis for our own textbook and video material
[12] as well as providing the underlying execution model for our graphics tracer. To
illustrate TPM notation, test cases taken from Pain and Bundy [19], Bundy et al.
[1,2], and Coombs and Stell [6] are presented. Details of the running user environ-
ment are presented in Section 3. Section 4 presents a series of worked examples,
namely, a small expert system, a database manipulation program, and a simple
programming-language compiler. Section 5 discusses TPM extensions to deal with
abstractions such as setof and definite-clause grammars. Concluding remarks are
given in Section 6. The account which follows presupposes that the reader is an
experienced PROLOG user.

2. THE TRANSPARENT PROLOG MACHINE: UNDERLYING PRINCIPLES

In this section we describe an idealized account of PROLOG execution. Our work
differs from the Edinburgh Stories school in three important respects: (1) in our

THE TRANSPARENT PROLOG MACHINE 281

clause counter FIGURE 1. A procedure status box.

close-up view we display much more detail about clause-head matching and unifica-
tion, but without sacrificing the basic clarity of an AND/OR tree representation; (2)
our long-distance view is consistent with our close-up one, and is not only suitable
for machine implementation, but also capable of displaying the execution of
enormous PROLOG programs; (3) we don’t require separate “resolution tables” or
“database” displays, although we naturally assume that in a modem PROLOG
environment the user can trivially display a window showing relevant source code.

2.1. The Procedure Status Box

We follow the common practice of using the name procedure to refer to the
collection of clauses defining a given relation (i.e. a functor of a certain arity). The
cornerstone of our notational convention, illustrated in Figure 1, is the procedure
status box. This box replaces the simple AND/OR tree “node” in our display of the
execution space. The upper part indicates the goal status, and informs us whether
the goal is currently being processed (a question mark), whether it has succeeded (a
tick, sometimes called a “check”), whether it has failed (a cross, sometimes called an
“X”), or whether an earlier success was followed by failure upon backtracking (a
tick/cross combination). The number in the lower half of the procedure status box
is a clause counter, which tells us which of several clauses for a given procedure is
currently being processed.

The small “legs” dangling down underneath the procedure status box are called
clause branches, and correspond one-for-one to the individual clauses constituting
the definition of a relation in the database. The leftmost branch corresponds to the
first clause, and the next branch corresponds to the second clause, etc.’ The small
boxes at the bottom of Figure 1 are clause status boxes, used to indicate the outcome
of processing of each individual clause. The clause status box may contain any of
the four symbols used to indicate the main goal status (question mark, tick, cross,
and tick/cross). Alternatively, a clause branch may simply terminate in a horizontal
“dead-end bar” when the head of that clause fails to unify with the current goal.

Let’s now observe the execution of a trivial PROLOG program in slow motion to
see how the procedure status box is used. Consider the database presented in
Figure 2.

Now suppose that the following query, corresponding to “Who eats rubbish?“, is
posed:

?-eats(X, rubbish).

‘In Matsumoto’s [17] empirical analysis of a sample of large PROLOG programs at the University of
Edinburgh, the average number of clauses per procedure was found to be 3.72. Our standard-size
procedure status box caters for 5 clauses, but can be expanded drastically using a convention discussed in
Section 2.3.

282 MARC EISENSTADT AND MIKE BRAYSHAW

eats(joe, hamburgers).
eats(fred,X). 5% fred eats anything
eats& bread). % everyone (actualIy anything) eats bread

FIGURE 2. Three clauses defining eats.

Figure 3(a)-(d) show the “innards” of execution. In Figure 3(a), we see the main
goal displayed alongside the procedure status box. The goal status symbol is a

question mark, there are three clause branches corresponding to the clauses in the
definition of eats, and the “0” indicates that no clauses have yet been inspected.
Whenever a clause is inspected, it is first copied, and any variables are renamed by
adding an appropriately numbered subscript. Then an attempt is made to unify the
head of that clause with the current goal. Figure 3(b) depicts the moment when
clause 1 of eats is inspected. The head of this clause fails to unify with the current
goal, so the first clause branch has just been marked with a horizontal dead-end bar.
Next, clause 2 is inspected, as shown in Figure 3(c). There are three important
things to note even in this simple example. Firstly, in the copy of clause 2 being
inspected, the variable X has been appropriately renamed by adding a subscript, so
that X, is distinct from the X in the query (which is, in essence, X,). Secondly, the
arrows in Figure 3(c) are unification arrows which form an intrinsic part of our
execution model. They indicate not only that X is instantiated to fred and X, is
instantiated to rubbish, but also (at a glance) that X is an output variable and Xi is
an input variable. Thirdly, the clause status box at this instant has a question mark
in it, meaning that the interpreter technically needs to pursue the body of this
clause. We can see that the clause is an ordinary PROLOG fact, and therefore
appears to have no body, but more formally it actually has the implicit body true,
which is trivially satisfiable. If there had been one or more subgoals in the body,

eals(X , rubbish)

eats(X , rubbish)

eats(joe , hamburgers)

eats(fred , X,)

eats(X , rubbish)

eats(fred , X,)

FIGURE 3. Four-step detailed execution snapshots, given
the new query ?- eats(X,rubbish): (a) Initial pending goal.
(b) A copy of clause 1 of eats is inspected, but the head
does not unify with the goal. (c) A copy of clause 2 is
inspected, and its head does unify, as shown. Variables in
clauses which are copied and inspected are automatically
renamed by adding an appropriately numbered subscript.
At this instant, the interpreter does not know that clause
2 is a winner. (d) End of processing. The clause status
box for clause 2 shows that it is a winner (trivially), and
thus the main goal wins.

THETRANSPARENTPROLOGMACHINE 283

then the interpreter would need to process the subgoal(s) in order to determine the
outcome of this particular clause.

Figure 3(d) shows the moment when processing is complete. The clause status
box for clause 2 has been marked with a tick. Precisely because there are no
descendants emanating from this clause status box, we can tell at a glance that this
was a trivial success, i.e. an ordinary PROLOG fact. The clause branches formally
correspond to disjunctive choices, so if any of them succeeds, the procedure as a
whole succeeds. Therefore, the goal status indicator becomes a tick as well, indicat-
ing that the goal has succeeded.

The four-step unification sequence depicted in Figure 3(a)-(d) is of most use to
us in teaching PROLOG. Once this account has been shown to students (both in
textual form and in an animation on our accompanying video material), we ask
them to fill in the details in empty status boxes alongside various examples. Because
such details are not normally of interest to experienced PROLOG programmers, our
graphical tracing package presents “final snapshot views” corresponding to that of

Figure 3(d), with the other details being made available upon request.

2.2. AORTA Diagrams

AND/OR trees are a frequently used and highly expressive way of describing the
execution of logic programs, and PROLOG programs in particular. An investigation
of notational formalisms by Bundy and his colleagues at the University of Edin-
burgh (e.g. [19]) concluded that AND/OR trees offered the greatest potential in terms
of clarity of explanation, but that they suffered from several deficiencies, as
summarised here:

(1)
(2)

(3)

(4)

(5)

(6)

It is not immediately clear when a call has been successful.

It is difficult to see what subgoals are outstanding at any moment: the current
goal is not immediately obvious.

The output substitution is not clearly displayed, but must be calculated by
combining the unifiers along the winning branches.

To keep the different environments of recursive calls clear, the variables have
to be renamed: their origins are not always clear.

There is no direct link to the clauses in the database.

In the general case, it is complicated to see which parts of the tree should be
scribbled out by the cut.

We were motivated by this account to try to improve matters. We reasoned that
the “node” in a traditional AND/OR tree was a needlessly impoverished representa-
tion, and that by enriching it in appropriate ways we could have our cake and eat it
too. In other words, we wanted to have an intuitively clear AND/OR-Style account of
execution while providing all the details that a traditional AND/OR tree leaves out.

The missing link is precisely the procedure status box described in Section 2.1.
These boxes can be used in place of simple AND/OR tree nodes, with the clause
branches representing OR choices, and subgoal branches (borrowed from the stan-
dard AND/OR-tree notation) representing AND “siblings", i.e. conjunctions of sub-

goals. The combination has led us to refer to our diagrams as AORTA diagrams

284 MARCEISENSTADTANDMIKEBRAYSHAW

fun(X) :- red(X), car(X).
fun(X) :- blue(X), bike(X).

red(apple_ 1).
red(block_ 1).
red(car_27).

car(desoto_48).
car(edsel_57).

blue(flower_3).
blue(glass_9).
blue(honda_81).

bike&is_8).
bike(my_bike).
bike(honda_81).

FIGURE 4. Ether red cars or blue bikes are “fun”.

(AND/OR tree, augmented). Consider the program presented in Figure 4, which
corresponds intuitively to the notion that either red cars or blue bikes are “fun”.

Figure 5 shows an AORTA diagram depicting the full search space for any queries
of the form ?- fun(X). For ease of reference, we have labeled two of the clause
branches Cl and C2. The line linking the clause status box for clause branch Cl to
the procedure status box for the goal red(X,) is called a subgoal brunch. The
horizontal bar linking subgoal branches is called a conjunction bar, and is the
convention adopted in traditional ~~~/o~-tree notation.

We use a family metaphor to describe the lineage of goals, and speak of primary
goals as mother goals and their subgoals as daughter goals. Daughter goals linked
together by a conjunction bar, e.g. red(X,) and car(X,), are full-fledged sisters.
Subgoals blue&) and bike(X,) are sisters of one another, but they have a diflerent
lineage from that of red(X,) and car(X,), because blue(X,) and bike(X,) are
actually part of a different clause (labelled as clause C2). Metaphorically, we can
model this relationship by attributing different paternity to each different clause. In
other words, the clause heads of Cl and C2 represent different fathers for the
different groups of children. Thus, the head of C2 is a stepfather of car(X,), and

FIGURE 5. A sample AORTA diagram, showing the full search space for fun(X).

?
fun(x)

0

W X,) cart X,) blue(X,) bike(

0 0 0 0

I I I I I I I I I I I.

x2)

THETRANSPARENTPROLOGMACHINE 285

older@, Y) :-
ape& Agem,
age(Y, AgeOf%
AgeOfX > AgeOfY.

age(john, 27).
age(tom, 18).
age(sue, 24).

?- older(john, sue).

yes

FIGURE 6. Definitions of older and age, and a sample query and solution.

car(X,) and blue(X,) are stepsisters. To reflect the chronology of execution, we also
note that red(X,) is an older sister of car(X,), because the goal red(X,) was “born”
first. Analogously, we refer to the head of C2 as a future stepfather of car(X,). This

metaphor will come in handy when we describe the extralogical meaning of the cut.
Rather than show the full search space for PROLOG programs, our model

concerns itself with only the execution space, i.e. those goals and subgoals which are
actually attempted during the processing of a given query. When a given procedure
has alternative clauses which are never inspected during a particular execution, these
are simply left as dangling clause branches to provide a visually meaningful context
in which to view the whole execution space. Consider the program and sample
interaction shown in Figure 6.

Figure 7 shows the AORTA diagram corresponding to the final snapshot of
execution. The small italic letters a-i are used as time stumps to label the ticks,
dead-end bars, and crosses in the precise order in which they appear (these are for
the reader’s benefit only, and do not form part of the AORTA diagram itself).

Four additional notational conventions are introduced in Figure 7:
.

The circular status box. This is used to display system primitives in a distinctive
manner. In Figure 7, the primitive “ > ” appears this way.

FIGURE 7. Final snapshot after processing the query ?- older(john, sue). The small letters in
italics indicate the order in which the status symbols appeared. Primitives are displayed as
circular nodes.

286 MARCEISENSTADTANDMIKEBIUYSHAW

Right-angle arrows. When a variable appears more than once in a given clause, a
right-angle arrow can be used to show how its instantiation is “passed across”
from one occurrence to another. In Figure 7, we see that AgeOfX, is an output
variable where it first appears in the goal age(X,, AgeOfX,), and that it
becomes instantiated to 27 (just before timestamp a, in fact). In its second
appearance, AgeOfX, is already instantiated by the time the subgoal
AgeOfX,>AgeOfY, is processed (timestamp g), and notice that the right-angle
arrow shows it correctly as an input variable at this point. The variable
AgeOfY, is handled analogously, and shading is used just to keep the
matching pairs of arrows visually distinct.

Lozenges. In an AORTA diagram, every variable in principle has a little lozenge
underneath it which shows the variable’s current instantiation. In practice, we
adopt a “tidying” convention which allows us to omit a lozenge whenever
there is a straight up arrow or down arrow that lets us see the actual
instantiation at a glance. We have found that the lozenges are absolutely vital
for showing the details of unification, but that without the tidying convention
the diagrams become needlessly cluttered. In effect, the appearance of a
lozenge means that a given instantiation has come “from elsewhere”. We
deliberately avoid the inclusion of linking arrows depicting exactly what “from
elsewhere” means, because such arrows not only become unwieldy in complex
diagrams, but are actually redundant. The reader may wish to confirm that the
lozenge underneath the X, in the lower left-hand part of Figure 7 can only
mean that X, was an input variable in that situation, and therefore a down
arrow above that X, is unnecessary.

Headless arrows. This is actually a sideways “ = “,
direct match between two terms. This can also
uninstantiated variables share.

which conveniently shows a
be used to show when two

Because it is inherently difficult to capture the dynamic nature of AORTA

diagrams in a static medium such as printed text, the reader may find it useful to

work through timestamps a-i of Figure 7, and to confirm the following two

observations: (1) the lozenges containing john and 27 are filled (i.e., the variables Xi
and AgeOfX, are instantiated) just before the tick labeled with timestamp a
appears; (2) the lozenges containing sue and 24 are filled (i.e., the variables Y, and
AgeOfY, are instantiated) just between timestamps d and e. In our textual presen-
tation of AORTA diagrams [12], we include numerous execution snapshot sequences,
with unfilled lozenges left for our students to fill in. The replay facility of our
graphical tracer (as well as the video animation sequences used in our course
materials) allows us to show the dynamics of program execution in a more suitable
manner.

To illustrate the way AORTA diagrams clarify the workings of a simple recursive
program, consider the code shown in Figure 8 (this was used as a test-case program
by Bundy et al., [l]). Given the top-level query ?- location(lincoln, Where), the
AORTA diagram representing the moment of final subgoal invocation is shown in
Figure 9. Notice in particular the stack of pending question-mark symbols in the
status boxes, depicting the current focus of goals and subgoals, and also the
consistent renaming of variables using subscripts.

THE TRANSPARENT PROLOG MACHINE 287

location(Person, Place) :-
at(Pemn, Place).

hation(Perso~ Place) :-
visit(Person, Other),
location(Other, Place).

at(alan, rooml9).
at(jane, room54).
at(betty, office).

visit(dave, alan).
visit(janet, bet@).
visit(lincoln, dave).

FIGURE 8. location program from [l].

FIGURE 9. Final (deepest) subgoal invocation, given the query ?- location(lincoln, W), and
the code shown in Figure 8. Notice stack of pending question-mark symbols in status boxes.
A tick is just about to be placed in the very bottom box, depicting success on clause 1 of at.

~~location(lincoln , W)

IT
Place,)

l-t
Place,)
@ig

288 MARCEISENSTADTANDMIKEBRAYSHAW

At the moment of the snapshot in Figure 9, a tick is just about to be placed in the
very bottom box, indicating a trivial success (fact) on clause 1 of at. Remember
from our discussion of Figure 3(c) that unification of a goal with a clause head
precedes the processing of the clause body, even when that body contains a trivially
true subgoal, i.e. when it is an ordinary PROLOG fact. As Figure 9 shows, Place, is
instantiated to room19 at the bottom of the diagram. The lozenges and unification
arrows reveal that Place,, Place,, and W are also instantiated to room 19, in effect
at the same time as Place, is so instantiated. If we were to show the remaining eight
execution snapshots, we would see a succession of tick symbols “bubbling up” to
the top one snapshot at a time, but it is significant that the instantiation of W has
taken place eight snapshots before the final success.

Let’s now reconsider the first five disadvantages of AND/OR tree representations
raised by Pain and Bundy (and the way AORTA diagram notation overcomes these

disadvantages):

“It is not immediately clear when a call has been successful.” (This is instantly
clear in the AORTA diagram when a question-mark symbol turns into a tick.)

“It is difficult to see what subgoals are outstanding at any moment: the current
goal is not immediately obvious.” (The question-mark symbols in the AORTA

diagrams make this obvious.)

“The output substitution is not clearly displayed, but must be calculated by
combining the unifiers along the winning branches.” [The unification arrows
and lozenges show variable instantiation unambiguously; even more painstak-
ing detail can be revealed upon request, as shown in Figure 3(a)-(d).]

“To keep the different environments of recursive calls clear, the variables have to
be renamed: their origins are not always clear.” (AORTA diagrams use sub-
scripting of user-provided variable names, so that the origins are completely
clear. The objection implied by the use of the words “have to” is that it is
difficult or confusing to perform renaming; we find that renaming is not
actually difficult in practice, and moreover that renaming is essential to
conform to the “true story” of PROLOG execution.)

“There is no direct link to the clauses in the database.” (The AORTA status-box
clause counter provides precisely such a link, assuming of course that the user
bothers to obtain a code listing or display the code in a separate window on

the screen.)

The sixth disadvantage (display of cut details) is dealt with in Section 2.5. We
believe that the AORTA diagrams incorporate all of the best features of AND/OR

trees, and overcome all of their disadvantages. More complicated cases involving
unification of large terms, reinvocation of goals after backtracking, and the cut are
shown in the following sections.

2.3. Compound-Term Unification and Large Databases

It is essential for any logic-progr amming “execution” notation to cope adequately
with the intricacies of unification. The classic definition of append involves relatively
uninteresting flow of control but much more interesting unification. Figure 10

THETRANSPARENTPROLOGMACHINE 289

append(l I, Ys, Ys).

append([X I W,Ys, Ix I Zsl) :-
append(Xs, Ys, Zs).

?- append([a, b], [c, d], What).
What = [a, b, c, d]

FIGURE 10. Classic definition of append, and a sample query and solution.

presents both the definition and a sample query. Figure 11 shows the AORTA

execution snapshot at the moment this query has succeeded.
There are three subtleties to note about Figure 11:

Lists are expanded to show the head and tail explicitly just in those places where

A

_ _
it is critical to reveal the precise correspondence for unification purposes. For
instance, the first argument of the top level goal is displayed as [a 1 [b]] rather
than [a,b], thereby making the instantiations of X, and Xs, obvious at a
glance. Notice that the lozenge underneath the variable What similarly shows
the head and tail corresponding to the instantiations of X, and Zs,. The
lozenge beneath the topmost appearance of Zs, shows the list [b,c,d] in its
“beautified” form, because a deeper account of the internal structure is not
necessary there. However, where Zs, appears near the middle of the diagram,
a deeper account of the internal structure is necessary to show the instantia-
tions of X, and Zs,, so the lozenge is shown containing the list [b 1 [c, d] 1.

thin horizontal line is drawn at the base of unification arrows to encompass
entire compound terms (structures), thereby showing that it is the whole term
(rather than a single atom within it) which has been unified. For instance,
where Ys, is instantiated to [c,d] at the top of Figure 5, the line at the base of

d

%

append([a I [bl lkdl, WI&t)
yJ pyai)

2 aweWX,l %I. Ys, 3 IX,1 Zs, 1)

FIGURE 11. AORTA diagram corresponding
of the query ?- append([a, b], [c, d], What).

to solution

290 MARC EISENSTADT AND MIKE BRAYSHAW

london, new-York, Dep, ,Arr, , Days,)
FIGURE 12. Procedure status box used

london, new-York, 1000 ,1400,[m,t,w,th,f]) for large databases.

the relevant arrow tells us that it is the entire term [c,d] which is involved,
rather than just the atom c.

When an arrow points down from below (or up towards) a lozenge as a whole,
then the full content of that lozenge is involved. On the other hand, when part
of the arrow crosses the border of a lozenge, then only the particular term
being pointed from (or to) is involved. Consider, for example, the procedure
status box in the middle of Figure 11. The arrow pointing to Ys, emanates
from below the lozenge containing [c,d], and thus the entire term [c,d] is
involved. However, the arrow pointing down to X, crosses the border of a
lozenge, meaning that only the term b is involved. The term b happens to be
an atom, but in general a compound term might be involved, in which case a
horizontal line would be used at the base of the unification arrow to show the
extent of the term.

While compound terms can in general be dealt with in the manner described
above, the sheer size of certain terms in real PROLOG programs necessitates the
use of special collapsing conventions. We use hand-crafted (i.e. carefully positioned)
ellipsis dots (,‘ . . . “) in our textual displays when appropriate, and a special small
font in our graphical tracer implementation to show the unification of very large
terms. We also allow the user of our graphical tracer to specify an ellipsis template
for the display of large terms, which works much like PROLOG’s portray primitive
(except that it is accomplished with a pop-up dialogue box).

Large terms are not the only practical problem we have to face: large databases
may contain hundreds (or even thousands) of clauses in the definition of a given
procedure. To cater for this, we adopt a collapsing convention in the procedure
status box. In Figure 12, we show a hypothetical example of a goal used to access a
large database of airline flights containing 429 clauses of the predicate flight. Rather
than showing all clause branches, we only show the ones whose heads actually
unified with the goal2 The small numbers above each clause branch indicate
precisely which clauses were involved (in the example shown, only clauses 7, 59,121,
147, and 231 had heads which unified with the goal). All the ones which are omitted
would, had there been enough room, have been displayed as dead-end bars, because
the omitted ones are precisely those whose heads did not unify with the goal. The
large 429 in Figure 12 means that this particular procedure had 429 clauses
altogether. The 231 in the horizontal scroll box is the actual clause counter,
indicating that clause 231 is the one under consideration at the moment this

2The past tense is deliberate here. Our implementation normally does a “post-mortem” analysis, so
we know exactly which clause heads unified and which didn’t. It is also possible to run the system in
live-trace mode, as described in Section 3.

THETRANSPARENTPROLOGMACHINE 291

snapshot was taken. The scroll box moves sideways to reveal at a glance relatively
how far through the clauses the clause counter has gotten. In our graphical tracer
implementation, the scroll bar enables users to investigate the fate of any particular
clause, including those that failed to unify. Moreover, the precise clause(s) in the
appropriate source-code file may be brought up in a separate window by a single
mouse/menu operation. The procedure status box can be made wider as appropri-
ate when there are large numbers of clause heads which unified during execution.
Since the clause numbers on each clause branch are displayed sideways, the existing
procedure status boxes can cope with databases containing up to 9999 clauses per
procedure. As we show below, our graphical tracer implementation can cope
comfortably with several thousand procedure status boxes per execution run. We are
therefore satisfied that our design is highly robust for very large PROLOG pro-
grams.

2.4. Esoteric Flow of Control: Backtracking and Invocation Histories

The overall structure of AORTA diagrams (and indeed the AND/OR trees from which
they evolved) is inherently simple when the chronology of execution maps trivially
onto the left-to-right/top-to-bottom branching structure of the diagrams. In other
words, as long as control flow is straightforward, graphical representation of control
flow is also straightforward. In PROLOG, backtracking immediately alters this
trivial mapping. Nevertheless, AORTA diagrams offer a solution. A procedure status

box concisely encapsulates in one (two-dimensional) place the execution history of a
single invocation of a procedure. During the course of that invocation, all sorts of
things may happen, but the net result is maintained in the individual clause status
boxes. If a goal fails, it may be reinvoked later at what amounts to the same location
in the execution space. We can use a third dimension (i.e. depth) to cater for the
distinction between older and newer invocations at the same place in the execution
space. When there are two or more such invocations, the latest invocation appears
normally, but prior invocations are depicted schematically in the form of a shaded
ghost status box “underneath” the latest invocation. In effect, the ghost is just an
icon meaning “there was (at least) one prior invocation here”. In our textual
displays, the ghost just serves as a reminder, but in our graphical tracer implementa-
tion, the ghost is actually a mouse-sensitive item which allows the user to examine
what happened at the appropriate point in the execution history.

A good example involving multiple invocations comes from the work of Coombs
and Stell [6]. Figure 13(a) presents a program they used to investigate common
misconceptions held by novices about backtracking in PROLOG, and Figure 13(b)
presents an isomorph of the same program which we have devised for expository
purposes. Given the top-level query ?- desperate(Who), Figure 14(a)-(c) show
isolated snapshots at critical moments in the execution history. The first snapshot,
Figure 14(a), depicts the first time unemployed fails, attempting to prove unem-
ployed(joe).

It is important to understand the precise sequence of events which follows a
failure in PROLOG. Crucial distinctions may be made among the following three
events: (1) a goal failing, (2) a goal being “redone”, (3) a clause failing. Using the
family metaphor introduced to describe Figure 5 earlier, we can explain concretely

292 MARC EISENSTADT AND MIKE BRAYSHAW

a(X) :-
b0,
c(x).

b(X) :-
h(X, Y),
i(Y).

b(X) :-
h(Y, x),
i(Y).

h(l, 2).
h(3,4).

i(2).
i(3).

c(2).
c(4).

desperate(X) :-
name_dropper(X),
unemployed(X).

name-dropper(X) :-
knows(x, Y),
famous(Y).

name-dropper(X) :-
knows(Y, x),
famous(Y).

knows(joe, mick).
knows(charles, fred).

famous(mick).
famous(charles).

unemployed(mick).
unemployed(fred).

% We can call someone ‘desperate ’ if. .
4% they have a habit of name-dropping
4% and also happen to be out of work.

% someone is a ‘name_dropper ’ if. .
% they know someone..
% who is famous

% or, alternatively,
% if a famous person knows them

5% say, Mick Jagger
% say, Prince Charies

FIGURE 13. Tricky backtracking code from [6]: (a) original program; (b) isomorph, used for
expository purposes.

what happens in these three cases. In the outline which follows, we shall refer to the
state of processing shown in Figure 14(a) to highlight all of the salient points:

1. Failing a goal

1.1. Any variable instantiations which were due to the success of that
particular invocation of the goal become “undone”. In Figure 14(a) the
variable Xi stays instantiated to joe, because that instantiation was
brought about elsewhere.

1.2. The clause counter is set back to zero.

THE TRANSPARENT PROLOG MACHINE 293

knows(joe , mick)

name_dropper(X,)

name_dropper(X,)

knows(Y, , X,)

given code shown in FIGURE 14. Execution snapshot following query ?- desperate(Who),
Figure 13(b): (a) The moment of first failure of unemployed. (b) Just about to attempt second
clause of name_dropper. Notice that name-dropper is the current focus, and that famous had
a prior invocatron which succeeded but then failed on backtracking. The current invocation
of famous merely failed because no clause heads matched. (c) Final snapshot. Both famous
and unemployed failed on prior invocations.

294 MARC EISENSTADT AND MIKE BRAYSHAW

knows(c!harles, f&d)

Cc)

FIGURE 14. Continued

1.3. If an older sister of the failed goal exists, then that older sister is

“ redone”; if no older sister exists, the current clause fails. In Figure
14(a), the older sister is the goal name_dropper(X,), so that is the goal

which is just about to be redone.

2. Redoing a goal

2.1.

2.2.

2.3.

The net outcome is forgotten, i.e., the tick at the top of the box is
turned back into a question mark.
The youngest suruiuing heir of the goal in question is located. Working
through descendants of that goal, the youngest surviving heir will be
the rightmost and most deeply nested clause status box with a tick (or
just the procedure status box itself if it happens to be a system
primitive). Descendant status boxes traversed along the way also have
their status indicators converted from tick to question mark, to show
that their respective outcomes are once again “up for grabs”. In Figure
14(a), the youngest surviving heir is the clause status box for clause 1 of
famous. From a PROLOG implementor’s point of view, this is precisely
the “backtracking point”.
The tick on the youngest surviving heir is turned into a tick/cross
combination, i.e., a failure is forced, and the next clause is then
processed, as described next.

3. Failing a clause

3.1. Any variable instantiations which were due to that particular clause
succeeding become “undone”. Looking again at Figure 14(a), notice

THETRANSPARENTPROLOGMACHINE 295

3.2.

that even after we turn the tick for clause 1 of famous into a tick/cross,
as mandated by our “redo” model, the variable Y2 will stay instantiated

to mick, because that instantiation came from elsewhere.
If additional clauses for the current procedure exist, then an attempt is
made to find the next clause head which unifies with the current goal. If
one is found, the body of that clause is then processed. If none exist,
the current goal fails. In our example, the head of clause 2 of famous
does not unify with the goal famous(mick). There are no further clauses
for famous, so this invocation of famous fails.

Let’s continue to work through the processing. We provide only a verbal
description of the microstructure of events in between Figure 14(a) and (b), because
it would require a large number of AORTA snapshots (nine, in fact) to illustrate
diagrammatically. Following the failure of famous&), backtracking attempts to
redo the older sister, i.e. knows(X,,Y,). Clause 1 of knows receives a tick/cross, and
the instantiations of X, (and therefore X, and Who) are undone, as is the
instantiation of Yz. Clause 2 of knows, i.e. knows(charles,fred), succeeds, at which
point X, is instantiated to Charles and Y2 is instantiated to fred. A new invocation
of famous is then attempted for the goal famous(Y,), but famous(fred) doesn’t unify
with either of the two clauses of famous. Therefore, famous(Y,) fails, and backtrack-
ing to knows(X,,Y,) occurs again. Now clause 2 of knows receives a tick/cross
combination, and X, and Yz are uninstantiated. There are no more clauses of knows
left to try, so knows(X,,Y,) fails, thereby failing the first clause of name-dropper.
Clause 2 of name dropper is then processed. The subscript counter is bumped up,
and the variables in this clause are renamed by subscripting them with a 3.

Figure 14(b) depicts the beginning of the processing of clause 2 of name-dropper.
We can see from the headless unification arrow that the variables X,, X,, and Who
share. The procedure status box for famous shows the result of its latest invocation:
both clauses failed to unify when Y2 was instantiated to fred. The ghost status box
partially hidden behind the procedure status box for famous indicates only that
there was a prior invocation of famous at that particular point in the execution

space. Each of the invocations shown corresponds to one of the former successes of
knows, indicated by the two tick/cross combinations in the clause status boxes for
knows(X,, Yz). Technically, each of the successes associated with knows(X,, Yz)
happened on a different OR choice, and since these correspond to different clause
branches, they can be displayed appropriately as belonging to the fate of a single
invocation of the knows procedure. Therefore a ghost status box is not necessary for
knows. The goal famous&) has been invoked twice at the same point in the search
space, and therefore requires a ghost status box to show the former invocation.

The final execution snapshot is shown in Figure 14(c). Notice the new ghost
status boxes for unemployed(X,) and famous(k;), indicating failure on prior invoca-
tions of the respective goals. In the case of unemployed, the ghost invocation is the
one we witnessed in Figure 14(a) following the initial success of name_dropper(X,),
when X, was instantiated to joe. In the case of famous&), the ghost invocation was
due to the initial success of clause 1 of knows, i.e. knows(joe,mick), nested as a
subgoal within clause 2 of name-dropper. At that point, Y3 would have been
instantiated to joe, so neither of the two clauses of famous could have unified with
famous(Y& In our graphical tracer implementation, if any goal has more than one

296 MARCEISENSTADTANDMIKEBRAYSHAW

prior invocation (still indicated by a single ghost status box), it is possible for the
user to step through them individually by mouse-clicking on the ghost. This rewinds
the execution replay to the time point when the previous invocation occurred. The
previous invocation may of course have its own ghost (i.e. an even earlier invoca-
tion), which in turn will be selectable by the user. An alternative method is to
reobserve the complete execution sequence from the beginning, using the fast-for-
ward and single-step capabilities described in Section 3.

2.5. The Cut

In addition to handling multiple invocations of a goal, the other major extralogical
control problem to deal with is the cut. Using AORTA diagram notation, this is
surprisingly easy. Bearing in mind that the cut is itself a subgoal which has ancestors
and (typically) siblings, the following three things happen when a cut is encoun-
tered:

(1) older sister goals and their descendants are “frozen” (enshrouded in a small

cloud which makes them unalterable on backtracking)

(2) upcoming clause branches of the cut’s mother goal are chopped (future
stepfathers are eliminated).

(3) the cut succeeds, just like any ordinary PROLOG goal.

To illustrate the way AORTA diagrams deal with the cut, Figure 15 presents a
small program and sample interaction contrived to illustrate a large number of
AORTA diagram features in a small space. The program depicts the circumstances in
which some X has a party. Figure 16 shows the AORTA diagram corresponding to the

final snapshot of execution.
We can see in Figure 16 that happy succeeded initially on clause 1, but unification

with either clause of birthday was not possible. This failure caused the backtracking
into swimming, which itself failed upon backtracking (no further clauses to attempt),
as indicated by the tick/cross combination appearing in the top of its status box.
This is also the case with the ! goal, displayed as a circular node just as any system
primitive would be. Notice the frozen cloud3 around the cut’s older sisters hot and
humid, and the scissors-plus-jagged-edge icon showing the elimination of the re-
maining clause branches under the procedure status box of the parent goal happy.
The parent’s failure is further indicated by the tick/cross in the top part of its status
box. The failure of clause 1 of party led to clause 2 being attempted. The friends
goal succeeded on clause 1, i.e. friends(tom,john), but sad failed in its first invoca-
tion. Upon backtracking, friends succeeded on the second clause, namely
friends(tom,sam), and a brand new invocation of the sad goal occurred; hence the
ghost status box showing the previous invocation of sad. We can also see in Figure
16 that X, was instantiated to tom, Y3 was instantiated to sam, and this instantiation
was passed to the goal sad. The goal sad(Y,), with Ys instantiated to sam, matched

‘Our convention is that the frozen cloud is shown in light gray when it first occurs, and in darkened
gray once an attempt has been made to backtrack into it.

THE TRANSPARENT PROLOG MACHINE 297

Partyco-
bw(W9
birthday(X).

PartyCQ-
friends(X, Y),
sad(Y).

haPPY(x):-
hot,
humid,
I
&mming(X).

hapPy(X):-
cloudy,
watching_tv(X).

happy(X):-
cloudy,
having-fun(X).

cloudy.

humid.

hot.

having_fun(tom).
having_fun(sam).

swimming(john).
swimming(sam).

watching_tv(john).

sad(bill).
sad(Sam).

birthday(tom).
birthday(sam).

friends(tom, john).
friends(tom, sam).

?- party(Name)
Name = sam

% party if happy & birthday

% or to cheer up sad friend

% X is happy provided that..
% it’s hot
% and it’s humid
% but only if it’s also the case that. .
% X is swimming

FIGURE 15. Program contrived to illustrate a large number of AORTA diagram features in a
small space. The program specifies the circumstances in which X has a party.

directly against the fact sad(sam) in the database. This led to the success of the goal
sad and consequently of the main goal party, at precisely the moment captured in
Figure 16.

We conclude this section with a sample program taken from a working paper by
Bundy et al. [2], in which they discuss the extension of their proposed story to
impure aspects, including the cut. The program is shown in Figure 17. The program
is similar in many respects to Coombs and Stell’s. We use the original abstract
version, rather than presenting an intuitive isomorph as we did in Figure 13(b), to
avoid the criticism that the clarity of explanation rests entirely in the intuitive

298 MARCEISENSTADTANDMIKEBRAYSHAW

IhawW,)I v Ibifihdayo(,) I

x

i,

0

swimming

FIGURE 16. AORTA snapshot after processing the query ?- parly(Name), given the program
shown in Figure 15.

variant of the code rather than in the AORTA diagram itself. Figure 18(a) shows an
intermediate execution snapshot just at the moment that the goal c(X,) fails. Prior
to this, the cut (displayed as a circular node) placed a frozen cloud around its older
sister goals and their descendants (there is only one older sister in this case, d), then
eliminated additional clauses of c (scissors-and-jagged-edge icon over clause branch),
and succeeded. Then, with X, still instantiated to 1 from “up above”, goal e(X,)
failed, and an attempt was made to redo the cut. The cut, like many system
primitives, cannot be redone, so it has acquired a tick/cross combination symbol.
Backtracking would normally work its way down to clause 1 of goal h at this point,

FIGURE 17. Example with cut, from [2].

a(X) :- b(X),@0
b(l).
b(4).
d2 :- f&l, !, e(X).

:-
d(x) :- @i
d(X) :- h(X).
43).
f(4).
g(2).
h(l).

?- a(Ans).
Ans = 4

THE TRANSPARENT PROLOG MACHINE 299

FIGURE 18. Execution snapshot for query ?- a(Ans), given the code listed in Figure 17. (a)
The moment when c(X,) fails. e(X,) has failed, then backtracked into the cut, which could
not be redone, so the parent goal c(X,) fails because its remaining clauses have already been
eliminated for this invocation. (b) Final snapshot. Ghost status box for goal c means that
prior invocation of c failed.

but the frozen cloud makes all the goals enshrouded within it inaccessible to
backtracking, so therefore clause 1 of c is marked as a failure. Since additional
clauses of c were eliminated by the cut for this invocation, there are no alternatives
to process, so this entire invocation of c fails. It is precisely at this moment of failure
that the snapshot depicted in Figure 18(a) is taken.

The final execution snapshot is depicted in Figure 18(b). Once goal c fails, as in
Figure 18(a), backtracking turns the clause status box for clause 1 of b into a
tick/cross, and proceeds to clause 2. Following the success of clause 2 of b, and the
instantiation of X, and Am to 4, c(X,) is invoked for a second time. It passes
through some of the original execution space once again, in particular goals d, g,
and h. As these goals all represent second invocations at the same point in the
execution space, they are displayed with a ghost status box behind them to show the
first invocation. Because the first invocation of c spawned d’s siblings ! and e, these
are displayed as faded-out status boxes, meant to lie in the same deeper plane as the

300 MARCEISENSTADTANDMIKEBRAYSHAW

/
g(X,) ---I K W,)

(b)

FIGURE 18. Continued

ghost status boxes. The only difference between a ghost and a faded-out box is that
the faded-out boxes have no later invocations at the identical place in the execution
space.

Following the failure of clause 1 of c in this latest invocation, clause 2 of c finally

succeeds in processing the subgoal f(X,), with the variables X,, X,, and Ans already
having been instantiated to 4.

2.6. The Long-Distance View

A practical tracer poses an interesting set of constraints for the PROLOG envi-
ronment designer. The execution space for serious PROLOG programs can be
enormous, and may thwart the designer who has a nice “toy” paper-and-pencil
execution model. Our aim has been to make our AORTA diagram the heart of a
practical PROLOG tracing package aimed at experienced PROLOG users. The key
lies in the use of a large graphics display and a compressed long-distance view of the
AORTA diagram which can be zoomed in upon to provide the kind of detail
described earlier. The approach we employ here is to allow the expert user to view
the program as a whole from a distance in order to gain overall perspective, while at

THETRANSPARENTPROLOGMACHINE 301

pending successful
goal goal

LDV
(user-defined q
relation)

0

LDV
(system 0 0
primitive)

LDV
(compressed A
user code)

n

falled
succeeded, then

failed on
goal backtracking

II

0 0

A n

prior
invocation(s)
at this place

la

e

A

FIGURE 19. Correspondence between full AORTA procedure status boxes and collapsed LDV

status boxes, used to simulate color. Filled-in white = green (success); black shading = red
(failure); gray shading = pink (success followed by failure on backtracking). Triangles depict
“compressed” code, as described in Section 5.1. The reader may wish to confirm that the
“Byrd box” model used in many “spy” packages is a special case of our LDV.

the same time providing facilities for viewing program execution (control flow and
unification details) from up close. The user is provided with the ability to choose the

grain size at which he or she wishes to view the program.
The long-distance view (LDV) is designed to allow the user retrospectively to

analyse the behavior of a program. It shows the execution space of the program (as
opposed to the full search space) and the final outcome of attempted goals. This is
done by means of a schematized AND/OR tree in which individual nodes summarize
the outcome of a call to a particular procedure. Each node is actually a collapsed
procedure status box, showing just the top half of the status box as introduced in
Section 2.1. This collapsed box allows us the luxury of a global presentation without
sacrificing the important summary information provided by the AORTA diagrams.
Something must always be given up for the benefit of full global perspective, so we
eliminate the clause counter and detailed clause-head information of the AORTA

diagrams. This leaves us with a nearly traditional AND/OR tree, but with enriched
“nodes” in the form of collapsed status boxes.

To provide the most meaningful display of information in the smallest space, we
rely on color in our color-workstation implementation and on shading in our
black-and-white implementation. In the color display, ticks are green, indicating
success; crosses are red, indicating failure; and tick/cross combinations are pink
(“nearly red”). In the collapsed status box, it is sufficient to display just the color,
e.g. a very small fully shaded green box instead of a box with a hard-to-see green
tick in it. We simulate this in our black-and-white display using the correspondence
shown in Figure 19.

Given the program for party presented in Section 2.5, the LDV following process-
ing of the query ?- party(Name) would look like that shown in Figure 20.

The LDV diagram closely resembles the AORTA diagram shown in Figure 16.
However, it omits the specific information relating to the unification history of
individual clauses. It does still convey the success or failure of entire procedures

302 MARC EISENSTADT AND MIKE BRAYSHAW

FIGURE 20. Long-distance view
showing the execution of the query
?- party(Name). Compare with
Figure 16 to see the difference
between the LDV and AORTA views
of program execution. Note that
the frozen cloud over the cut’s
older sisters is retained even in
the LDV, and that a circular node
to the right of a frozen cloud is
always a cut.

and, more importantly, the success or failure of whole branches of the tree. The
more fine-grained information is omitted specifically to allow the user to view the
history of execution of an entire program, and to view it in perspective, seeing
branches of success or failure and the existence and scope of backtracking. It thus
provides the user with a global view of the program from which to direct subsequent
debugging in a top-down manner. The method for achieving this and the interactive
use of these tools are described in the following sections.

The succinct manner of the LDV representation also allows for the analysis of
very large PROLOG programs. Even if the execution space is too large to be
meaningfully displayed within a single graphics pane, the user is able to scroll
around the pane, selecting the area of the tree which he or she wishes to look at. A
facility to monitor which part of the tree is being observed ensures that the user
maintains a global perspective on the whole tree. An example of a tree for a more
realistic size of execution space is shown in Figure 21.

The execution space at the top of Figure 21 contains 310 nodes. Our current
display can cope comfortably with 2500 nodes at the same resolution as that
depicted in Figure 21. As an example of the powerful gestalt effects possible even in
an unlabeled diagram, notice first the cluster of three circular nodes (depicting

primitive calls) at the deepest level of nesting of the tree. Now try to find the same
pattern of three “circular sisters” elsewhere in the tree. Finally, put yourself in the

position of a programmer who has been developing the associated code over a
period of days, and has become accustomed to the repetition of certain familiar
shapes. Our point is that locating items of interest in the tree is surprisingly easy.
Such items of interest can, of course, be inspected more closely, even while
preserving a considerable amount of the surrounding context. In Section 3 we
describe our selective highlighting facility which enables the programmer to high-
light (by use of a characteristically eye-catching diamond surround) nodes in the
tree which satisfy some particular constraint or behavioral description.

3. A WORKING TPM ENVIRONMENT

So far we have described the AORTA and LDV Views of the program trace. The
following sections describe the way the user interacts with these descriptions, and
other facilities and tools contained within the TPM environment. Our current
implementation runs on 68020-based graphics workstations, and (except for some
user-interface hooks) is written entirely in PROLOG.

F
IG

U
R

E

21
.

A

la
rg

e
ex

ec
ut

io
n

sp
ac

e,

an
d

th
e

ac
co

m
pa

ny
in

g
fu

ll-
sc

re
en

vi

ew
po

rt

to

sh
ow

w

he
re

th

e
L

D
V

fi

ts

w
ith

in

th
e

fu
ll

sp
ac

e.

A
 s

el
ec

tiv
e-

hi
gh

lig
ht

in
g

fa
ci

lit
y

al
lo

w
s

th
e

us
er

to

 p
in

po
in

t
ite

m
s

of
 i

nt
er

es
t

in

th
e

di
sp

la
y.

304 MARCEISENSTADTANDMIKEBRAYSHAW

3.1. Initial Environment and Basic Facilities

The interaction with the TPM environment is essentially via mouse and menu
selection. A typical screen snapshot is shown in Figure 22. The resident
interpreter/compiler is seen on the right, together with a transcript of the user’s
interaction with it, in this instance in a window called Process_6. From this top level
the graphical tracer is invoked by the query ?- tpm, which results in the appearance
of the window we see on the left. The menu options, buttons, and mouse-sensitive
graphics areas are described briefly below, after which the major facilities are
treated in separate detail. In the summaries which follow, we start at the top
left-hand corner of Figure 22 and initially work downwards.

Selective Highlight Button. This button produces a pop-up form, the purpose of
which is to allow nodes in the LDV to be picked out by the user according to very
specific features. For instance, the user can request the highlighting of all (and only)
those calls to foo such that foo was a subgoal of bar and foo’s second argument was
instantiated to, say, [a, b, c (Xl. Additionally the selected argument may have a series
of constraints placed upon it. For example, we might ask for all occurrences of
predicate count when its second argument is instantiated to some value which is
greater than 10. It is also possible to apply a history filter, so that the user can
highlight a specified goal at, say, precisely the moment before it failed for the first
time, or just after its latest success.

Move Viewport. When the execution space is very large, as in Figure 21, the
full-screen LDV only shows part of the whole space. The reduced view at the top of
the screen shows the full space, and includes a moveable viewport which the user
can select to be the full-screen viewing region.

Replay Control Panel. The user may choose to replay execution from some
specific point in the execution history (or indeed from the very beginning), using the
options in the control panel. The individual controls are, reading from the top,
replay back to the beginning, single-step back, stop (this is highlighted in Figure 22)
single-step forward, and ordinary forward. To the left of them is the replay speed
bar, which changes the speed from slow to fast. Employing a video analogy, this
allows the function of the forward button to be changed arbitrarily from “creep”
through “play” to “fast forward”. The user can also move rapidly around the trace
history by using the selective-highlight pop-up form. These facilities are illustrated

in Section 4.

Show/Hide LDV Predicates. The check-box toggle changes the default for the
LDV either to display the predicate name alongside every LDV node, or not, as the
user wishes. The chosen option here is not to show the name, and this is reflected in
the LDV viewport shown on the right of this menu. The advantage of hiding
predicate names is that a fair amount of space can be saved when the LDV involves
very large execution trees. In any event, individual nodes can always be labeled at
the user’s discretion by a single mouse-button press.

Trace Menu. TPM supports three modes of program tracing. The first of these
(and the one selected in Figure 22) is called post-mortem. In post-mortem mode the

J
t.‘

.-

‘.“
.‘.

:::

:::
..:

,..

...
...

.

M
ow

 Vw
vn

or
t

f
H

w
hh

ah
t

[,:
f

$
RE

PL
AY

PA

NE
L

::.
 / $ 0 $

E
3

a E

q

:::
.. :::

:::
.

..‘
.‘.

‘.‘
.‘.

~
.~

.‘.

.‘.
‘.‘

;.~
.~

.“
.‘.

‘.’

3
H

id
e

LD
V

pr
ed

ic
at

es

7
Sh

ow

LD
V

pr
ed

ic
at

es

,‘.
‘,‘

.‘.
‘.‘

.~
.‘.

~
..‘

,‘,
~

~
~

T

ra
ce

i#

Po
st

-m
or

te
m

0
Li

ve

q

N
on

e

.,
., .,

 ., .,
 ..I

.
..Y

’.“
..

,..
‘.‘

.‘.
.~

.~
.~

~
.‘,

US
ER

Q

UE
RY

&+

M
ou

se
-R

lg
ht

(k
.4

3)

=
Q

UI
CK

ZO

O
M

(Ii

M
ou

se
-R

ig
ht

(M
3)

-

Q
UI

CK

LA
BE

L

C
an

ce
l

FI
G

U
R

E

22
.

T
PM

sc

re
en

 s
na

ps
ho

t.

R

T
P

M

‘H
E

T

R
A

N
S

P
A

R
E

N
T

P

R
O

L
O

G

M
A

C
H

IN
E

V
er

d
o

a

1.
2

1s
t.

O

ct
o

b
er

19

87

M
a

rc

I&
zu

ta
lt

&

 M
&

s
B

ra
y

sh
a

v

H
u

u

C
o

g
a

iu
o

r
R

e#
eu

ck

L
a

b
o

ra
to

ry

C
a

rt
ie

r
E

d
W

a
g

T
h

e
q

ea

U
a

Iv
er

st
ty

W
a

lt
o

r
II

a
U

M
Il

to
a

K

ef
le

s

es

-
tp

m
.

‘r
a

ce
d

?-

se

a
rc

h
_d

b
([

ty
re

s,
w

h
ee

ls
,h

u
b

~

.l
I

th
e

it
em

s
a

re

k
n

o
w

n

ca
re

h
_d

b
([

ty
re

s,
w

h
ee

ls
,h

u
b

ca
p

s]
~

ty
re

!

es

ra
ce

d

?-

se
a

rc
h

_d
b

([
ty

re
s,

w
h

ee
ls

,h
u

t

11
 t

h
e

it
em

s
a

re

k
n

o
w

n

?a
rc

h
_d

b
([

ty
re

s,
w

h
ee

ls
,h

u
b

ca
p

s]
J

ty
re

!

B
L

ra
ce

d

?-

se
a

rc
h

_d
b

([
ty

re
.s

,w
h

ee
ls

,h
u

b
~

11
 t

h
e

it
em

s
a

re

k
n

o
w

n

!a
rc

h
_d

b
([

ty
re

s,
w

h
ee

ls
,h

u
b

ea
p

]J
ty

re
s,

?S

_.
_-

306 MARCEISENSTADTANDMIKEBRAYSHAW

entire program is first run, its history stored for subsequent investigation, and then
the program trace displayed. The second mode is called liue. In live mode the trace
is drawn as the program executes, with the execution tree being scaled dynamically
as it is produced. Even in live mode, the full trace history is stored, so that all the
facilities available in post-mortem mode are still available in live mode up to
the point in the execution which the live trace has reached. On reaching the end of
the program, the trace produced is identical to that produced in post-mortem mode.
The final option is none, allowing the user to pose an untraced query to the raw
interpreter without interference from the tracer. TPM encourages the user to think
of program tracing as the norm during the program development/debugging cycle,
and to regard disabling of the tracer as the exceptional case.

User Queq. To pose a query, the user clicks on the “query” button. This
produces a prompt in the original PROLOG window into which a query can be
typed as normal. The “again” button runs the previous query again. How the
program is traced is determined by the trace mode (post-mortem, live, or none).

LDV Graphics Viewport and Popup Menu. The area to the right of the above
menus is the graphics area. It is here that the LDV and AORTA viewports are
displayed. In Figure 22, we see the LDV of some program displayed in the LDV

viewport. In this particular instance the LDV viewport also contains the LDV pop-up
menu, which is produced by pressing the left mouse button anywhere in this
viewport. The top two options toggle the function of the rightmost mouse button.
When quick zoom is enabled (as in the current snapshot), pressing the rightmost
mouse button causes the AORTA procedure status box of the node currently under
the mouse arrow to be shown in the short wide rectangle area (known as the
quick-zoom viewport) just above the LDV viewport. If the quick-label option is
chosen instead, the predicate name of the LDV node is drawn alongside it in the LDV
viewport. Zoom to AORTA produces not only the full procedure status box represen-
tation for the node in question, but also (to provide the most relevant contextual
setting), procedure status boxes for the chosen node’s mother goal, sisters, stepsis-
ters, and daughters. This three-ply close-up view, as we call it, is drawn in a new
viewport at the bottom of the screen, with the original LDV viewport shrinking to
accommodate it. Compress allows the user to treat the selected node as if it were a
system primitive, i.e. not bother to show its descendants. Expand allows the user to
view normally a previously compressed predicate. The cancel choice cancels the
pop-up menu.

Possible Bugs. Certain kinds of suspicious code can already be detected by our
old trace analyser Ill], and we are allowing for extensions to TPM which will assist
the user in analysing buggy code. These currently include extending the interface to
accommodate declarative debugging methods (e.g. [26]) and the development of
more advanced knowledge-based methods for bug recognition.

Consult. When selected, the user is prompted to type the name of a PROLOG
source-code file into a pop-up dialogue box. The file is then loaded into the current
environment.

THETRANSPARENTPROLOGMACHINE 307

Refresh. Refreshes the screen.

Redraw. Redraws the LDV display. This is useful when applied to traces pro-
duced and dynamically scaled when in live trace mode. The live LDV is transformed
into its post-mortem equivalent by applying the post-mortem tree-drawing algo-
rithm.

Exit. Leave the debugger and return to the PROLOG top level.

The following subsections describe the major features of the environment in more

detail.

3.2. Post-Mortem versus Live Tracing Modes

In post-mortem mode, the entire program is executed and then the program trace is
drawn up. The advantage of this approach is that it provides a particularly clear
overall perspective from which to embark on a sequence of replay, highlight, and
zoom, thereby helping the user to home in rapidly on the cause of a bug. The
disadvantages are that (1) the user may experience some delay before the display
appears, and (2) the user is not able to stop the program in mid execution and carry
out an interaction in the same way as in traditional tracers. In contrast, live mode
allows the user to run the program up to the point of a bug’s occurrence and debug
it from there. In live mode, once the user has stopped the program (which can be
done at any point), any of the other facilities (e.g. highlight, zoom, or replay) may be
used on the program up to the point the execution has so far reached, thereby
providing the best of both styles. A disadvantage of live mode is that the tree-draw-
ing algorithm can only provide the optimal layout after it knows which nodes have
been traversed, and therefore the algorithm is forced to provide its best guess in live
mode. Even so, the “redraw” button allows the user to request an optimized layout
of the tree up to the current execution point.

Experienced users of existing systems can also run an orthodox textually based
“Byrd box” debugger in the normal PROLOG window, which has all the function-
ality of today’s standard debuggers, but is upwardly compatible with TPM.

3.3. Selective Highlighting

Frequently a user will wish to ask queries of the form, “Where did a given variable
get instantiated to value X?” or “Where in the program does foo get called by bar?”
To address this problem we provide a selective-highlighting option in the LDV

display. This option allows the user to specify a given pattern, the name of a

predicate, the name of a variable, an instantiated variable term, or any combination
thereof, with the further option of specifying a particular parent goal for the pattern
to have, if required. The result of such a request is for the nodes that correspond to
such a description to be highlighted in the LDV diagram. For example, we can
request the highlighting of all occurrences of the predicate foo with a second
argument instantiated to the list [bar], and moreover just those occurrences when
foo was called by the mother goal gawp. The result of such a request will be for the

308 MARC EISENSTADT AND MIKE BRAYSHAW

GOAL functor :

PARENTrunctor :

CONSTRAINTS

arguments :

arguments :

1 CANCEL 1 I OK

FIGURE 23. The selective-highlight pop-up form.

specified items to be highlighted wherever this combination occurs in the LDV. The
facility allows for rapid location and tracing of given predicates or variables. It also
allows the user effectively to spy a variable or a particular variable instantiation and
observe its behavior retrospectively in the trace. Using concentric diamonds with
different line patterns (or colors in our colored display implementation), several
things can be highlighted at once, making it possible for example to consider all
occurrences of foo called by bar while also considering any 9” test called by gawp.
An example of a selective-highlight pop-up form is shown in Figure 23.

The convention is that all items are optional, each one providing a more tightly
specified restriction on the search for a matching goal in the LDV. All variable names
used in the selective-highlight pop-up selection form are local to the form. In other
words, arguments specified as (X, Y, [Z 1 Zsl) mean only that the goal in question had
precisely three arguments, and moreover that the third argument was a list, but the
goal itself need not have involved the precise variables X, Y, Z, and Zs. If the
precise variable name is significant, then it can be preceded with a quote symbol.
For instance, if the arguments are specified as (X, ’ Y, [’ Z 1 Zs]), then we are
interested in a three-argument goal as before, but this time the actual variables Y
and Z must have been used in the two positions indicated. If a quote precedes the
outermost brackets, e.g. ‘(X,Y, [Z [Zs]), then all of the arguments of the goal in
question must appear precisely as specified in order to be chosen for highlighting.

Typically, users will specify some particular goal to be highlighted by typing in
just the name of the principal functor. If the invocation(s) involving particular
variables or instantiations thereof are of interest, then the arguments can be
specified. In fact, it is possible to specify just the arguments and to leave the functor
field of the pop-up form unfilled. If the occurrence of a goal is only of interest
within the context of a particular parent goal, then the second line of the selective-
highlight pop-up form can be filled in as well. The third line (“constraints”) accepts
any valid PROLOG goal (or conjunction thereof), which is then regarded as an
additional filter to apply to the selection of nodes for highlighting. For instance,
Figure 24 depicts a filled-in selective-highlight form in which the user wants to see
just those occurrences of foo where foe’s second argument is instantiated to a list
whose length is greater than 5.

Underneath the constraints field in the selective-highlight form is a row of
check-box options which we call the history jilter. Formally, this is just another
constraint helping to determine which nodes get highlighted, but it is uniquely tied

THETRANSPARENTPROLOGMACHINE 309

GOAL functor : foe arguments : (X. Y, 2)

PARENTfuncror : arguments

CONSTRAINTS Y = [_ 1~ I, length(Y, L), L > 5

FIGURE 24. User is interested in all places where foo’s second argument is a list of length
greater than 5.

to the innards of the fine-grained execution history, and therefore not normally
accessible to the user from PROLOG. The user may be interested in all occurrences
of goals satisfying the top three lines of the selective-highlight form, in which case
the word “All” can be chosen, and the options to the right become disabled
(appearing in faded gray). Alternatively, the user may want to see just a certain
occurrence, e.g. only before the first failure of the specified goal. Eight possible
history filters are allowed (“before first success”, “before first failure”, “after latest
failure”, etc.). When a history filter is used, not only is the relevant node highlighted
in the display, but the LDV is actually “wound back” precisely to the specified
moment in the execution history (e.g. the execution snapshot one frame before the
goal in question failed for the first time). From this point, the user can replay
execution forwards or backwards, and zoom in to see unification details, as
described in Sections 3.4 and 3.5.

3.4. Replay

One of the major problems in telling the story of a program’s execution is explaining
reinstantiation of variables, multiple successes or failures, and other facets of
backtracking. We deal with this problem by providing a replay facility whereby the
user can see the dynamic execution of the program through the LDV execution space
or AORTA diagrams, clearly indicating failure and subsequent backtracking, re-
attempting of goals, subsequent failure, resatisfaction, or retries. The replay facility
thus allows the user to view the execution space at any given time, or at any
particular goal invocation. The user can control the speed of the replay, with slow
motion and single-step options being available.

Our replay capability is possible only because we store an exhaustive history of
the program’s execution. All of the replay facilities rely on this history, and
therefore the user can not make arbitrary changes to a program in the middle and
then attempt to carry on with the replay. If the user wishes to do this, then he or she
must use live mode and make the changes to the program after interrupting (and
then resuming) execution. Our experience is that being able to home in quickly on
buggy code is sufficiently rewarding to justify the storage overheads of history
preservation. In post-mortem trace mode, endless loops must be trapped by setting
a user-modifiable depth bound on recursive calls.

310 MARCEISENSTADTANDMIKEBRAYSHAW

Typically we would expect the replay facility to be used when the user is trying to
figure out why a piece of code behaved as it did in a particular instance and wishes
to step through it in simulated execution mode. This is true especially when the user,
in figuring out a complex case of backtracking, wishes to find out where final or
interim instantiations came about. The user can tell the program to stop at a
particular point, which may either be prespecified or else indicated via a mouse click
at any point during the dynamic replay. The utility thus allows the user effectively to
freeze the program at any step of its execution and use any of the other existing
tools on the program at that point, to step backwards or forwards one or more
“frames”, or to carry on with the execution.

Just before replay begins (i.e. following a selective highlighting choice or a

request to replay from the beginning), the LDV is “wound back” to the user-selected

point. The interesting thing about the LDV at this point is that it shows a “pre-

ordained” execution space, i.e. nodes in the tree which TPM guarantees will eventu-

ally form part of the execution space, but which at the moment of replay have yet to be

traversed. This provides a context within which the user can watch execution unfold,
and is considerably more constrained than the full-blown search space would be.
The replay control panel (which is always visible to the user) can then be used to
initiate the actual replay.

On a color display we use green nodes to represent success, and red ones failure.
Nodes on the active or pending goal stack are indicated by their distinctive
(thick-outline) shape. A typical replay scenario runs as follows: the “preordained”
LDV changes to indicate the initial area of execution, followed by nodes turning
green to indicate success. The execution tree is engulfed in a swathe of green, with
isolated patches of red denoting local failures. However, on encountering backtrack-
ing, the successful green nodes are retried and turn pink on failure. In the event of
extensive backtracking which eventually succeeds, we see large areas of green turn
to pink until finally the process stops and the green starts to regain its lost territory.
The whole process can be stopped and frozen at an instant to allow for closer

inspection by a mouse click.
What is most important here is for the gestalt to be right, i.e. for the display not

only to be informative, but also to feel like an accurate version of the underlying
PROLOG machine.

3.5. Zooming

Zooming links the LDV and AORTA representations by allowing the user to switch
between the two, enabling the user to zoom in on the unification history of
particular clauses from the LDV. In this way the complementary nature of the two
views is emphasized. The LDV allows the user to view the program from a clear
perspective, uncluttered by unwanted information, and explore its behavior in an
orderly, informed manner. The AORTA diagrams as described in Section 2 show the
overall success/failure information, as in the LDV, with the additional detail
regarding the finally invoked clause body, its matching head, and the other clauses
that matched, and their history. Switching from the LDV of a particular node to the
AORTA view thus increases the amount and type of information available to the user.
Not only is this AORTA view useful for teaching novices, but it also (in conjunction

THETRANSPARENTPROLOGMACHINE 311

with the LDV and zooming) allows the expert rapid and easy access to a large
amount of unification history and surrounding information.

The close-up view shows not only the focused-upon goal, but also that goal’s
mother, sisters, stepsisters, and daughters. It thus provides both clarity of detail and
some surrounding context within which to perform debugging. We call this our
three-ply close-up uiew, because three generations of goals are visible at once. The
replay facilities described in Section 3.4 are also available in the close-up view,
which means that the precise details of unification history can be observed if

necessary.
The collection of facilities mentioned above allows the user, whether novice or

expert, to be told much more detail about the history of program execution. Since
zooming and highlighting requests always begin with the LDV, all the perspective
information associated with the LDV is available at the point of choice, allowing the
user clearly to understand the context of the code which is being observed close up.
This approach removes the “forest-versus-trees” problem associated with conven-
tional “spy” packages. In such packages, once a “spied” goal is reached, it may no
longer be clear how one arrived there, how the instantiations of the variables have
been derived, what state the program is in, what side effects have taken place,
whether the program has only reached this point on backtracking, or (if a “redo” is
involved) the nature, cause, and scope of the backtracking involved. By the combi-
nation of the LDV, AORTA, zooming, selective highlighting, and replay facilities, the
user may more readily understand the state of the program, and thus arrive rapidly
at the source of problematic bugs.

Section 4 illustrates the facilities in greater detail by presenting worked examples.

4. WORKED EXAMPLES

To illustrate some of the features of our notation and the environment in which it is
embedded, we present several PROLOG programs and show how they are dealt
with by TPM. Sections 4.1-4.3 contain examples of code which we consider to be
representative of situations we have observed during the writing and debugging of
large PROLOG programs. Section 4.1 illustrates TPM’s long-distance-view and
selective-highlighting features, applied in the context of a small expert system.
Section 4.2 illustrates the role of selective highlighting and zooming in debugging a
database manipulation program. Finally, Section 4.3 illustrates how the replay
facility is used in debugging a soLo-to-PROLOG compiler.

4.1. An Expert System (Showing LDV, Quick Zoom, Quick Label,
and Selective Highlighting)

Although space precludes the discussion of extremely large programs, it is useful to
look in some detail at an expert-system example, devised originally by Winston [28]
and adapted for PROLOG by Coelho, Cotta, and Pereira [4]. Representative
portions of the code are shown in Figure 25. Only selected portions of the database
are shown, with ellipsis dots (“. . . “) indicating “more of the same type of code”.

Figure 26 shows the LDV of program execution given the query
?-recognition(animal). In this case, the user has typed a “yes” response to each

rufe(1, animal, mammal, [cl]).
rule(2, animal, mammal, [c2]).
. . .

rule(9, carnivore, cheetah, 1~12, ~131).
. . .

rule(l5, bird, albatross, [c21]).

/* recognition process: discover animal’s name */

recognition(X) :-
rule(N, X, Y, Z), discover(Z), found(nde),
conclusion(X, Y, N), recognition(Y),
abolish(fact, 2). 5% could have used retractall.

recognition(_) :-
retract(rule), write(’ Done. ’), nl.

recognition(_) :-
write(‘Don ’ ’ t know this animal. ’), nl, abofish(fact, 2).

found(X) :-
X! .

found(X) :-
assert(X).

/* discovey process */
discover([I).
discover([x 1 Y]) :-

ask(X), discover(Y).

ask(X) :- fact(X, yes), ! .
ask(X) :- fact(X, no), ! , fail.
ask(c1) :- write(‘has it hair?‘), nl, ! , complete(c1).
ask(c2) :- write(‘does it give milk’), nl, ! , complete(c2).
. . .

ask(c9) :- write(’ has it eyes pointing forward’), nl, ! , complete(c9).
. . .

ask(c21) :- write(‘is it a good flyer ‘), nl, ! , complete(c21).
complete(X) :-

read(Y), assert(fact(X,Y)), Y = yes.

/* conclusion of the recognition process */
conclusion(X, Y, N) :-

nl, tab(4), write(’ ---the ‘), write(X),
write(’ is a ‘), write(Y), write(’ by rule ‘),
write(N), nl, nl.

/* description process */
description(X) :-

rule(N,Y,X, Z), descriptionl(Y, L, [I),
conclusionl(X, L, Y, Z, N).

description(_) :-
nl, write(‘Don ’ ’ t know this animal. ‘), nl.

descrfptionl(Y, L, Ls) :-
rufec, X, Y, _), descriptionl(X, L, [x 1 Ls]).

description&L, L).

/* conclusions of the description process */
conclusionl(X, L, Y, Z, N) :-

nl, tite(’ a ‘), write(X), write(’ is an ’),
output(L), write(Y),
write(’ satisfying conditions: ’), nl,
output(Z), nf, write(‘by rule ’), write(N),
write(‘.‘).

output(] I).
output([A 1 B]) :- write(A), tab(l), output(B).

FIGURE 25. Code for Winston’s [28] expert system. This implementation is taken from
[4, pp. 47-521.

A

314 MARCEISENSTADTANDMIKEBRAYSHAW

discover([X 5d YSO])
Quick Zoom Viewport

FIGURE 27. Selective highlighting of the place where discover gets called with a multi-
element list as its argument. The highlighted node (shown with a diamond surrounding it) is
in the fourth tier of goals in the tree. The quick-zoom display at the top reveals that the list
passed in to discover at this point is in fact [c12,c13].

question, so that the conclusion was that the animal was a cheetah. The “show LDV

predicates” option is disabled; hence the tree is drawn without predicate names.
However, using the “quick label” option introduced in Section 3, we have labeled
individually a few nodes in the LDV for convenience. Notice the telltale shape of the
tree every time recognition is called.

From the code in Figure 25 we can see that a rule may lead to single or multiple
conclusions. The predicate that deals with this is discover. Suppose that we wish
only to focus on the time(s) when discover gets called with a multiitem list passed in
as its argument, i.e. when we are dealing with multiple conclusions. To highlight the
node we use the selective-highlight pop-up form and specify that we want to see the
predicate discover called with more than a one-element list e.g. [_, _ 1] anywhere
where this combination occurs. The node in the diamond in Figure 27 shows the
highlighted node. To quickly get a better view we change the function of the right
mouse button to quick zoom, using the LDV pop-up menu. If we now mouse-click on
the highlighted node, the result is shown in the quick-zoom viewport at the very top
of the graphics area. The result of the quick zoom has been to draw the AORTA

procedure status box for the highlighted node.
In this example, TPM was used just to confirm that the program was working as

expected. In the upcoming examples, we see how TPM can be used to home in on
buggy code.

THE TRANSPARENT PROLOG MACHINE 315

==ch_db(B IV, (x I W:-
jones(_, _, X, _, J,
storetiones, X),
search_db(T,Ts).

search_db(Ix) T], m 1 Ts]):-
jaeK,_,X_,_),
store(jacks, X),
search_db(T, Ts).

search_db(fi 1 T], p 1 Ts]):-
smitK_,Xs,_,_),
store(smiths, Xs),
search_db(T, Ts).

-rch_db(I I,[I):-
nl, write(‘All items are known ’), nl.

=reh._db([X IA, I I):-

% check to see if jones supplied the item

% place in new database
% check rest of the list

% test, manufacturer was jacks

% test, manufacturer was smiths

% empty list, success

% unknown item, indicate so and return list
% processed to date

write(’ List contains unknown item: ’), write(X), nl.

store(Manu, Item):-
manufacturer(Manu, Item). % in database already, then ignore

store(Manu, Item):-
assert(manufacturer(Manu, Item)). % otherwise assert new item.

FIGURE 28. A buggy program to check a list against a known database.

4.2. Database Manipulation (Showing Selective Highlighting and AORTA

Three-Ply Close- Up View)

Consider the following scenario: A prestored database describes the contents of a
warehouse, giving the reference number, order number, item, price, and quantity, all
referenced in terms of the supplier. The database looks like the following:

jones(1609, llla, tyres, 12.46,30).

jacks(1620,444, pumps, 23.00,15).
jacks(1621,477a, wheels, 9.99,5).

smiths(1640,370, hubcaps, 5.49,43).
. . .

Now suppose that since the original database was developed, things like the old
reference number, price, and quantity in stock have changed. What we wish now to
do is to take items which are currently in stock and check them against the old
database, writing out a new database of items and suppliers. If an item is new, i.e.
not in the old database, then the program will warn us that a new item has been
encountered and return the list of known items so far processed. Items that are
included in the new database already are ignored. The program to do this is
presented in Figure 28.

Given the query ?- search db([tyre, wheels, hubcaps], P), the program appears to
be working correctly, and the-following new facts are asserted:

manufacturer(jones, tyres).
manufacturer(jacks, wheels).
manufacturer(smiths, hubcaps).

316 MARC EISENSTADT AND MIKE BRAYSHAW

‘h search_db

FIGURE 29. LDV for the initial query ?- search_db([tyres, wheels, hubcaps], P), given the
program shown in Figure 28.

The LDV for this example is displayed in Figure 29. The option “show LDV

predicates” is enabled this time, so every LDV node is shown with its predicate
name. If the query is rerun, then the LDV is much the same except for the behaviour
of store. Figure 30 illustrates this.

So far the program has behaved as desired. Now, if we present it with the query
?- search_db([tyres, wheels, hubcap], P), we expect the program to print out ‘List
contains unknown item: hubcap ’ , and return with the truncated list P =
[tyres, wheels]. Unexpectedly, however, the query succeeds with P =
[tyres, wheels, hubcap]. That is, the program claims to know all the items, instead of
reporting that it contained an unknown item, namely hubcap. If we ask for an LDV

of the program, we shall get the same diagram as Figure 30. The program appears to

FIGURE 30. A second run of the query ?- search_db([tyres, wheels, hubcaps], P). The query
succeeds, with P = [tyres, wheels, hubcaps]. The figure differs from that in Figure 29 insofar as
the items in the list are already known by manufacturer and therefore are not asserted as new
facts.

THETRANSPARENTPROLOGMACHINE 317

search_db GOAL functor :

PARENTruncm :

CONSTRAINTS

arguments : ([hubcap I_] , _)

arguments :

FIGURE 31. We’ve asked to see the call to search_db highlighted when its first argument is
instantiated to some list beginning with hubcap, and we want to see all possible occurrences.

have behaved in the same manner. Since we are interested in what happened when
search_db came to deal with hubcap, we can use the selective-highlight facility to
show us everywhere in the tree search_db gets called with first argument instantiated
to [hubcap 1-1, as shown in Figure 31. Notice that, having set the history filter to
“all”, we now cannot choose before/after, first/latest, or success/failure; hence
these check-box options are shown faded, indicating that they are passive to mouse
clicks. The result of our highlighting request is shown in Figure 32.

Having located this node, we can ask TPM to zoom in on the goal. As Figure 33
shows, this gives us a three-ply view of the goal, with the chosen goal in the middle
of the AORTA diagram. The AORTA diagram initially appears with the arguments of
only the zoomed-upon node displayed, but by menu selection any other node may
also have its arguments displayed. In the snapshot shown in Figure 33 the procedure
status boxes for smiths and store have been selected for full-argument display. From
the AORTA diagram we can see that the program’s behavior prior to reaching the
chosen goal was entirely as predicted. Once attempting the goal, it tries to prove
clause 1 of search_db but fails. Clause 2 is then attempted, but this also fails. This is
what is expected. However, we can see that the first subgoal (smiths) in the body of

FIGURE 32. LDV of the query ?- search_db([tyres, wheels, hubcap], P), which unexpectedly
succeeded. The goal searcb_db with first argument [hubcap I_] is highlighted.

m search_db

318 MARCEISENSTADTANDMIKEBRAYSHAW

search_db([X, / T3] ,

smiths(1640,370.hubcaps,5.49,43)

Q ’ ’
I I I I t

FIGURE 33. Zoomed view of the goal search_db((hubcapl_],_) as chosen from the LDV.

clause 3 succeeds. Now notice what the unification arrows indicate for the smiths
goal. From these arrows we can clearly see that Xs, is not instantiated at invocation
time, but is instead an output variable which becomes instantiated to hubcaps. The
unification arrows also show us two other things. Firstly, the newly instantiated
variable Xs, passes its value to store, where store(smiths, hubcaps) succeeds. Sec-
ondly, notice for search_db how the instantiation of X,, the head of the input list
(argument l), is passed directly across to the head of the output list (argument 2),
but is not passed “down” to the first subgoal, smiths. This is why the variable Xs, is
uninstantiated when smiths is invoked. This is clearly not what was meant to
happen. The program should have tried to prove smiths(_, _, hubcap, _, _), but we see
that smiths was erroneously invoked with the uninstantiated variable Xs, as its third
argument. This argument subsequently got instantiated by unification with the first
fact found for smiths, namely smiths(_,_, hubcaps,_,_). By introducing a simple

lexical error (Xs instead of X in the first subgoal of clause 3 of search_db), we have
caused a wrong-mode problem: the third argument of smiths should be input only,
but is used accidentally as output. Given the users we have observed, we feel it is a
safe assumption that mode declarations for such a specialized piece of code would
not normally be made. The correct code for clause 3 of search_db is shown below:

search_db([X IT], [X 1 Ts]):-

smiths(_, _, X, _, _),
store(smiths, X),
search_db(T, Ts).

With this change, the call to smiths will now be smiths(_, _, hubcap,_,_), which will
(correctly) fail. TPM helped us to find bugs within two steps: the LDV highlight and

the zoom to the AORTA diagram. Many modem PROLOG implementations will find

THETRANSPARENTPROLOGMACHINE 319

TO INFECT /X/
1 NOTE /X/---HAS--->FLU
2 CHECK /X/---KISSES--->?Y

2A If present: INFECT *Y; EXIT
2B If absent: PRINT “ADIOS”; EXIT

DONE

infect(X) :-
assert(triple(X, has, flu)),
(triple(X, kisses, Y),

infect(Y)) ;
tite(’ adios ’).

FIGURE 34. SOLO code for “recursive forward propagation of a side effect”, and its
counterpart in PROLOG shown on the right.

and report as a warning any single occurrences of a variable in a clause. However,
the clause that was in error here contained all the variables twice. Indeed, the
pattern of their occurrence was entirely plausible, since smiths might have used an
output variable which was to be dealt with by store if the program semantics had
been different. Either way, the AORTA will show clearly the behavior of the program.

Interestingly, the more elegant general version of search_db, using “univ” to
generate the various predicates (smiths,jacks, etc.) at runtime, is just as easy to
debug with TPM. This is because both “univ” and call are displayed as circular
nodes, and every runtime instantiation built by “univ” and invoked by call gets its
own full-fledged status box in the display. An illustration of the replay facility run
on a simple compiler is shown in the next section.

4.3. A som-to-PROLOG Compiler (Showing Zooming and Replay)

SOLO is a simple semantic-network manipulation language developed for teaching
AI and cognitive modeling techniques to undergraduate psychology students [9].
SOLO procedures work by inspecting and side-effecting a global database which is a
labeled, directed graph. The primitives for storing, deleting, and retrieving relational
triples are called NOTE, FORGET, and CHECK. CHECK provides for conditional
branching depending upon its success, and also allows simple pattern matching.
These features are illustrated in Figure 34, which shows a SOLO procedure on the left
and its PROLOG counterpart on the right.

An interesting idiosyncrasy of SOLO is its imposition of “mental hygiene” on the
user by (1) prompting for both branches of conditional statements (If present and If
absent), and (2) obligatory use of the control-flow indicators EXIT and CONTINUE
at the end of each conditional branch. The point of the control-flow indicators is to
force the user to state whether the procedure is to continue (to the next main
numbered step in the program) or to exit (“return”) to the calling procedure. This in
turn eliminates many of the “falling through conditional branch” bugs to which
many novice programmers are prone.

SOLO has been superseded by PROLOG in our own teaching activities, but the
language itself remains useful as a case study for the implementation of parsers,
interpreters, compilers, syntax-directed editors, and user interfaces. The remainder
of the discussion in this section concentrates on the implementation of a SOLO-to-
PROLOG compiler, and the use of TPM to track down bugs therein.

Before proceeding, the reader may wish to verify that within any CHECK state-
ment, there are only four possible combinations of EXIT and CONTINUE control-flow
indicators, and that each combination results in a particular mapping of SOLO code

320 MARCEISENSTADTANDMIKEBRAYSHAW

TO JUDGE /X/
1 CHECK /X/---VOTES---XNDEPENDENT

LA If present: PRINT “AHA, A FREE THINKER”; CONTINUE
1B If absent: PRINT “UH OH: A PUPPET”; EXIT

2 PRINT “WHICH IS ALL RIGHT WITH ME”
DONE

FIGURE 35. SOLO code for “criticizing a person’s voting habits”.

onto PROLOG code. These combinations form the basis for the heart of the
compiler to be illustrated momentarily. Before getting into the details, let’s look at
another SOLO procedure called JUDGE (Figure 35). The equivalent PROLOG code
is shown in Figure 36. For expository purposes, we assume a mapping from SOLO

onto a single PROLOG clause containing embedded conjunctions and disjunctions.
In our actual implementation, we include a puriJer which converts potentially
awful embeddings into easier-to-follow multiclause definitions.

The details of the SOLO user interface and the front-end parsing routines
(developed in our laboratory by Tony Hasemer) are not relevant to the current
discussion, so we just take it as given that the SOLO program shown in Figure 35 can
be parsed into the internal representation (i.e. SOLO code depicted in the form of a
PROLOG structure) shown in Figure 37. We use the predicate solodef with two
arguments: the name of the SOLO procedure (including its arguments, if any), and a
list of lists containing the main steps of the SOLO procedure in order. CHECK

statements are represented as six-element lists containing:

(1) the key word check,

(2) the triple which needs to be looked up in the database,

(3) the action to perform if the triple is present,

(4) what to do after (3), i.e. exit or continue,

(5) the action to perform if the triple is absent,

(6) what to do after (5), i.e. exit or continue.

Converting a procedure from SOLO to PROLOG is now a matter of retrieving its
definition, and doing some pattern matching to detect the different possible
control-flow combinations involving CHECK. Below we show a workhorse predicate
called compile which does this. Our top-level driver is called convert. It uses an
auxiliary predicate called when enabled which conditionally (i.e. when an appropri-
ate enabled assertion is stored in the database) performs some action for the user’s
benefit, such as listing code on the terminal. When the appropriate body of the

FIGURE 36. PROLOG version of the SOLO code presented in Figure 35. Single-clause
definition is produced deliberately.

judge(X) :-
(triple(X, votes, independent),

write(‘aha: a free thinker’),
write(‘which is all right with me ‘)) ;

write(‘uh oh: a puppet’).

THETRANSPARENTPROLOGMACHINE 321

solodef(judge(X),
I [check,

[x, votes, independent],
[print, ‘aba: a free thinker’],
cant,
Iprint , ’ uh oh: a puppet ’ 1,
exit],

[print, ‘which is all right with me’]
I).

FIGURE 37. Internal representation of SOLO code shown in Figure 35. The parser itself is not
discussed in this paper.

definition is obtained by instantiating the variable PrologCode in compile, the head
and body are both asserted into the database. A listing of the top-level driver is
shown in Figure 38.

The workhorse predicate compile, defined in Figure 39, takes a list of SOLO

statements as its input (first argument), and returns a PROLOG clause body as its
output (second argument). Typically, the SOLO code for either the “if present”
branch (Prescode) or the “if absent” branch (Abscode) also needs to be converted to
PROLOG. There are two possibilities:

(1) A trivial conversion takes place via the predicate decode, which does such
things as convert NOTE FIDO ISA DOG to the PROLOG form assert(tri-

ple(fido, isa, dog)).

(2) The SOLO statement itself is part of a longer list of SOLO statements, which
can in turn be converted by means of a recursive call to compile. Which
branches of SOLO code run together to form a nice PROLOG conjunction is
uniquely determined by the four combinations of EXIT/CONTINUE, EXIT/

EXIT, CONTINUE/EXIT, and CONTINUE/CONTINUE.

The SOLO triple JOHN KISSES MARY is converted into the PROLOG form
triple(john, kisses, mary) rather than kisses(john, mary) for historical reasons, related

FIGURE 38. Top-level driver and auxiliary predicates for soLo-to-PROLOG compiler.

convert(Pred, PrologCode):-
solodef(F+ed, Solo&de), % retrieve dejnition
compile(SoloCode, Prolog&de), % map SOLO into PROLOG
when_enabled(show_code(Pd, Prolog&de)), % inform user
assert((Pred :- Prolog&de)), 9;; put new code in database
retract(compiling). % kill old Jag

when_enabled(ACIlON) :- % cute way to do actions conditionally
enabled(ACTION), % is there a jag in db allowing us to proceed?
call(ACTION). % then perform the action

when_enabled(ACTION). % no Jag? OK-default success (i.e. carry on)

enabled(show_code(_,_)). % Jag to run show-code when requested

show_code(Pred, Body):-
write(Pred), write(’ :- ‘), nl, tab(l2), tite(Body).

322 MARC EISENSTADT AND MIKE BRAYSHAW

% FOUR CHECK CASES: EXIT/CONT; EXIT/EXIT; CONT/EXIT; CONT/CONT:
compile([[cbeck, [A, B, C], Prescode, exit, Abscode, cent] (Rest], 5% EXIT/CONT

(triple(A, B, C), Thencode ; Elsecode)) :-
decode(Prescode, Tbencode),
compile([Abscode 1 Rest], Elsecode).

compile([[check, [A, B, C], Prescode, exit, Abscode, exit] (Rest], % EXIT/EXIT
(triple(A, B, C), Tbencode ; Elsecode)) :-

decode(Prescode, Tbencode),
decode(Abscode, Elsecode).

compile([[check, [A, B, C], Prescode, con& Abscode, exit] 1 Rest], 5% CONT/EXZT
(triple(A, B, CT), Tbencode ; Elsecode)) :-

compile((prescode I Rest], Tbencode),
decode(Abscode, Elsecode).

compile([[cbeck, [A,B, C],Prescode,cont,Abscode,cont] IRest], % CONT/CONT
((triple(A,B, C),Tbencode ; Elsecode) , Restcode)) :-

decode(Prescode, Tbencode),
decode(Abscode, Ekecode),
compile(Rest, Restcode).

% TWO cases not involving check at ail:
compile([[F (Args] I 01, (Fcode, Ocode)) :-

decode([F I Args], Fcode),
compile(0, Ocode).

compile([1, true).

% most general case
% convert first part of code trivially
% then recurse on rest

decode([1, true). % no code? convert to “true”
decode(Iprint, Arg], tite(Arg)). 5% map “print” onto “write”
decode([note, A, B, C], assert(triple(A, B, C))). % map “note ” onto “assert ”
decode([Any (Rest], PrologPred):- % FOO A B C in SOLO = [foo, a, 6, c]

PrologPred = . . [Any IRest]. % . . then try your luck with “foo(a, b, c)”

FIGURE 39. Workhorse predicates compile and decode.

to the need to access any part of the triple with equal ease. Figure 39 provides the
remainder of the code necessary to continue illustrating TPM in action.

The code shown in Figures 38 and 39 contains a bug. In response to the top level
query ?- convert(judge(P),L), not only does the goal fail, but also show-code
succeeds multiple times and prints out ten answers rather than just one. Worse still,
listing the clauses that now exist for judge, we find there are now twenty (nineteen of
which are totally meaningless). If we use TPM to run a post-mortem trace on the
same top-level query, it is immediately obvious what has happened. Figure 40 shows
the final LDV. On examination of the final LDV, we can see clearly how we came to

backtrack and produce multiple solutions. All the goals can be seen to have
succeeded at least once, but to have failed later on backtracking, with the exception
of retract(compiling), which is the youngest (rightmost) subgoal of the top-level goal
in Figure 40. To confirm this we can select the replay menu option to display the
tree precisely as it would have looked at the very point at which the goal
retract(compiling) was attempted. This is done using the selective-highlight pop-up
form, as shown in Figure 41.

Following the selective highlight shown in Figure 41, the LDV is automatically
“wound back” to the point where retract was initially invoked, as the history filter
in the selective-highlight pop-up form specified. The LDV at this point shows a
preordained execution space, i.e. nodes in the tree which TPM guarantees will

THE TRANSPARENT PROLOG MACHINE 323

retract

compile A =.. de CLrite

FIGURE 40. LDV depicting final snapshot of the execution of ?- convert(judge(P),L).

eventually form part of the execution space, but which at the moment of replay have
yet to be traversed. User-defined procedures in the preordained execution space are

shown as horizontal bars (“unvisited squares”), while system primitives in the
preordained execution space are shown as dots (“unvisited circles”). Figure 42
depicts the LDV execution snapshot precisely one frame before retract’s first failure.
Notice in Figure 42 that there are cases in which an ordinary white-square node in
the (already traversed portion of the) LDV has daughter nodes which are all in the
preordained execution space (i.e. small dots or horizontal bars). Such situations can
only mean that an early success was achieved trivially (i.e. a PROLOG fact), but
that later on in the execution history there will be further attempts (after backtrack-
ing) involving other clauses which will be spawning subgoals.

FIGURE 41. Using the selective-highlight pop-up-selection form to rewind the LDV to just
before retract failed. Strictly speaking, even the specification of the goal retract could have
been omitted, and TPM would find the point at which any goal failed for the first time.

GOAL /uncror : retract

PARENTfmror :

CONSTRAINTS

arguments :

arguments :

11 CANCEL 1 r OK II

324 MARC EISENSTADT AND MIKE BRAYSHAW

retract

FIGURE 42. LDV wound back to the point where retract(compiling) was first attempted.

Every goal invoked up to the execution snapshot shown in Figure 42 has
succeeded. If we were to quick-zoom on the uppermost node for compile, we would
see that it succeeded in the expected manner, i.e. with its second argument
instantiated to the entire body of the clause shown earlier in Figure 36. From this it
is clear that the retract(compiling) goal is the one at fault, and needs to be fixed.
However it is also informative to look at the subsequent backtracking that caused
the twenty clauses for judge to be produced. If we carry on from the point reached
in Figure 42, we can watch as first assert is reattempted, followed by when enabled,
which leads to both show-code and enabled being retried without success; Figure 43
takes the story up at this point.

As can be seen from Figure 43, all when-enabled’s previous subgoals have been
retried and failed. However, if we step to the next frame, shown in Figure 44(a), we
can see that it succeeds trivially (no further subgoals involved). This leads to assert
being retried, as shown in Figure 44(b). Figure 44(c) shows that indeed assert did
succeed a second time, depositing the same judge clause into the database. This
accounts for one extra occurrence in the final database. Next, retract(compiling) is
reattempted, as shown in Figure 44(d). It will fail again. Carrying on in single-step
mode from here would show that this time when enabled is not resatisfiable a
second time. As a consequence, compile would be reattempted. Figure 45(a) to (f)
show the initial consequences of this. Initially compile is retried, as shown in Figure
45(a), leading to an attempt to resatisfy decode as in Figure 45(b). The first time
through, decode had won trivially, via a fact. On retry, however, decode now calls a
hitherto unused primitive, ’ = . . ’ , and we begin to traverse a previously preordained

leaf of the execution tree. In Figure 45(c), notice how the thick-border nodes in the
LDV clearly indicate the size and contents of the goal stack at any given moment.
Figure 45(d) shows ’ = ..I succeeding, and in Figure 45(e) we see that decode wins

THE TRANSPARENT PROLOG MACHINE 325

retract

=.. Yecode-complle

FIGURE 43. LDV replayed to the point where when-enabled is being retried but the previous
clause’s subgoals, show-code and enabled, have failed on backtracking.

anew. Examination of the LDV node for decode via a quick zoom would show that
this success is due to clause 4. The final execution snapshot in this sequence, Figure
45(f), shows compile succeeding yet again.

Thus we can use the replay facility to trace and find the source of resatisfaction
of a backtracking program. From the above we can see that each time decode
initially wins on clause 2, it can be retried and succeed incorrectly a second time on
clause 4 (it also wins on clause 4 anyway in the example). If we were to follow this
through, we would also observe that when compile succeeds on clause 3, on
backtracking it may be resatisfied on clause 5, bringing back an incorrect answer.
The user could have prevented this behavior by placing “green” cuts in clauses 2
and 3 of decode, clause 1 of when-enabled, and clauses l-4 of compile, to indicate
their determinacy.

5. CODE ABSTBACTIONS

Even given our commitment to telling the truth about the procedural side of
PROLOG, and our belief in the power of gestalt patterns in viewing large execution
spaces, there are cases in which the user may not wish to know about certain
execution details, either because a lump of code is tried and tested, or because it is
not relevant to the problem at hand. What is frequently needed is a way of
abstracting away from some of the low-level details.

We have extended our notation to deal with four different kinds of abstractions
that we believe to be of central importance to the functioning of a practical trace

326 MARC EISENSTADT AND MIKE BRAYSHAW

retract

l =__ decode Ucompile l =._ Grita (&rite OnI UtabWwrite

(a)

fert

retract

” decode

l =..

(b)

FIGURE 44. Four successive LDV replay snapshots: (a) The goal when-enabled succeeds
trivially a second time when it is retried. (b) A new call is made to the assert goal. (c) The
assert goal succeeds. (d) A new call is made to the retract goal.

THE TRANSPARENT PROLOG MACHINE 327

retract

w

x complle Ydecode IecodeTmpile Uenabled 5 7 call

l =.. Yecode-compile

! =_.

l =.. (4

FIGURE 44. Continued

328 MARC EISENSTADT AND MIKE BRAYSHAW

retract

(a)

’ =.. l+lecade klcompile ’ =.. CLrite &rite bnl

(b)

-0 retract

FIGURE 45. Six more successive LDV replay snapshots: (a) compile is retried. (b) decode is
retried. (c) A new branch of the execution space: a primitive is attempted. (d) The primitive
succeeds. (e) decode is resatistiable and succeeds a second time. (f) compile is likewise
resatisfiable and also succeeds.

THE TRANSPARENT PROLOG MACHINE 329

decode %ompile

I A

aenabled

l =.. decode compile

‘m write l =.. !_$decode Ucompile

I
l =..

Cc)

’ =.. decode ‘-Compile

compile

l =..

(4

FIGURE 45. Continued

330 MARC EISENSTADT AND MIKE BRAYSHAW

retract

W

retract

FIGURE 45. Continued

THETRANSPARENTPROLOGMACHINE 331

package. These abstractions are itemized here, and then dealt with in detail in the
remainder of this section4

Compression: The user may wish to hide away inner details of code (as if it were
bundled inside a new system primitive), with the ability to expand the details
later if necessary. We add a new shape (triangle) to our LDV display to cater
for “compressed” code.

Higher-order predicates: For certain primitives such as call and not, it is neces-
sary to see how their arguments behave. This is not problematic, as we simply
need to display the goals that are invoked within call and not. In fact, Figures
42-45 included an example of a user-defined procedure, show_code, nested
inside call, and therefore displayed as a square node underneath a circular
node. More interesting is the behavior of collection-abstraction relations such
as bagof and setof. We introduce a new ghost lozenge to indicate the multiple
instantiations of a variable which occur during collection and mapping opera-
tions, and allow the intricacies of primitives such as setof to be displayed
concisely or in fine detail, as the user chooses.

Algorithmic control: Although we do not advocate the use of certain algorithmic
constructs such as “if-then-else” in logic programming, there are certainly
cases where users revert to it out of either habit or genuine need. Many
implementations of PROLOG support the notation A-X&C to mean “if A
then B else C”. We adopt a simple notational addition to our LDV display
which caters for this.

Definite-clause grammars: Many users wish to see the progression of parsing in
an intuitive way. Our LDV handles definite-clause grammars in just the way
they are written, allowing for terminal nodes in the grammar (i.e. words) to be
displayed on their own.

We now take up each of these abstractions in turn.

5. I. Compression

The LDV display can be simplified by the user on demand. The key concept here is
that of compression, which takes a segment of code and treats it as a black box
analogous to a system primitive, with the added virtue that it can be expanded later
if it turns out to be necessary to examine the details of execution. The user can do
this either by mouse/menu interaction after the display is already on the screen, or
else by placing directives to compress a goal in the source file alongside the relevant
predicate’s source-code definition. Using the latter method, the user is able to build
up over time a series of declarations next to the source code in a file about how to
view the program trace. A typical scenario might be for all previously written and
tested (and trusted) modules of a program to be compressed so that the user isn’t
bored with unwanted information in a debugging session. This will be of particular
value with very big programs, since it provides a way to focus on just the part of a
program of particular interest, e.g. the most recent, unfinished part.

4Some system primitives, such as setof, need to be redefined by us for behind-the-scenes execution in
order for our abstract representation to work.

332

I\ -

THETRANSPARENTPROLOGMACHINE 333

The user can instruct TPM to throw away information which would otherwise
allow retroactive expansion of compressed nodes. This option allows the user to
benefit from increased execution speed (since “compressed” goals can simply be
proved without additional tracer history storage overheads). Of course, the user
must weigh this benefit against the loss of potentially valuable debugging informa-
tion. In the case of well-tried and robust code the user may deem this worthwhile.

In Figure 46 we see the LDV display shown earlier in Figure 26 with the nodes
corresponding to invocations of conclusion and ask “compressed” into single
triangular-shaped nodes. The shading conventions for success, failure, etc., remain
consistent across all LDV nodes, regardless of shape. If the user chooses to expand
such compressed nodes, the previous LDV with the still-compressed nodes is pre-
served in a small viewport at the top of the display to provide some useful
contextual cues.

5.2. Higher-Order Predicates: setof

Higher-order predicates such as setof pose a particularly challenging problem to the
designer of a trace package. One could always “hand-code” setof, and then just
show the full blown details using TPM’s existing tracing facilities, or even use the

compress option described in Section 5.1. However, such a solution is not represen-
tative of the very abstraction which setof was designed to capture. Indeed, setof was
meant to liberate the user from the tedium of having to design and implement
low-level iteration/collection cliches by hand, so a brute-force trace of the hand-
coded implementation of setof would be something of a retrograde step.

Our solution is to use the concepts and notation we have already developed, but
to make it expressive at the appropriate level of abstraction. We shall use a single
piece of code and several different invocations of setof to illustrate the notation. The
code, shown in Figure 47, is meant to designate the nodes and links in an arbitrary
directed graph. Now consider the following query, which retrieves all node-node
links:

?- setof(X-Y, arc(X, Y), Ans).
Ans = [a-b, a-c, b-c, b-d, c-d]
x= -310
Y= -311

The AORTA diagram representation of the above interaction is shown in Figure 48.
Here are the important things to note about Figure 48:

The large arrow underneath the circle indicates that this particular higher-order
primitive obtains multiple solutions from its lower-order predicate (in this case
arc). The details of the execution of the lower-order predicate can be obtained

FIGURE 47. A database showing how nodes a, b, c, and d are linked in a directed graph.

da, W.
da, cl.
arc(b, c).
arc(c, d).
arc(b, d).

334 h4ARCEISENSTADTANDMIKEBRAYSHAW

) FIGURE 48. AORTA represen-
ta tie n 0 f setof(X-
Y, arc@, Y), Am), given the
database shown in Figure 47.

by clicking on this arrow, as shown later. The same notation (circle with
dangling arrow) is used in the LDV.

The variables X and Y are subscripted with an italic n and m, respectively,
whereas Ans is subscripted with a 1. This is to reflect the iteration abstraction
in which X~and Y run through numerous particular instantiations, all of which
are ultimately discarded. Am, in contrast, ends up with a single instantiation
which is accessible to the user.

The lozenges containing the b and the d reflect the latest instantiations chronolog-
ically, and are superimposed on top of ghost lozenges which show earlier
instantiations. Notice that b-d is not the last element of Ans, even though it
corresponds to the latest instantiations of X, and Y,,,, because setof sorts its
third argument. The ghost lozenges are designed to be mouse-sensitive, like
ghost status boxes, to make it possible for the user to step back through the
history of instantiations without having to inspect the details of the goals
invoked by setof (which in general can be arbitrarily complex).

The shadowy right-angle arrows are used to indicate that multiple instantiations
have “passed through” them. Different shading is used, as before, just to make
it easier to follow the fate of different variables. The flow indicated by the
arrows is significant. It indicates that the instantiations pass from the second
argument of setof into the first argument, which bundles them into a larger
term (in this case using the infix operator “-“). The bundled term is then
collected during iteration into the third argument of setof.

A special collection funnel is attached to the appropriate right-angle arrow to
represent the collection abstraction associated with the third argument of
&of.

A mouse click on the thick arrow beneath the large circle would yield the AORTA
snapshot shown in Figure 49. The significance of Figure 49 is that goals appearing
within setof are forced through their entire search space. That is why even clauses
which succeeded are ultimately depicted as failures (i.e. tick/cross combinations) in
the final execution snapshot.

The next query asks for the set of nodes which are linked to something:

?- setof(X, Y-arc& Y), Ans).
Ans = [a, b, c]
x= -312
Y= -313

In the above interaction, notice that the variable Y is existentially quantified.
Without that specification, there would be three separate answers obtainable,

THE TRANSPARENT PROLOG MACHINE 335

lr
)P Ans, 1

[a-b,a-c.b-c,b-d,c-d]

FIGURE 49. More fine-
grained view of exhaustive
search of are(X,Y), using the
same example as that shown
in Figure 48.

corresponding to the three different instantiations of Y, as the following interaction
shows:

?- setof@, arc@, Y), Ans).
Ans = [a]
Y=b;

Ans = Ia,b]
Y = c;

Ans = [b,c]
Y=d;
no

The AORTA diagram corresponding to the existentially-quantified query is shown in
Figure 50.

Had the existential quantifier notation not been used, Y would have received an
ordinary subscript, like Ans, reflecting its role as an ordinary variable which can
receive but a single instantiation. As shown in Figure 50, however, Y is subscripted
with an italic letter, indicating that it can run through numerous possible instantia-
tions.

Since the second argument of setof is an arbitrary (conjunction of) PROLOG
goal(s), it is possible to nest setof within setof. The following query uses this idea to
retrieve a set of “families”, i.e. nodes and all of the “children” (i.e. recipients of the
arc link) of each node:

?- setof(Pa-Kids, setof(K, arc(Pa, K), Kids), Ans).
Ans = [a-lb, c], b-[c, d], c-Id]]

setoft&, kAarc(X, , V,), Ans,)
b (-g@ ([a,b,cl

FIGURE 50. AORTA representation of

b

setof@, Y^arc(X, y), Am), given the
database shown in Figure 47.

336 MARCEISENSTADTANDMIKEBRAYSHAW

setof(Ps -Kids,,, ,setof(Kg ,arc(Ps

0 ._

FIGURE 51. Using setof within setof.

The AORTA representation of the above query is shown in Figure 51. Once again
special shadowy unification arrows are needed to indicate the multiplicity of
instantiations. This time, we use longer and shorter arrows to indicate the flow of
instantiations within and between the respective occurrences of setof. Notice the
two collection funnels, and the shadow on the innermost one indicating that this
collection itself occurs on more than one iteration.

5.3. Algorithmic Control: If-Then-Else

Whether or not it is a sensible way to write PROLOG code, many users revert to
using the syntax A->B; C to implement if-then-else algorithmic control. To illustrate
how this control variant is integrated into TPM, consider the problem of retrieving
the location of a database Jug whose setting depends upon the particular release of
software. In order to find a particular location for a flag, you need first to choose
one of several available versions of software. If that version is later than release 7
(say), then you look in a particular set of new locations stored in the database, else
you look at some standard default ones. Additionally, suppose that a given location
is only of use to you if its flag happens to be set to true. The code to find a good
location is shown in Figure 52.

Figure 53(a), (b) show the LDVS corresponding to the processing of the query
?- location(X). The sideways arrow between two subgoal branches separates the “if”
branch from the “then” branch, and the thickened tree branch indicates the
location of (possibly several conjoined) “then”s. The “then” branch is in turn
separated from the “else” branch as an ordinary disjunction. The sideways arrow
and thick line together show what amounts to an implicit “cut” in the “if-then-else”
construct. In Figure 53(a) we see the execution at the point where the goal
flag(5015,true) is about to be attempted. The figure shows that both the “if’ and
“then” branches have been successful. However, flag(5015,true) now fails, and
backtracking into the “then” branch does not produce any more successful clause
matches, so check-version fails (we do not retry the “if” because of the implicit
cut). Retrying version produces a different version number, which this time is prior
to release 8. Next, there is a new invocation of check-version. This time, the “if”
goal (7>7) fails, causing the “else” part of the conditional to be tried. Notice that
the “then” branch from the previous invocation of check-version is shown faded, as
appropriate for earlier invocations [cf. Figure 18(b)]. The “else” branch succeeds, so
check-version succeeds, as does the flag goal, and therefore the top-level goal
location(X) succeeds, with X = 3149, as depicted in Figure 53(b).

THE TRANSPARENT PROLOG MACHINE 337

location(Location):-
version(Release_numher), % choose a version
check_version(Releasnumher, Location), % look for locations
flag(X.ocation, true). % are they set to true?

‘% if you are using a release after version 7 then only look up new-location,
% else (i.e. a preview release) look in a set of default locations
check_version(Release, Location) :-

Release > 7 -> new_location(Release, Location);
default_location(Release, Location).

% available versions of the software
version@).
version(7).
version(10).

% locations after release 7, in the form (Release-Number, Location) pairs
new_location(9,1234).
new_location((l, 5015).

58 default locations for older releases of software
default_location(_, 3149). % release number ignored here
default_location(_, 3800).

% Jags, their locations, and settings
flag(1234, false).
flag(5015,false).
flag(3 149, true).
flag(3800, true).

FIGURE 52. Code to find a location for a hypothetical true flag, taking into account software
release versions.

5.4. Dejinite-Clause Grammars

PROLOG users who implement parsers frequently use the special grammar-rule
operator ’ -->I for writing definite-clause grammars (DCGs). Bear in mind that
DCG notation actually translates internally to ordinary PROLOG clauses, with two
extra arguments (reflecting the input word list consumed so far and the remainder to
be consumed). A DCG parse tree therefore looks to TPM just like any ordinary
execution-space tree, with two caveats: (1) in keeping with the expressiveness of
DCGs, the implicit extra arguments are not shown to the user, unless specially
requested; (2) terminal nodes of the grammar (words) are displayed as precisely that
-boldface words in the LDV with no accompanying status box.

Figure 54 depicts a simple context-free grammar used by Winograd [27], ex-
pressed in DCG notation. Figure 55 shows the LDV corresponding to processing of
the query ?- sentence([the, little, orange, rabbit, nibbled, a, cucumber, with, a, saw], [I).
The first argument reflects the input list, and the second argument reflects the list
meant to remain when the parse is successfully completed.

In the spirit of the work of Kahn [14], we have found that we can use TPM’s
replay facility to walk through both the parsing and generating of sentences in a
perspicuous manner. Figure 56 shows an LDV snapshot just after the generation of
the second of an infinite number of possible sentences obtained (in live-trace mode)
during backtracking using the grammar presented in Figure 54. Notice the use of

33% MARC EISENSTADT AND MIKE BRAYSHAW

FIGURE 53. LDV for execution of ?- location(x), given the code shown iu Figure 52: (a)
Snapshot at first invocation of the flag goal. (b) Final snapshot.

the strikethrough notation to indicate “succeeded earlier but failed upon backtrack-
ing” for terminal nodes of the grammar, ie. words.

6. CONCLUSIONS

Our aim has been to reconcile a global view of PROLOG program execution with
the truth about unification and clause selection. Moreover, we have wanted to
satisfy both the needs of novices learning PROLOG and the needs of expert
PROLOG users writing and debugging very large programs. These intentions have,

THETRANSPARENTPROLOGMACHINE 339

sentence --> np, vp.
np --> det, np2.
np --> np2.

np2 -4 noun.
np2 --> adj, np2.
np2 --> np2, pp.

pp 4 prep, np.

vp --> verb.
vp --> verb, np.
vp -3 verb, pp.

verb--> [nibbled].
verb --> [sings].
verb --> [saw].

noun --> [rabbit].
noun --> [cucumber].
noun --> [saw].

det --> [the].
det --> [a].

adj --> [orange].
adj --> Ilittle].

prep --> [with].

FIGURE 54. A simple context-free grammar expressed in DCG notation. The example is
taken from [27, pp. 1971.

in turn, led us along a pathway of “creative tension” to satisfy somewhat contradic-
tory constraints. The key ingredients of our approach have been (1) appreciation of
the power of gestalt patterns, (2) recognition of the need (and the ability) to display
thousands of nodes at a time, (3) enhancement of traditional AND/OR tree branches
with individual clause details, (4) enhancement of AND/OR tree nodes with goal
status boxes, and (5) ability to vary the type of detail being investigated with the
particular grain size, rather than using a physical zoom.

Our work has developed from both ends simultaneously. That is, we were
developing video-based teaching material for novice PROLOG programmers at the
same time as we were implementing graphics facilities for observing a 2- or
3-thousand-node search space. Only by forcing these two paths to converge could
we cater for the “upwardly mobile student” who learned about PROLOG in the
early phases and then went on to become a serious PROLOG programmer.

TPM lends itself immediately to visual representation of parallel logic programs.
In particular, the LDV diagrams should prove to be useful for monitoring the
simultaneous execution of hundreds, or even thousands, of subgoals. Debugging of
large parallel programs can be extremely difficult, and our intention is to expand our
representation to cope with problems of both real-time and retrospective display of
parallel execution.

An important motivating factor in all of our work has been the desire to build a
system that we were happy to use ourselves. Toward this end, we are now using

340 MARC EISENSTADT AND MIKE BRAYSHAW

_sentence

the

&10un #yep

T T A,*
rabbit cucumber with u u

"0""
a I

saw

FIGURE 55. Parse tree for the deliberately anomalous sentence [the, little,
bled, a, cucumber, with, a, saw].

orange, rabbit, nib-

n sentence

FIGURE 56. Snapshot during the generation
of multiple sentences using the grammar pre-
sented in Figure 54.

+iiM+A- sings

rabbit

THE TRANSPARENT PROLOG MACHINE 341

TPM as part of our regular work, and are in the midst of a project to make the
facilities described herein available in a practical, portable, and high-speed PROLOG
environment.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bundy, A., Pain, H., Bma, P., and Lynch, L., A Proposed Prolog Story, DA1 Research
Paper 283, Dept. of Artificial Intelligence, Univ. of Edinburgh, 1986.

Bundy, A., Pain, H., Bma, P., and Lynch, L., Impurities and the Proposed Prolog story,
DAI Research Paper Addendum, Dept. of Artificial Intelligence, Univ. of Edinburgh,
1986.

Byrd, L., Understanding the control flow of Prolog programs, in: S.-A. Tamlund (ed.),
Proceedings of the 1980 Logic Programming Workshop, 1980, pp. 127-138.

Coelho, H., Cotta, J. C., and Pereira, L. M., How to Soive it with Prolog. Laboratbrio
National de Enginharia Civil (Minestt%io da Habita@ e obras publicas), Lisbon, 1982.

Coombs, M. J., Hartley, R. T., and Stell, J. G., Debugging user conceptions of interpreta-
tion processes, in: Proceedings of the Fifth National Conference on ArtiJicial Intelligence
(AAAZ-86), Philadelphia, 1986.

Coombs, M. J. and Sell, J. G., A Model for Debugging Prolog by Symbolic Execution:
The Separation of Specification and Procedure, Research Report MMIGR137, Dept. of
Computer Science, Univ. of Strathclyde, 1985.

duBoulay, J. B. H., O’Shea, T., and Monk, J., The black box inside the glass box:
Presenting computing concepts to novices, Internal. J. Man-Machine Stud. 14(3):237-249
(1981).

Dewar, A. D. and Cleary, J. G., Graphical display of complex information within a
Prolog debugger, Internat. J. Man-Machine Stud. 25:503-521 (1986).

Eisenstadt, M., A user-friendly software environment for the novice programmer, Comm.
ACM 26, No. 12 (1983).

Eisenstadt, M., A powerful Prolog trace package, in: Proceedings of the Sixth European
Conference on Artificial Intelligence (ECAI-84), North-Holland, Amsterdam, 1984.

Eisenstadt, M., Retrospective zooming: A knowledge based tracing and debugging
methodology for logic programming, in: Proceedings of the Ninth International Joint
Conference on Artificial Intelligence (ZJCAZ-85), Morgan Kaufmann, Los Angeles, 1985.

Eisenstadt, M. (ed.), Intensive Prolog, Open University Press, Milton Keynes, U.K., 1988.

Francez, N., Goldenberg, S., Pinter, R. Y., Tiomkin, M., and Tsur, S., An environment
for logic programming, in: ACM Workshop on Software Engineering Environments, 1985,
pp. 179-190.

Kahn, K., A grammar kit for Prolog, in: M. Yazdani (ed.), New Horizons in Educational
Computing, Ellis Horwood, Chichester, U.K., 1984.

Komorowski, H. J. and Omori, S., A model and an implementation of a logic program-
ming environment, in: ACM Workshop on Software Engineering Environments, 1985, pp.
191-198.

Lloyd, J. W., Declarative Error Diagnosis, Technical Report 86/3, Dept. of Computer
Science, Univ. of Melbourne, 1986.

Matsumoto, H., A Static Analysis of Prolog Programs, Programming Systems Group
Note 24, AI Applications Inst., Univ. of Edinburgh, 1985.

Model, M., Monitoring System Behavior in a Complex Computational Environment,
Technical Report No. CSL-79-1, Xerox Palo Alto Research Center, 1979.

Pain, H. and Bundy, A., What stories should we tell novice Prolog programmers, in: R.
Hawley (ed.), Artificial Intelligence Programming Environments, Wiley, New York, 1987.

Pereira, L. M., Rational debugging in logic programming, in: Proceedings of the Third
International Conference on Logic Programming, London, 1986.

342 MARC EISENSTADT AND MIKE BRAYSHAW

21.

22.

23.

24.

25.

26.
27.

28.

Plaisted, D. A., An efficient bug location algorithm, in: Proceedings of the Second
International Conference on Logic Programming, UppsaIa, 1984, pp. 151-157.
Plummer, D., Coda: An Extended Debugger for Prolog, AI TR 87-54, Artificial Intelh-
gence Lab., Univ. of Texas at Austin, 1987.
Rajan, T., APT: A Principled Design for an Animated View of Program Execution for
Novice Programmers, Technical Report No. 19, Human Cognition Research Lab., The
Open Univ., Milton Keynes, U.K., 1986.
Reiss, S. P., Graphical program development with PECAN program development systems,
ACM SIGPUN Notices No. 19, 5 (1984).
Rich, C. and Waters, R. C. (eds.), Readings in ArtiJcial IntelIigence and Software
Engineering, Morgan Kaufmamr, Los Angeles, 1986.
Shapiro, E. Y., Algorithmic Program Debugging, MIT Press, 1982.
Winograd, T., Language as a Cognitive Process. Volume 1: Syntax, Addison-Wesley,
Reading, Mass., 1983.
Winston, P. H., Artificial Intelligence, 1st ed., Addison-Wesley, Reading, Mass., 1977.

