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THE TRANSPARENT PROLOG MACHINE (TPM): 
AN EXECUTION MODEL AND GRAPHICAL DEBUGGER 
FOR LOGIC PROGRAMMING* 

MARC EISENSTADT AND MIKE BRAYSHAW 

D An augmented AND/OR tree representation of logic programs is presented 
as the basis for an advanced graphical tracing and debugging facility for 
PROLOG. An extension of our earlier work on “retrospective zooming”, 
this representation offers several distinct advantages over existing tracing 
and debugging facilities: (1) it naturally incorporates traditional AND/OR 

trees and Byrd box models (call/exit/fail/redo procedural models) as 
special cases; (2) it can be run in slow-motion, close-up mode for novices or 
high-speed, long-distance mode for experts with no attendant conceptual 
change; (3) it serves as the uniform basis for textbook material, video-based 
teaching material, and an advanced user interface for experienced PROLOG 
programmers; (4) it tells the truth about clause head matching and deals 
correctly with the cut. One of the key insights underlying the work is the 
realization that it is possible to display an execution space of several 
thousand nodes in a meaningful way on a modem graphics workstation. By 
enhancing AND/OR trees to include “status boxes” rather than simple 
“nodes”, it is possible to display both a long-distance view of execution and 
the full details of clause-head matching. Graphical “collapsing” techniques 
enable the model to deal with user-defined abstractions, higher-order predi- 
cates such as setof, and definite-clause grammars. The current implementa- 
tion runs on modern graphics workstations and is written in PROLOG. a 

1. INTRODUCTION 

The need for clear and consistent models of program execution has received great 
attention not only from the human-computer interaction community (e.g. [7]), but 
also from the software engineering and AI communities (e.g. [18,24,25]). The 
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benefits of such models are both pedagogical and practical: the whole 
development/debugging cycle can be streamlined when the programmer is equipped 
with facilities for clearly visualizing and monitoring program execution. 

Logic programming is no exception, although to date most of the emphasis on 
debugging logic programs has been placed either on a deep understanding of the 
declarative semantics (e.g. [26,21,16]) or reasoning about the rationale underlying 
the debugging process [20]. Attempts to build software engineering environments in 
which PROLOG is embedded (e.g. [15,13]) have resulted in facilities which encour- 
age a clean top-down programming style reinforced either by shell commands or by 
a syntax-directed editor, but which are nevertheless strongly wedded to the “glass- 
teletype” environment in which they were conceived. Despite the import of these 
studies, PROLOG programmers today are still confined in their daily practice to a 
rather tedious view of program execution obtained by using the built-in “spy” trace 
packages available in most implementations. Our belief is that declarative debug- 

ging can most fruitfully be incorporated within the scope of a larger logic-program- 
ming environment such as that proposed in the remainder of this paper. We 
concentrate on the procedural side of PROLOG, because (for better or worse) that 
is the weak link in the program development and debugging cycle for both new 
students and experienced users, and therefore is worthy of at least some short-term 
remedial attention. 

Bundy and his colleagues at the University of Edinburgh have provided an 
excellent account of the many tradeoffs involved in trying to develop a good 
“PROLOG story” which could be used both for teaching PROLOG and for 
providing a view of execution in the context of writing and debugging large 
PROLOG programs [l, 191. The basic tenet of the “Edinburgh Stories” school, as 
we shall call it, is that an AND/OR tree provides the best overall account of what is 
happening during PROLOG execution, but that it needs to be combined with a view 
of the database and a resolution table to explicate the links to the user’s original 
code and to the all-important variable instantiations which occur during execution. 
The Edinburgh Stories account argues that although there is not normally enough 
room to show the execution of very large programs, this might be possible through 
the principled use of multiple-window displays. 

The problem of designing a purpose-built graphical tracer for PROLOG pro- 
grams was addressed by Dewar and Cleary [8]. Their system attempts to provide an 
intuitive “zooming” facility for examining PROLOG execution in detail. Although 
it incorporates a very nice display of clause-head selection and the active goal-sub- 
goal hierarchy, it suffers from four deficiencies: 

(1) 

(2) 

Every goal invocation involves a complete replication of the icons depicting 
the relevant portion of the database. Although zooming techniques can 
render these very small, the space they occupy rapidly grows out of all 
proportion to their importance in understanding the behavior of the running 
program. For example, the execution of a simple grandfather&Y) example 
(eight facts, two rules) fills the screen, whereas a practical tracer needs to be 
able to display thousands of nodes at a time and have them meaningfully 
visible. 

The logical structure of the AND/OR tree, acknowledged by Dewar and 
Clear-y to be important, is sacrificed for practical reasons. It is a commonly 
held view that an AND/OR tree would be “nice”, but that it is “too 
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(3) 

(4) 

impractical”. Below we show how our notation overcomes such practical 
restrictions, thereby maintaining the logical clarity of an AND/OR tree. 

The mapping between the user’s source code and the running invocations is 
sacrificed in order to provide a concise display, including user-defined icons. 
This is a difficult tradeoff. The user-defined aspects of the display are very 
important, but we feel that it is critical to have the terms which appear in the 
display reflect precisely the terms which the user wrote in the original 
program. 

The actual implementation runs too slowly to be used on anything other than 
“toy” examples. Although we are in complete sympathy with the need to 

pursue important theoretical and design issues within the realms of small test 
examples, we feel very strongly that solutions to toy problems simply do not 
scale up to the enormous size of serious logic-programming applications. 
Large-scale problems are themselves therefore of fundamental importance to 
work of the type described herein. 

Rajan’s work [23] is an inspiring attempt to “Cell the truth” about PROLOG 
execution, and to do so in a way which conforms to the way the user has written his 
or her own code. Rajan’s single-stepper works its way through code by highlighting 
relevant portions in the database at the appropriate moments, and by instantiating 
clause bodies in their entirety “in place” in the code being traced. By showing 
unification in painstaking detail, a clear account of execution can be presented to 
novices. However, Rajan’s single-stepper doesn’t fully show variable renaming. 
Although this was not necessary for the class of beginners he was addressing, it is 
essential for users of the system we are developing. Moreover, the execution spaces 
for such a textually derived system are inherently small. Our efforts at displaying 
“slow motion” unification are analogous to (and influenced by) Rajan’s, but we 
depart from his emphasis (1) on textually derived displays and (2) the need to 
highlight source code in its original edit window. Regarding (l), we move strongly in 
the direction of high-resolution graphical displays to show “execution space” trees. 
As far as (2) is concerned, we leave it up to the user to inspect source code (in an 
on-screen window, if so desired), and instead allow inspection of the detailed 
aspects of unification by user-initiated request at specific nodes in the execution 
tree. 

Our own earlier work [lo, 111 and the work of Plummer [22] concentrated on 
enhancing the “Byrd box” execution model [3] to the point where it would give 
more precise symptomatic information so that the programmer could home in more 
readily on trouble spots. In [ll] we added a top-level supervisory program which 
could detect characteristic “symptom clusters” produced behind the scenes by the 
trace package in order to spot bugs. The current effort is an attempt to provide a 
significant boost to the practical debugging of very large programs by highly 
experienced PROLOG programmers. The underlying philosophy of “retrospective 
zooming” introduced in [ll] still applies, but now we apply the modern graphical 
techniques which the earlier work only hinted at. Moreover, our approach incorpo- 
rates ideas gained from teaching introductory PROLOG, and thereby provides 
facilities in a clear and consistent manner so that they are useful to experts and 
novices alike. 

The work described herein starts with two premises: (1) it is essential to show the 
full execution space of large PROLOG programs; (2) it is essential to base a tracing 
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package on an “extended execution model” which discriminates between clause-head 
matching and clause-body execution. We have stuck with these two premises, partly 
because of the challenge of resolving their underlying contradiction: premise (1) 
involves a global view of things, while premise (2) involves a very close-up view. Our 
aim has been to reconcile these differences without losing the advantages provided 
by either premise. We feel strongly that different levels of detail (i.e. different grain 
sizes of analysis) involve different conceptual views of what is happening, and 
therefore a simple “aerial view/close-up zoom” facility (such as that used in the 
tracer of [8]) does not provide a magical solution, particularly when programs other 
than toy examples are involved. It is nevertheless possible to accommodate both 
premises. The key insights which enable this accommodation, and which drive the 
whole of the work described in this paper, are the following: 

It is possible to display an execution space involving thousands of nodes on 
today’s graphics workstations. 

When a PROLOG programmer is debugging a program which he or she has 

personally been developing over a period of weeks or months, an overall 
graphical view of the execution space of that program is highly meaningful to 
that programmer, because it conveys its own gestalt. (We have a strong hunch 
that this is true up to a limit of several thousand nodes, although this needs to 
be tested empirically.) 

The concept of a “node” in a traditional AND/OR tree is needlessly impover- 
ished. With just a few enhancements, and for a very small computational 
overhead, a simple node can become a “status box” which concisely encapsu- 
lates a goal’s history, including detailed clause-head matching information. 

The traditional AND/OR tree does not reveal the difference between one clause 
containing a disjunction and two separate clauses. More specifically, the 
distinction between clause head and clause body is not shown in AND/ OR 

trees, despite the overwhelming importance of the head/body distinction in 
the debugging of PROLOG programs. A minor notational variant enables us 

to overcome this problem. 

Section 2 describes the underlying principles involved in the design and develop- 
ment of our view of PROLOG execution, which we dub the “transparent PROLOG 
machine” (TPM). TPM serves as the basis for our own textbook and video material 
[12] as well as providing the underlying execution model for our graphics tracer. To 
illustrate TPM notation, test cases taken from Pain and Bundy [19], Bundy et al. 
[1,2], and Coombs and Stell [6] are presented. Details of the running user environ- 
ment are presented in Section 3. Section 4 presents a series of worked examples, 
namely, a small expert system, a database manipulation program, and a simple 
programming-language compiler. Section 5 discusses TPM extensions to deal with 
abstractions such as setof and definite-clause grammars. Concluding remarks are 
given in Section 6. The account which follows presupposes that the reader is an 
experienced PROLOG user. 

2. THE TRANSPARENT PROLOG MACHINE: UNDERLYING PRINCIPLES 

In this section we describe an idealized account of PROLOG execution. Our work 
differs from the Edinburgh Stories school in three important respects: (1) in our 
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clause counter FIGURE 1. A procedure status box. 

close-up view we display much more detail about clause-head matching and unifica- 
tion, but without sacrificing the basic clarity of an AND/OR tree representation; (2) 
our long-distance view is consistent with our close-up one, and is not only suitable 
for machine implementation, but also capable of displaying the execution of 
enormous PROLOG programs; (3) we don’t require separate “resolution tables” or 
“database” displays, although we naturally assume that in a modem PROLOG 
environment the user can trivially display a window showing relevant source code. 

2.1. The Procedure Status Box 

We follow the common practice of using the name procedure to refer to the 
collection of clauses defining a given relation (i.e. a functor of a certain arity). The 
cornerstone of our notational convention, illustrated in Figure 1, is the procedure 
status box. This box replaces the simple AND/OR tree “node” in our display of the 
execution space. The upper part indicates the goal status, and informs us whether 
the goal is currently being processed (a question mark), whether it has succeeded (a 
tick, sometimes called a “check”), whether it has failed (a cross, sometimes called an 
“X”), or whether an earlier success was followed by failure upon backtracking (a 
tick/cross combination). The number in the lower half of the procedure status box 
is a clause counter, which tells us which of several clauses for a given procedure is 
currently being processed. 

The small “legs” dangling down underneath the procedure status box are called 
clause branches, and correspond one-for-one to the individual clauses constituting 
the definition of a relation in the database. The leftmost branch corresponds to the 
first clause, and the next branch corresponds to the second clause, etc.’ The small 
boxes at the bottom of Figure 1 are clause status boxes, used to indicate the outcome 
of processing of each individual clause. The clause status box may contain any of 
the four symbols used to indicate the main goal status (question mark, tick, cross, 
and tick/cross). Alternatively, a clause branch may simply terminate in a horizontal 
“dead-end bar” when the head of that clause fails to unify with the current goal. 

Let’s now observe the execution of a trivial PROLOG program in slow motion to 
see how the procedure status box is used. Consider the database presented in 
Figure 2. 

Now suppose that the following query, corresponding to “Who eats rubbish?“, is 
posed: 

?-eats(X, rubbish). 

‘In Matsumoto’s [17] empirical analysis of a sample of large PROLOG programs at the University of 
Edinburgh, the average number of clauses per procedure was found to be 3.72. Our standard-size 
procedure status box caters for 5 clauses, but can be expanded drastically using a convention discussed in 
Section 2.3. 
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eats(joe, hamburgers). 
eats(fred,X). 5% fred eats anything 
eats& bread). % everyone (actualIy anything) eats bread 

FIGURE 2. Three clauses defining eats. 

Figure 3(a)-(d) show the “innards” of execution. In Figure 3(a), we see the main 
goal displayed alongside the procedure status box. The goal status symbol is a 

question mark, there are three clause branches corresponding to the clauses in the 
definition of eats, and the “0” indicates that no clauses have yet been inspected. 
Whenever a clause is inspected, it is first copied, and any variables are renamed by 
adding an appropriately numbered subscript. Then an attempt is made to unify the 
head of that clause with the current goal. Figure 3(b) depicts the moment when 
clause 1 of eats is inspected. The head of this clause fails to unify with the current 
goal, so the first clause branch has just been marked with a horizontal dead-end bar. 
Next, clause 2 is inspected, as shown in Figure 3(c). There are three important 
things to note even in this simple example. Firstly, in the copy of clause 2 being 
inspected, the variable X has been appropriately renamed by adding a subscript, so 
that X, is distinct from the X in the query (which is, in essence, X,). Secondly, the 
arrows in Figure 3(c) are unification arrows which form an intrinsic part of our 
execution model. They indicate not only that X is instantiated to fred and X, is 
instantiated to rubbish, but also (at a glance) that X is an output variable and Xi is 
an input variable. Thirdly, the clause status box at this instant has a question mark 
in it, meaning that the interpreter technically needs to pursue the body of this 
clause. We can see that the clause is an ordinary PROLOG fact, and therefore 
appears to have no body, but more formally it actually has the implicit body true, 
which is trivially satisfiable. If there had been one or more subgoals in the body, 

eals(X , rubbish ) 

eats(X , rubbish ) 

eats(joe , hamburgers) 

eats(fred , X, ) 

eats(X , rubbish ) 

eats(fred , X, ) 

FIGURE 3. Four-step detailed execution snapshots, given 
the new query ?- eats(X,rubbish): (a) Initial pending goal. 
(b) A copy of clause 1 of eats is inspected, but the head 
does not unify with the goal. (c) A copy of clause 2 is 
inspected, and its head does unify, as shown. Variables in 
clauses which are copied and inspected are automatically 
renamed by adding an appropriately numbered subscript. 
At this instant, the interpreter does not know that clause 
2 is a winner. (d) End of processing. The clause status 
box for clause 2 shows that it is a winner (trivially), and 
thus the main goal wins. 



THETRANSPARENTPROLOGMACHINE 283 

then the interpreter would need to process the subgoal(s) in order to determine the 
outcome of this particular clause. 

Figure 3(d) shows the moment when processing is complete. The clause status 
box for clause 2 has been marked with a tick. Precisely because there are no 
descendants emanating from this clause status box, we can tell at a glance that this 
was a trivial success, i.e. an ordinary PROLOG fact. The clause branches formally 
correspond to disjunctive choices, so if any of them succeeds, the procedure as a 
whole succeeds. Therefore, the goal status indicator becomes a tick as well, indicat- 
ing that the goal has succeeded. 

The four-step unification sequence depicted in Figure 3(a)-(d) is of most use to 
us in teaching PROLOG. Once this account has been shown to students (both in 
textual form and in an animation on our accompanying video material), we ask 
them to fill in the details in empty status boxes alongside various examples. Because 
such details are not normally of interest to experienced PROLOG programmers, our 
graphical tracing package presents “final snapshot views” corresponding to that of 

Figure 3(d), with the other details being made available upon request. 

2.2. AORTA Diagrams 

AND/OR trees are a frequently used and highly expressive way of describing the 
execution of logic programs, and PROLOG programs in particular. An investigation 
of notational formalisms by Bundy and his colleagues at the University of Edin- 
burgh (e.g. [19]) concluded that AND/OR trees offered the greatest potential in terms 
of clarity of explanation, but that they suffered from several deficiencies, as 
summarised here: 

(1) 
(2) 

(3) 

(4) 

(5) 

(6) 

It is not immediately clear when a call has been successful. 

It is difficult to see what subgoals are outstanding at any moment: the current 
goal is not immediately obvious. 

The output substitution is not clearly displayed, but must be calculated by 
combining the unifiers along the winning branches. 

To keep the different environments of recursive calls clear, the variables have 
to be renamed: their origins are not always clear. 

There is no direct link to the clauses in the database. 

In the general case, it is complicated to see which parts of the tree should be 
scribbled out by the cut. 

We were motivated by this account to try to improve matters. We reasoned that 
the “node” in a traditional AND/OR tree was a needlessly impoverished representa- 
tion, and that by enriching it in appropriate ways we could have our cake and eat it 
too. In other words, we wanted to have an intuitively clear AND/OR-Style account of 
execution while providing all the details that a traditional AND/OR tree leaves out. 

The missing link is precisely the procedure status box described in Section 2.1. 
These boxes can be used in place of simple AND/OR tree nodes, with the clause 
branches representing OR choices, and subgoal branches (borrowed from the stan- 
dard AND/OR-tree notation) representing AND “siblings", i.e. conjunctions of sub- 

goals. The combination has led us to refer to our diagrams as AORTA diagrams 
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fun(X) :- red(X), car(X). 
fun(X) :- blue(X), bike(X). 

red(apple_ 1). 
red(block_ 1). 
red(car_27). 

car(desoto_48). 
car(edsel_57). 

blue(flower_3). 
blue(glass_9). 
blue(honda_81). 

bike&is_8). 
bike(my_bike). 
bike(honda_81). 

FIGURE 4. Ether red cars or blue bikes are “fun”. 

(AND/OR tree, augmented). Consider the program presented in Figure 4, which 
corresponds intuitively to the notion that either red cars or blue bikes are “fun”. 

Figure 5 shows an AORTA diagram depicting the full search space for any queries 
of the form ?- fun(X). For ease of reference, we have labeled two of the clause 
branches Cl and C2. The line linking the clause status box for clause branch Cl to 
the procedure status box for the goal red(X,) is called a subgoal brunch. The 
horizontal bar linking subgoal branches is called a conjunction bar, and is the 
convention adopted in traditional ~~~/o~-tree notation. 

We use a family metaphor to describe the lineage of goals, and speak of primary 
goals as mother goals and their subgoals as daughter goals. Daughter goals linked 
together by a conjunction bar, e.g. red(X,) and car(X,), are full-fledged sisters. 
Subgoals blue&) and bike(X,) are sisters of one another, but they have a diflerent 
lineage from that of red(X,) and car(X,), because blue(X,) and bike(X,) are 
actually part of a different clause (labelled as clause C2). Metaphorically, we can 
model this relationship by attributing different paternity to each different clause. In 
other words, the clause heads of Cl and C2 represent different fathers for the 
different groups of children. Thus, the head of C2 is a stepfather of car(X,), and 

FIGURE 5. A sample AORTA diagram, showing the full search space for fun(X). 

? 
fun( x ) 

0 

W X, ) cart X, ) blue( X, ) bike( 

0 0 0 0 

I I I I I I I I I I I. 

x2 ) 
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older@, Y) :- 
ape& Agem, 
age(Y, AgeOf% 
AgeOfX > AgeOfY. 

age(john, 27). 
age(tom, 18). 
age(sue, 24). 

?- older(john, sue). 

yes 

FIGURE 6. Definitions of older and age, and a sample query and solution. 

car(X,) and blue(X,) are stepsisters. To reflect the chronology of execution, we also 
note that red(X,) is an older sister of car(X,), because the goal red(X,) was “born” 
first. Analogously, we refer to the head of C2 as a future stepfather of car(X,). This 

metaphor will come in handy when we describe the extralogical meaning of the cut. 
Rather than show the full search space for PROLOG programs, our model 

concerns itself with only the execution space, i.e. those goals and subgoals which are 
actually attempted during the processing of a given query. When a given procedure 
has alternative clauses which are never inspected during a particular execution, these 
are simply left as dangling clause branches to provide a visually meaningful context 
in which to view the whole execution space. Consider the program and sample 
interaction shown in Figure 6. 

Figure 7 shows the AORTA diagram corresponding to the final snapshot of 
execution. The small italic letters a-i are used as time stumps to label the ticks, 
dead-end bars, and crosses in the precise order in which they appear (these are for 
the reader’s benefit only, and do not form part of the AORTA diagram itself). 

Four additional notational conventions are introduced in Figure 7: 
. 

The circular status box. This is used to display system primitives in a distinctive 
manner. In Figure 7, the primitive “ > ” appears this way. 

FIGURE 7. Final snapshot after processing the query ?- older(john, sue). The small letters in 
italics indicate the order in which the status symbols appeared. Primitives are displayed as 
circular nodes. 
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Right-angle arrows. When a variable appears more than once in a given clause, a 
right-angle arrow can be used to show how its instantiation is “passed across” 
from one occurrence to another. In Figure 7, we see that AgeOfX, is an output 
variable where it first appears in the goal age(X,, AgeOfX,), and that it 
becomes instantiated to 27 (just before timestamp a, in fact). In its second 
appearance, AgeOfX, is already instantiated by the time the subgoal 
AgeOfX,>AgeOfY, is processed (timestamp g), and notice that the right-angle 
arrow shows it correctly as an input variable at this point. The variable 
AgeOfY, is handled analogously, and shading is used just to keep the 
matching pairs of arrows visually distinct. 

Lozenges. In an AORTA diagram, every variable in principle has a little lozenge 
underneath it which shows the variable’s current instantiation. In practice, we 
adopt a “tidying” convention which allows us to omit a lozenge whenever 
there is a straight up arrow or down arrow that lets us see the actual 
instantiation at a glance. We have found that the lozenges are absolutely vital 
for showing the details of unification, but that without the tidying convention 
the diagrams become needlessly cluttered. In effect, the appearance of a 
lozenge means that a given instantiation has come “from elsewhere”. We 
deliberately avoid the inclusion of linking arrows depicting exactly what “from 
elsewhere” means, because such arrows not only become unwieldy in complex 
diagrams, but are actually redundant. The reader may wish to confirm that the 
lozenge underneath the X, in the lower left-hand part of Figure 7 can only 
mean that X, was an input variable in that situation, and therefore a down 
arrow above that X, is unnecessary. 

Headless arrows. This is actually a sideways “ = “, 
direct match between two terms. This can also 
uninstantiated variables share. 

which conveniently shows a 
be used to show when two 

Because it is inherently difficult to capture the dynamic nature of AORTA 

diagrams in a static medium such as printed text, the reader may find it useful to 

work through timestamps a-i of Figure 7, and to confirm the following two 

observations: (1) the lozenges containing john and 27 are filled (i.e., the variables Xi 
and AgeOfX, are instantiated) just before the tick labeled with timestamp a 
appears; (2) the lozenges containing sue and 24 are filled (i.e., the variables Y, and 
AgeOfY, are instantiated) just between timestamps d and e. In our textual presen- 
tation of AORTA diagrams [12], we include numerous execution snapshot sequences, 
with unfilled lozenges left for our students to fill in. The replay facility of our 
graphical tracer (as well as the video animation sequences used in our course 
materials) allows us to show the dynamics of program execution in a more suitable 
manner. 

To illustrate the way AORTA diagrams clarify the workings of a simple recursive 
program, consider the code shown in Figure 8 (this was used as a test-case program 
by Bundy et al., [l]). Given the top-level query ?- location(lincoln, Where), the 
AORTA diagram representing the moment of final subgoal invocation is shown in 
Figure 9. Notice in particular the stack of pending question-mark symbols in the 
status boxes, depicting the current focus of goals and subgoals, and also the 
consistent renaming of variables using subscripts. 
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location(Person, Place) :- 
at(Pemn, Place). 

hation(Perso~ Place) :- 
visit(Person, Other), 
location(Other, Place). 

at(alan, rooml9). 
at(jane, room54). 
at(betty, office). 

visit(dave, alan). 
visit(janet, bet@). 
visit(lincoln, dave). 

FIGURE 8. location program from [l]. 

FIGURE 9. Final (deepest) subgoal invocation, given the query ?- location(lincoln, W), and 
the code shown in Figure 8. Notice stack of pending question-mark symbols in status boxes. 
A tick is just about to be placed in the very bottom box, depicting success on clause 1 of at. 

~~location(lincoln , W ) 

IT 
Place, ) 

l-t 
Place, ) 
@ig 
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At the moment of the snapshot in Figure 9, a tick is just about to be placed in the 
very bottom box, indicating a trivial success (fact) on clause 1 of at. Remember 
from our discussion of Figure 3(c) that unification of a goal with a clause head 
precedes the processing of the clause body, even when that body contains a trivially 
true subgoal, i.e. when it is an ordinary PROLOG fact. As Figure 9 shows, Place, is 
instantiated to room19 at the bottom of the diagram. The lozenges and unification 
arrows reveal that Place,, Place,, and W are also instantiated to room 19, in effect 
at the same time as Place, is so instantiated. If we were to show the remaining eight 
execution snapshots, we would see a succession of tick symbols “bubbling up” to 
the top one snapshot at a time, but it is significant that the instantiation of W has 
taken place eight snapshots before the final success. 

Let’s now reconsider the first five disadvantages of AND/OR tree representations 
raised by Pain and Bundy (and the way AORTA diagram notation overcomes these 

disadvantages): 

“It is not immediately clear when a call has been successful.” (This is instantly 
clear in the AORTA diagram when a question-mark symbol turns into a tick.) 

“It is difficult to see what subgoals are outstanding at any moment: the current 
goal is not immediately obvious.” (The question-mark symbols in the AORTA 

diagrams make this obvious.) 

“The output substitution is not clearly displayed, but must be calculated by 
combining the unifiers along the winning branches.” [The unification arrows 
and lozenges show variable instantiation unambiguously; even more painstak- 
ing detail can be revealed upon request, as shown in Figure 3(a)-(d).] 

“To keep the different environments of recursive calls clear, the variables have to 
be renamed: their origins are not always clear.” (AORTA diagrams use sub- 
scripting of user-provided variable names, so that the origins are completely 
clear. The objection implied by the use of the words “have to” is that it is 
difficult or confusing to perform renaming; we find that renaming is not 
actually difficult in practice, and moreover that renaming is essential to 
conform to the “true story” of PROLOG execution.) 

“There is no direct link to the clauses in the database.” (The AORTA status-box 
clause counter provides precisely such a link, assuming of course that the user 
bothers to obtain a code listing or display the code in a separate window on 

the screen.) 

The sixth disadvantage (display of cut details) is dealt with in Section 2.5. We 
believe that the AORTA diagrams incorporate all of the best features of AND/OR 

trees, and overcome all of their disadvantages. More complicated cases involving 
unification of large terms, reinvocation of goals after backtracking, and the cut are 
shown in the following sections. 

2.3. Compound-Term Unification and Large Databases 

It is essential for any logic-progr amming “execution” notation to cope adequately 
with the intricacies of unification. The classic definition of append involves relatively 
uninteresting flow of control but much more interesting unification. Figure 10 
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append(l I, Ys, Ys). 

append([X I W,Ys, Ix I Zsl) :- 
append(Xs, Ys, Zs). 

?- append([a, b], [c, d], What). 
What = [a, b, c, d] 

FIGURE 10. Classic definition of append, and a sample query and solution. 

presents both the definition and a sample query. Figure 11 shows the AORTA 

execution snapshot at the moment this query has succeeded. 
There are three subtleties to note about Figure 11: 

Lists are expanded to show the head and tail explicitly just in those places where 

A 

_ _ 
it is critical to reveal the precise correspondence for unification purposes. For 
instance, the first argument of the top level goal is displayed as [a 1 [b] ] rather 
than [a,b], thereby making the instantiations of X, and Xs, obvious at a 
glance. Notice that the lozenge underneath the variable What similarly shows 
the head and tail corresponding to the instantiations of X, and Zs,. The 
lozenge beneath the topmost appearance of Zs, shows the list [b,c,d] in its 
“beautified” form, because a deeper account of the internal structure is not 
necessary there. However, where Zs, appears near the middle of the diagram, 
a deeper account of the internal structure is necessary to show the instantia- 
tions of X, and Zs,, so the lozenge is shown containing the list [b 1 [c, d] 1. 

thin horizontal line is drawn at the base of unification arrows to encompass 
entire compound terms (structures), thereby showing that it is the whole term 
(rather than a single atom within it) which has been unified. For instance, 
where Ys, is instantiated to [c,d] at the top of Figure 5, the line at the base of 

d 

% 

append([ a I [bl lkdl, WI&t ) 
yJ pyai) 

2 aweWX,l %I. Ys, 3 IX,1 Zs, 1) 

FIGURE 11. AORTA diagram corresponding 
of the query ?- append([a, b], [c, d], What). 

to solution 
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london, new-York, Dep, ,Arr, , Days, ) 
FIGURE 12. Procedure status box used 

london, new-York, 1000 ,1400,[m,t,w,th,f]) for large databases. 

the relevant arrow tells us that it is the entire term [c,d] which is involved, 
rather than just the atom c. 

When an arrow points down from below (or up towards) a lozenge as a whole, 
then the full content of that lozenge is involved. On the other hand, when part 
of the arrow crosses the border of a lozenge, then only the particular term 
being pointed from (or to) is involved. Consider, for example, the procedure 
status box in the middle of Figure 11. The arrow pointing to Ys, emanates 
from below the lozenge containing [c,d], and thus the entire term [c,d] is 
involved. However, the arrow pointing down to X, crosses the border of a 
lozenge, meaning that only the term b is involved. The term b happens to be 
an atom, but in general a compound term might be involved, in which case a 
horizontal line would be used at the base of the unification arrow to show the 
extent of the term. 

While compound terms can in general be dealt with in the manner described 
above, the sheer size of certain terms in real PROLOG programs necessitates the 
use of special collapsing conventions. We use hand-crafted (i.e. carefully positioned) 
ellipsis dots (,‘ . . . “) in our textual displays when appropriate, and a special small 
font in our graphical tracer implementation to show the unification of very large 
terms. We also allow the user of our graphical tracer to specify an ellipsis template 
for the display of large terms, which works much like PROLOG’s portray primitive 
(except that it is accomplished with a pop-up dialogue box). 

Large terms are not the only practical problem we have to face: large databases 
may contain hundreds (or even thousands) of clauses in the definition of a given 
procedure. To cater for this, we adopt a collapsing convention in the procedure 
status box. In Figure 12, we show a hypothetical example of a goal used to access a 
large database of airline flights containing 429 clauses of the predicate flight. Rather 
than showing all clause branches, we only show the ones whose heads actually 
unified with the goal2 The small numbers above each clause branch indicate 
precisely which clauses were involved (in the example shown, only clauses 7, 59,121, 
147, and 231 had heads which unified with the goal). All the ones which are omitted 
would, had there been enough room, have been displayed as dead-end bars, because 
the omitted ones are precisely those whose heads did not unify with the goal. The 
large 429 in Figure 12 means that this particular procedure had 429 clauses 
altogether. The 231 in the horizontal scroll box is the actual clause counter, 
indicating that clause 231 is the one under consideration at the moment this 

2The past tense is deliberate here. Our implementation normally does a “post-mortem” analysis, so 
we know exactly which clause heads unified and which didn’t. It is also possible to run the system in 
live-trace mode, as described in Section 3. 
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snapshot was taken. The scroll box moves sideways to reveal at a glance relatively 
how far through the clauses the clause counter has gotten. In our graphical tracer 
implementation, the scroll bar enables users to investigate the fate of any particular 
clause, including those that failed to unify. Moreover, the precise clause(s) in the 
appropriate source-code file may be brought up in a separate window by a single 
mouse/menu operation. The procedure status box can be made wider as appropri- 
ate when there are large numbers of clause heads which unified during execution. 
Since the clause numbers on each clause branch are displayed sideways, the existing 
procedure status boxes can cope with databases containing up to 9999 clauses per 
procedure. As we show below, our graphical tracer implementation can cope 
comfortably with several thousand procedure status boxes per execution run. We are 
therefore satisfied that our design is highly robust for very large PROLOG pro- 
grams. 

2.4. Esoteric Flow of Control: Backtracking and Invocation Histories 

The overall structure of AORTA diagrams (and indeed the AND/OR trees from which 
they evolved) is inherently simple when the chronology of execution maps trivially 
onto the left-to-right/top-to-bottom branching structure of the diagrams. In other 
words, as long as control flow is straightforward, graphical representation of control 
flow is also straightforward. In PROLOG, backtracking immediately alters this 
trivial mapping. Nevertheless, AORTA diagrams offer a solution. A procedure status 

box concisely encapsulates in one (two-dimensional) place the execution history of a 
single invocation of a procedure. During the course of that invocation, all sorts of 
things may happen, but the net result is maintained in the individual clause status 
boxes. If a goal fails, it may be reinvoked later at what amounts to the same location 
in the execution space. We can use a third dimension (i.e. depth) to cater for the 
distinction between older and newer invocations at the same place in the execution 
space. When there are two or more such invocations, the latest invocation appears 
normally, but prior invocations are depicted schematically in the form of a shaded 
ghost status box “underneath” the latest invocation. In effect, the ghost is just an 
icon meaning “there was (at least) one prior invocation here”. In our textual 
displays, the ghost just serves as a reminder, but in our graphical tracer implementa- 
tion, the ghost is actually a mouse-sensitive item which allows the user to examine 
what happened at the appropriate point in the execution history. 

A good example involving multiple invocations comes from the work of Coombs 
and Stell [6]. Figure 13(a) presents a program they used to investigate common 
misconceptions held by novices about backtracking in PROLOG, and Figure 13(b) 
presents an isomorph of the same program which we have devised for expository 
purposes. Given the top-level query ?- desperate(Who), Figure 14(a)-(c) show 
isolated snapshots at critical moments in the execution history. The first snapshot, 
Figure 14(a), depicts the first time unemployed fails, attempting to prove unem- 
ployed(joe). 

It is important to understand the precise sequence of events which follows a 
failure in PROLOG. Crucial distinctions may be made among the following three 
events: (1) a goal failing, (2) a goal being “redone”, (3) a clause failing. Using the 
family metaphor introduced to describe Figure 5 earlier, we can explain concretely 
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a(X) :- 
b0, 
c(x). 

b(X) :- 
h(X, Y), 
i(Y). 

b(X) :- 
h(Y, x), 
i(Y). 

h(l, 2). 
h(3,4). 

i(2). 
i(3). 

c(2). 
c(4). 

desperate(X) :- 
name_dropper(X), 
unemployed(X). 

name-dropper(X) :- 
knows(x, Y), 
famous(Y). 

name-dropper(X) :- 
knows(Y, x), 
famous(Y). 

knows(joe, mick). 
knows(charles, fred). 

famous(mick). 
famous(charles). 

unemployed(mick). 
unemployed(fred). 

% We can call someone ‘desperate ’ if. . 
4% they have a habit of name-dropping 
4% and also happen to be out of work. 

% someone is a ‘name_dropper ’ if. . 
% they know someone.. 
% who is famous 

% or, alternatively, 
% if a famous person knows them 

5% say, Mick Jagger 
% say, Prince Charies 

FIGURE 13. Tricky backtracking code from [6]: (a) original program; (b) isomorph, used for 
expository purposes. 

what happens in these three cases. In the outline which follows, we shall refer to the 
state of processing shown in Figure 14(a) to highlight all of the salient points: 

1. Failing a goal 

1.1. Any variable instantiations which were due to the success of that 
particular invocation of the goal become “undone”. In Figure 14(a) the 
variable Xi stays instantiated to joe, because that instantiation was 
brought about elsewhere. 

1.2. The clause counter is set back to zero. 
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knows(joe , mick ) 

name_dropper(X, ) 

name_dropper(X, ) 

knows(Y, , X, ) 

given code shown in FIGURE 14. Execution snapshot following query ?- desperate(Who), 
Figure 13(b): (a) The moment of first failure of unemployed. (b) Just about to attempt second 
clause of name_dropper. Notice that name-dropper is the current focus, and that famous had 
a prior invocatron which succeeded but then failed on backtracking. The current invocation 
of famous merely failed because no clause heads matched. (c) Final snapshot. Both famous 
and unemployed failed on prior invocations. 



294 MARC EISENSTADT AND MIKE BRAYSHAW 

knows(c!harles, f&d ) 

Cc) 

FIGURE 14. Continued 

1.3. If an older sister of the failed goal exists, then that older sister is 

“ redone”; if no older sister exists, the current clause fails. In Figure 
14(a), the older sister is the goal name_dropper(X,), so that is the goal 

which is just about to be redone. 

2. Redoing a goal 

2.1. 

2.2. 

2.3. 

The net outcome is forgotten, i.e., the tick at the top of the box is 
turned back into a question mark. 
The youngest suruiuing heir of the goal in question is located. Working 
through descendants of that goal, the youngest surviving heir will be 
the rightmost and most deeply nested clause status box with a tick (or 
just the procedure status box itself if it happens to be a system 
primitive). Descendant status boxes traversed along the way also have 
their status indicators converted from tick to question mark, to show 
that their respective outcomes are once again “up for grabs”. In Figure 
14(a), the youngest surviving heir is the clause status box for clause 1 of 
famous. From a PROLOG implementor’s point of view, this is precisely 
the “backtracking point”. 
The tick on the youngest surviving heir is turned into a tick/cross 
combination, i.e., a failure is forced, and the next clause is then 
processed, as described next. 

3. Failing a clause 

3.1. Any variable instantiations which were due to that particular clause 
succeeding become “undone”. Looking again at Figure 14(a), notice 



THETRANSPARENTPROLOGMACHINE 295 

3.2. 

that even after we turn the tick for clause 1 of famous into a tick/cross, 
as mandated by our “redo” model, the variable Y2 will stay instantiated 

to mick, because that instantiation came from elsewhere. 
If additional clauses for the current procedure exist, then an attempt is 
made to find the next clause head which unifies with the current goal. If 
one is found, the body of that clause is then processed. If none exist, 
the current goal fails. In our example, the head of clause 2 of famous 
does not unify with the goal famous(mick). There are no further clauses 
for famous, so this invocation of famous fails. 

Let’s continue to work through the processing. We provide only a verbal 
description of the microstructure of events in between Figure 14(a) and (b), because 
it would require a large number of AORTA snapshots (nine, in fact) to illustrate 
diagrammatically. Following the failure of famous&), backtracking attempts to 
redo the older sister, i.e. knows(X,,Y,). Clause 1 of knows receives a tick/cross, and 
the instantiations of X, (and therefore X, and Who) are undone, as is the 
instantiation of Yz. Clause 2 of knows, i.e. knows(charles,fred), succeeds, at which 
point X, is instantiated to Charles and Y2 is instantiated to fred. A new invocation 
of famous is then attempted for the goal famous(Y,), but famous(fred) doesn’t unify 
with either of the two clauses of famous. Therefore, famous(Y,) fails, and backtrack- 
ing to knows(X,,Y,) occurs again. Now clause 2 of knows receives a tick/cross 
combination, and X, and Yz are uninstantiated. There are no more clauses of knows 
left to try, so knows(X,,Y,) fails, thereby failing the first clause of name-dropper. 
Clause 2 of name dropper is then processed. The subscript counter is bumped up, 
and the variables in this clause are renamed by subscripting them with a 3. 

Figure 14(b) depicts the beginning of the processing of clause 2 of name-dropper. 
We can see from the headless unification arrow that the variables X,, X,, and Who 
share. The procedure status box for famous shows the result of its latest invocation: 
both clauses failed to unify when Y2 was instantiated to fred. The ghost status box 
partially hidden behind the procedure status box for famous indicates only that 
there was a prior invocation of famous at that particular point in the execution 

space. Each of the invocations shown corresponds to one of the former successes of 
knows, indicated by the two tick/cross combinations in the clause status boxes for 
knows(X,, Yz). Technically, each of the successes associated with knows(X,, Yz) 
happened on a different OR choice, and since these correspond to different clause 
branches, they can be displayed appropriately as belonging to the fate of a single 
invocation of the knows procedure. Therefore a ghost status box is not necessary for 
knows. The goal famous&) has been invoked twice at the same point in the search 
space, and therefore requires a ghost status box to show the former invocation. 

The final execution snapshot is shown in Figure 14(c). Notice the new ghost 
status boxes for unemployed(X,) and famous(k;), indicating failure on prior invoca- 
tions of the respective goals. In the case of unemployed, the ghost invocation is the 
one we witnessed in Figure 14(a) following the initial success of name_dropper(X,), 
when X, was instantiated to joe. In the case of famous&), the ghost invocation was 
due to the initial success of clause 1 of knows, i.e. knows(joe,mick), nested as a 
subgoal within clause 2 of name-dropper. At that point, Y3 would have been 
instantiated to joe, so neither of the two clauses of famous could have unified with 
famous(Y& In our graphical tracer implementation, if any goal has more than one 
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prior invocation (still indicated by a single ghost status box), it is possible for the 
user to step through them individually by mouse-clicking on the ghost. This rewinds 
the execution replay to the time point when the previous invocation occurred. The 
previous invocation may of course have its own ghost (i.e. an even earlier invoca- 
tion), which in turn will be selectable by the user. An alternative method is to 
reobserve the complete execution sequence from the beginning, using the fast-for- 
ward and single-step capabilities described in Section 3. 

2.5. The Cut 

In addition to handling multiple invocations of a goal, the other major extralogical 
control problem to deal with is the cut. Using AORTA diagram notation, this is 
surprisingly easy. Bearing in mind that the cut is itself a subgoal which has ancestors 
and (typically) siblings, the following three things happen when a cut is encoun- 
tered: 

(1) older sister goals and their descendants are “frozen” (enshrouded in a small 

cloud which makes them unalterable on backtracking) 

(2) upcoming clause branches of the cut’s mother goal are chopped (future 
stepfathers are eliminated). 

(3) the cut succeeds, just like any ordinary PROLOG goal. 

To illustrate the way AORTA diagrams deal with the cut, Figure 15 presents a 
small program and sample interaction contrived to illustrate a large number of 
AORTA diagram features in a small space. The program depicts the circumstances in 
which some X has a party. Figure 16 shows the AORTA diagram corresponding to the 

final snapshot of execution. 
We can see in Figure 16 that happy succeeded initially on clause 1, but unification 

with either clause of birthday was not possible. This failure caused the backtracking 
into swimming, which itself failed upon backtracking (no further clauses to attempt), 
as indicated by the tick/cross combination appearing in the top of its status box. 
This is also the case with the ! goal, displayed as a circular node just as any system 
primitive would be. Notice the frozen cloud3 around the cut’s older sisters hot and 
humid, and the scissors-plus-jagged-edge icon showing the elimination of the re- 
maining clause branches under the procedure status box of the parent goal happy. 
The parent’s failure is further indicated by the tick/cross in the top part of its status 
box. The failure of clause 1 of party led to clause 2 being attempted. The friends 
goal succeeded on clause 1, i.e. friends(tom,john), but sad failed in its first invoca- 
tion. Upon backtracking, friends succeeded on the second clause, namely 
friends(tom,sam), and a brand new invocation of the sad goal occurred; hence the 
ghost status box showing the previous invocation of sad. We can also see in Figure 
16 that X, was instantiated to tom, Y3 was instantiated to sam, and this instantiation 
was passed to the goal sad. The goal sad(Y,), with Ys instantiated to sam, matched 

‘Our convention is that the frozen cloud is shown in light gray when it first occurs, and in darkened 
gray once an attempt has been made to backtrack into it. 
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Partyco- 
bw(W9 
birthday(X). 

PartyCQ- 
friends(X, Y), 
sad(Y). 

haPPY(x):- 
hot, 
humid, 
I 
&mming(X). 

hapPy(X):- 
cloudy, 
watching_tv(X). 

happy(X):- 
cloudy, 
having-fun(X). 

cloudy. 

humid. 

hot. 

having_fun(tom). 
having_fun(sam). 

swimming(john). 
swimming(sam). 

watching_tv(john). 

sad(bill). 
sad( Sam). 

birthday(tom). 
birthday(sam). 

friends(tom, john). 
friends(tom, sam). 

?- party(Name) 
Name = sam 

% party if happy & birthday 

% or to cheer up sad friend 

% X is happy provided that.. 
% it’s hot 
% and it’s humid 
% but only if it’s also the case that. . 
% X is swimming 

FIGURE 15. Program contrived to illustrate a large number of AORTA diagram features in a 
small space. The program specifies the circumstances in which X has a party. 

directly against the fact sad(sam) in the database. This led to the success of the goal 
sad and consequently of the main goal party, at precisely the moment captured in 
Figure 16. 

We conclude this section with a sample program taken from a working paper by 
Bundy et al. [2], in which they discuss the extension of their proposed story to 
impure aspects, including the cut. The program is shown in Figure 17. The program 
is similar in many respects to Coombs and Stell’s. We use the original abstract 
version, rather than presenting an intuitive isomorph as we did in Figure 13(b), to 
avoid the criticism that the clarity of explanation rests entirely in the intuitive 
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IhawW, )I v Ibifihdayo(, ) I 

x 

i, 

0 

swimming 

FIGURE 16. AORTA snapshot after processing the query ?- parly(Name), given the program 
shown in Figure 15. 

variant of the code rather than in the AORTA diagram itself. Figure 18(a) shows an 
intermediate execution snapshot just at the moment that the goal c(X,) fails. Prior 
to this, the cut (displayed as a circular node) placed a frozen cloud around its older 
sister goals and their descendants (there is only one older sister in this case, d), then 
eliminated additional clauses of c (scissors-and-jagged-edge icon over clause branch), 
and succeeded. Then, with X, still instantiated to 1 from “up above”, goal e(X,) 
failed, and an attempt was made to redo the cut. The cut, like many system 
primitives, cannot be redone, so it has acquired a tick/cross combination symbol. 
Backtracking would normally work its way down to clause 1 of goal h at this point, 

FIGURE 17. Example with cut, from [2]. 

a(X) :- b(X),@0 
b(l). 
b(4). 
d2 :- f&l, !, e(X). 

:- 
d(x) :- @i 
d(X) :- h(X). 
43). 
f(4). 
g(2). 
h(l). 

?- a(Ans). 
Ans = 4 
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FIGURE 18. Execution snapshot for query ?- a(Ans), given the code listed in Figure 17. (a) 
The moment when c(X,) fails. e(X,) has failed, then backtracked into the cut, which could 
not be redone, so the parent goal c(X,) fails because its remaining clauses have already been 
eliminated for this invocation. (b) Final snapshot. Ghost status box for goal c means that 
prior invocation of c failed. 

but the frozen cloud makes all the goals enshrouded within it inaccessible to 
backtracking, so therefore clause 1 of c is marked as a failure. Since additional 
clauses of c were eliminated by the cut for this invocation, there are no alternatives 
to process, so this entire invocation of c fails. It is precisely at this moment of failure 
that the snapshot depicted in Figure 18(a) is taken. 

The final execution snapshot is depicted in Figure 18(b). Once goal c fails, as in 
Figure 18(a), backtracking turns the clause status box for clause 1 of b into a 
tick/cross, and proceeds to clause 2. Following the success of clause 2 of b, and the 
instantiation of X, and Am to 4, c(X,) is invoked for a second time. It passes 
through some of the original execution space once again, in particular goals d, g, 
and h. As these goals all represent second invocations at the same point in the 
execution space, they are displayed with a ghost status box behind them to show the 
first invocation. Because the first invocation of c spawned d’s siblings ! and e, these 
are displayed as faded-out status boxes, meant to lie in the same deeper plane as the 
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/ 
g(X, ) ---I K W, ) 

(b) 

FIGURE 18. Continued 

ghost status boxes. The only difference between a ghost and a faded-out box is that 
the faded-out boxes have no later invocations at the identical place in the execution 
space. 

Following the failure of clause 1 of c in this latest invocation, clause 2 of c finally 

succeeds in processing the subgoal f(X,), with the variables X,, X,, and Ans already 
having been instantiated to 4. 

2.6. The Long-Distance View 

A practical tracer poses an interesting set of constraints for the PROLOG envi- 
ronment designer. The execution space for serious PROLOG programs can be 
enormous, and may thwart the designer who has a nice “toy” paper-and-pencil 
execution model. Our aim has been to make our AORTA diagram the heart of a 
practical PROLOG tracing package aimed at experienced PROLOG users. The key 
lies in the use of a large graphics display and a compressed long-distance view of the 
AORTA diagram which can be zoomed in upon to provide the kind of detail 
described earlier. The approach we employ here is to allow the expert user to view 
the program as a whole from a distance in order to gain overall perspective, while at 
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pending successful 
goal goal 

LDV 
(user-defined q 
relation) 

0 

LDV 
(system 0 0 
primitive) 

LDV 
(compressed A 
user code) 

n 

falled 
succeeded, then 

failed on 
goal backtracking 

II 

0 0 

A n 

prior 
invocation(s) 
at this place 

la 

e 

A 

FIGURE 19. Correspondence between full AORTA procedure status boxes and collapsed LDV 

status boxes, used to simulate color. Filled-in white = green (success); black shading = red 
(failure); gray shading = pink (success followed by failure on backtracking). Triangles depict 
“compressed” code, as described in Section 5.1. The reader may wish to confirm that the 
“Byrd box” model used in many “spy” packages is a special case of our LDV. 

the same time providing facilities for viewing program execution (control flow and 
unification details) from up close. The user is provided with the ability to choose the 

grain size at which he or she wishes to view the program. 
The long-distance view (LDV) is designed to allow the user retrospectively to 

analyse the behavior of a program. It shows the execution space of the program (as 
opposed to the full search space) and the final outcome of attempted goals. This is 
done by means of a schematized AND/OR tree in which individual nodes summarize 
the outcome of a call to a particular procedure. Each node is actually a collapsed 
procedure status box, showing just the top half of the status box as introduced in 
Section 2.1. This collapsed box allows us the luxury of a global presentation without 
sacrificing the important summary information provided by the AORTA diagrams. 
Something must always be given up for the benefit of full global perspective, so we 
eliminate the clause counter and detailed clause-head information of the AORTA 

diagrams. This leaves us with a nearly traditional AND/OR tree, but with enriched 
“nodes” in the form of collapsed status boxes. 

To provide the most meaningful display of information in the smallest space, we 
rely on color in our color-workstation implementation and on shading in our 
black-and-white implementation. In the color display, ticks are green, indicating 
success; crosses are red, indicating failure; and tick/cross combinations are pink 
(“nearly red”). In the collapsed status box, it is sufficient to display just the color, 
e.g. a very small fully shaded green box instead of a box with a hard-to-see green 
tick in it. We simulate this in our black-and-white display using the correspondence 
shown in Figure 19. 

Given the program for party presented in Section 2.5, the LDV following process- 
ing of the query ?- party(Name) would look like that shown in Figure 20. 

The LDV diagram closely resembles the AORTA diagram shown in Figure 16. 
However, it omits the specific information relating to the unification history of 
individual clauses. It does still convey the success or failure of entire procedures 
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FIGURE 20. Long-distance view 
showing the execution of the query 
?- party(Name). Compare with 
Figure 16 to see the difference 
between the LDV and AORTA views 
of program execution. Note that 
the frozen cloud over the cut’s 
older sisters is retained even in 
the LDV, and that a circular node 
to the right of a frozen cloud is 
always a cut. 

and, more importantly, the success or failure of whole branches of the tree. The 
more fine-grained information is omitted specifically to allow the user to view the 
history of execution of an entire program, and to view it in perspective, seeing 
branches of success or failure and the existence and scope of backtracking. It thus 
provides the user with a global view of the program from which to direct subsequent 
debugging in a top-down manner. The method for achieving this and the interactive 
use of these tools are described in the following sections. 

The succinct manner of the LDV representation also allows for the analysis of 
very large PROLOG programs. Even if the execution space is too large to be 
meaningfully displayed within a single graphics pane, the user is able to scroll 
around the pane, selecting the area of the tree which he or she wishes to look at. A 
facility to monitor which part of the tree is being observed ensures that the user 
maintains a global perspective on the whole tree. An example of a tree for a more 
realistic size of execution space is shown in Figure 21. 

The execution space at the top of Figure 21 contains 310 nodes. Our current 
display can cope comfortably with 2500 nodes at the same resolution as that 
depicted in Figure 21. As an example of the powerful gestalt effects possible even in 
an unlabeled diagram, notice first the cluster of three circular nodes (depicting 

primitive calls) at the deepest level of nesting of the tree. Now try to find the same 
pattern of three “circular sisters” elsewhere in the tree. Finally, put yourself in the 

position of a programmer who has been developing the associated code over a 
period of days, and has become accustomed to the repetition of certain familiar 
shapes. Our point is that locating items of interest in the tree is surprisingly easy. 
Such items of interest can, of course, be inspected more closely, even while 
preserving a considerable amount of the surrounding context. In Section 3 we 
describe our selective highlighting facility which enables the programmer to high- 
light (by use of a characteristically eye-catching diamond surround) nodes in the 
tree which satisfy some particular constraint or behavioral description. 

3. A WORKING TPM ENVIRONMENT 

So far we have described the AORTA and LDV Views of the program trace. The 
following sections describe the way the user interacts with these descriptions, and 
other facilities and tools contained within the TPM environment. Our current 
implementation runs on 68020-based graphics workstations, and (except for some 
user-interface hooks) is written entirely in PROLOG. 
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3.1. Initial Environment and Basic Facilities 

The interaction with the TPM environment is essentially via mouse and menu 
selection. A typical screen snapshot is shown in Figure 22. The resident 
interpreter/compiler is seen on the right, together with a transcript of the user’s 
interaction with it, in this instance in a window called Process_6. From this top level 
the graphical tracer is invoked by the query ?- tpm, which results in the appearance 
of the window we see on the left. The menu options, buttons, and mouse-sensitive 
graphics areas are described briefly below, after which the major facilities are 
treated in separate detail. In the summaries which follow, we start at the top 
left-hand corner of Figure 22 and initially work downwards. 

Selective Highlight Button. This button produces a pop-up form, the purpose of 
which is to allow nodes in the LDV to be picked out by the user according to very 
specific features. For instance, the user can request the highlighting of all (and only) 
those calls to foo such that foo was a subgoal of bar and foo’s second argument was 
instantiated to, say, [a, b, c (Xl. Additionally the selected argument may have a series 
of constraints placed upon it. For example, we might ask for all occurrences of 
predicate count when its second argument is instantiated to some value which is 
greater than 10. It is also possible to apply a history filter, so that the user can 
highlight a specified goal at, say, precisely the moment before it failed for the first 
time, or just after its latest success. 

Move Viewport. When the execution space is very large, as in Figure 21, the 
full-screen LDV only shows part of the whole space. The reduced view at the top of 
the screen shows the full space, and includes a moveable viewport which the user 
can select to be the full-screen viewing region. 

Replay Control Panel. The user may choose to replay execution from some 
specific point in the execution history (or indeed from the very beginning), using the 
options in the control panel. The individual controls are, reading from the top, 
replay back to the beginning, single-step back, stop (this is highlighted in Figure 22) 
single-step forward, and ordinary forward. To the left of them is the replay speed 
bar, which changes the speed from slow to fast. Employing a video analogy, this 
allows the function of the forward button to be changed arbitrarily from “creep” 
through “play” to “fast forward”. The user can also move rapidly around the trace 
history by using the selective-highlight pop-up form. These facilities are illustrated 

in Section 4. 

Show/Hide LDV Predicates. The check-box toggle changes the default for the 
LDV either to display the predicate name alongside every LDV node, or not, as the 
user wishes. The chosen option here is not to show the name, and this is reflected in 
the LDV viewport shown on the right of this menu. The advantage of hiding 
predicate names is that a fair amount of space can be saved when the LDV involves 
very large execution trees. In any event, individual nodes can always be labeled at 
the user’s discretion by a single mouse-button press. 

Trace Menu. TPM supports three modes of program tracing. The first of these 
(and the one selected in Figure 22) is called post-mortem. In post-mortem mode the 
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entire program is first run, its history stored for subsequent investigation, and then 
the program trace displayed. The second mode is called liue. In live mode the trace 
is drawn as the program executes, with the execution tree being scaled dynamically 
as it is produced. Even in live mode, the full trace history is stored, so that all the 
facilities available in post-mortem mode are still available in live mode up to 
the point in the execution which the live trace has reached. On reaching the end of 
the program, the trace produced is identical to that produced in post-mortem mode. 
The final option is none, allowing the user to pose an untraced query to the raw 
interpreter without interference from the tracer. TPM encourages the user to think 
of program tracing as the norm during the program development/debugging cycle, 
and to regard disabling of the tracer as the exceptional case. 

User Queq. To pose a query, the user clicks on the “query” button. This 
produces a prompt in the original PROLOG window into which a query can be 
typed as normal. The “again” button runs the previous query again. How the 
program is traced is determined by the trace mode (post-mortem, live, or none). 

LDV Graphics Viewport and Popup Menu. The area to the right of the above 
menus is the graphics area. It is here that the LDV and AORTA viewports are 
displayed. In Figure 22, we see the LDV of some program displayed in the LDV 

viewport. In this particular instance the LDV viewport also contains the LDV pop-up 
menu, which is produced by pressing the left mouse button anywhere in this 
viewport. The top two options toggle the function of the rightmost mouse button. 
When quick zoom is enabled (as in the current snapshot), pressing the rightmost 
mouse button causes the AORTA procedure status box of the node currently under 
the mouse arrow to be shown in the short wide rectangle area (known as the 
quick-zoom viewport) just above the LDV viewport. If the quick-label option is 
chosen instead, the predicate name of the LDV node is drawn alongside it in the LDV 
viewport. Zoom to AORTA produces not only the full procedure status box represen- 
tation for the node in question, but also (to provide the most relevant contextual 
setting), procedure status boxes for the chosen node’s mother goal, sisters, stepsis- 
ters, and daughters. This three-ply close-up view, as we call it, is drawn in a new 
viewport at the bottom of the screen, with the original LDV viewport shrinking to 
accommodate it. Compress allows the user to treat the selected node as if it were a 
system primitive, i.e. not bother to show its descendants. Expand allows the user to 
view normally a previously compressed predicate. The cancel choice cancels the 
pop-up menu. 

Possible Bugs. Certain kinds of suspicious code can already be detected by our 
old trace analyser Ill], and we are allowing for extensions to TPM which will assist 
the user in analysing buggy code. These currently include extending the interface to 
accommodate declarative debugging methods (e.g. [26]) and the development of 
more advanced knowledge-based methods for bug recognition. 

Consult. When selected, the user is prompted to type the name of a PROLOG 
source-code file into a pop-up dialogue box. The file is then loaded into the current 
environment. 
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Refresh. Refreshes the screen. 

Redraw. Redraws the LDV display. This is useful when applied to traces pro- 
duced and dynamically scaled when in live trace mode. The live LDV is transformed 
into its post-mortem equivalent by applying the post-mortem tree-drawing algo- 
rithm. 

Exit. Leave the debugger and return to the PROLOG top level. 

The following subsections describe the major features of the environment in more 

detail. 

3.2. Post-Mortem versus Live Tracing Modes 

In post-mortem mode, the entire program is executed and then the program trace is 
drawn up. The advantage of this approach is that it provides a particularly clear 
overall perspective from which to embark on a sequence of replay, highlight, and 
zoom, thereby helping the user to home in rapidly on the cause of a bug. The 
disadvantages are that (1) the user may experience some delay before the display 
appears, and (2) the user is not able to stop the program in mid execution and carry 
out an interaction in the same way as in traditional tracers. In contrast, live mode 
allows the user to run the program up to the point of a bug’s occurrence and debug 
it from there. In live mode, once the user has stopped the program (which can be 
done at any point), any of the other facilities (e.g. highlight, zoom, or replay) may be 
used on the program up to the point the execution has so far reached, thereby 
providing the best of both styles. A disadvantage of live mode is that the tree-draw- 
ing algorithm can only provide the optimal layout after it knows which nodes have 
been traversed, and therefore the algorithm is forced to provide its best guess in live 
mode. Even so, the “redraw” button allows the user to request an optimized layout 
of the tree up to the current execution point. 

Experienced users of existing systems can also run an orthodox textually based 
“Byrd box” debugger in the normal PROLOG window, which has all the function- 
ality of today’s standard debuggers, but is upwardly compatible with TPM. 

3.3. Selective Highlighting 

Frequently a user will wish to ask queries of the form, “Where did a given variable 
get instantiated to value X?” or “Where in the program does foo get called by bar?” 
To address this problem we provide a selective-highlighting option in the LDV 

display. This option allows the user to specify a given pattern, the name of a 

predicate, the name of a variable, an instantiated variable term, or any combination 
thereof, with the further option of specifying a particular parent goal for the pattern 
to have, if required. The result of such a request is for the nodes that correspond to 
such a description to be highlighted in the LDV diagram. For example, we can 
request the highlighting of all occurrences of the predicate foo with a second 
argument instantiated to the list [bar], and moreover just those occurrences when 
foo was called by the mother goal gawp. The result of such a request will be for the 
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GOAL functor : 

PARENTrunctor : 

CONSTRAINTS 

arguments : 

arguments : 

1 CANCEL 1 I OK 

FIGURE 23. The selective-highlight pop-up form. 

specified items to be highlighted wherever this combination occurs in the LDV. The 
facility allows for rapid location and tracing of given predicates or variables. It also 
allows the user effectively to spy a variable or a particular variable instantiation and 
observe its behavior retrospectively in the trace. Using concentric diamonds with 
different line patterns (or colors in our colored display implementation), several 
things can be highlighted at once, making it possible for example to consider all 
occurrences of foo called by bar while also considering any 9” test called by gawp. 
An example of a selective-highlight pop-up form is shown in Figure 23. 

The convention is that all items are optional, each one providing a more tightly 
specified restriction on the search for a matching goal in the LDV. All variable names 
used in the selective-highlight pop-up selection form are local to the form. In other 
words, arguments specified as (X, Y, [Z 1 Zsl) mean only that the goal in question had 
precisely three arguments, and moreover that the third argument was a list, but the 
goal itself need not have involved the precise variables X, Y, Z, and Zs. If the 
precise variable name is significant, then it can be preceded with a quote symbol. 
For instance, if the arguments are specified as (X, ’ Y, [ ’ Z 1 Zs]), then we are 
interested in a three-argument goal as before, but this time the actual variables Y 
and Z must have been used in the two positions indicated. If a quote precedes the 
outermost brackets, e.g. ‘(X,Y, [Z [Zs]), then all of the arguments of the goal in 
question must appear precisely as specified in order to be chosen for highlighting. 

Typically, users will specify some particular goal to be highlighted by typing in 
just the name of the principal functor. If the invocation(s) involving particular 
variables or instantiations thereof are of interest, then the arguments can be 
specified. In fact, it is possible to specify just the arguments and to leave the functor 
field of the pop-up form unfilled. If the occurrence of a goal is only of interest 
within the context of a particular parent goal, then the second line of the selective- 
highlight pop-up form can be filled in as well. The third line (“constraints”) accepts 
any valid PROLOG goal (or conjunction thereof), which is then regarded as an 
additional filter to apply to the selection of nodes for highlighting. For instance, 
Figure 24 depicts a filled-in selective-highlight form in which the user wants to see 
just those occurrences of foo where foe’s second argument is instantiated to a list 
whose length is greater than 5. 

Underneath the constraints field in the selective-highlight form is a row of 
check-box options which we call the history jilter. Formally, this is just another 
constraint helping to determine which nodes get highlighted, but it is uniquely tied 
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GOAL functor : foe arguments : (X. Y, 2) 

PARENTfuncror : arguments 

CONSTRAINTS Y = [ _ 1~ I, length(Y, L), L > 5 

FIGURE 24. User is interested in all places where foo’s second argument is a list of length 
greater than 5. 

to the innards of the fine-grained execution history, and therefore not normally 
accessible to the user from PROLOG. The user may be interested in all occurrences 
of goals satisfying the top three lines of the selective-highlight form, in which case 
the word “All” can be chosen, and the options to the right become disabled 
(appearing in faded gray). Alternatively, the user may want to see just a certain 
occurrence, e.g. only before the first failure of the specified goal. Eight possible 
history filters are allowed (“before first success”, “before first failure”, “after latest 
failure”, etc.). When a history filter is used, not only is the relevant node highlighted 
in the display, but the LDV is actually “wound back” precisely to the specified 
moment in the execution history (e.g. the execution snapshot one frame before the 
goal in question failed for the first time). From this point, the user can replay 
execution forwards or backwards, and zoom in to see unification details, as 
described in Sections 3.4 and 3.5. 

3.4. Replay 

One of the major problems in telling the story of a program’s execution is explaining 
reinstantiation of variables, multiple successes or failures, and other facets of 
backtracking. We deal with this problem by providing a replay facility whereby the 
user can see the dynamic execution of the program through the LDV execution space 
or AORTA diagrams, clearly indicating failure and subsequent backtracking, re- 
attempting of goals, subsequent failure, resatisfaction, or retries. The replay facility 
thus allows the user to view the execution space at any given time, or at any 
particular goal invocation. The user can control the speed of the replay, with slow 
motion and single-step options being available. 

Our replay capability is possible only because we store an exhaustive history of 
the program’s execution. All of the replay facilities rely on this history, and 
therefore the user can not make arbitrary changes to a program in the middle and 
then attempt to carry on with the replay. If the user wishes to do this, then he or she 
must use live mode and make the changes to the program after interrupting (and 
then resuming) execution. Our experience is that being able to home in quickly on 
buggy code is sufficiently rewarding to justify the storage overheads of history 
preservation. In post-mortem trace mode, endless loops must be trapped by setting 
a user-modifiable depth bound on recursive calls. 
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Typically we would expect the replay facility to be used when the user is trying to 
figure out why a piece of code behaved as it did in a particular instance and wishes 
to step through it in simulated execution mode. This is true especially when the user, 
in figuring out a complex case of backtracking, wishes to find out where final or 
interim instantiations came about. The user can tell the program to stop at a 
particular point, which may either be prespecified or else indicated via a mouse click 
at any point during the dynamic replay. The utility thus allows the user effectively to 
freeze the program at any step of its execution and use any of the other existing 
tools on the program at that point, to step backwards or forwards one or more 
“frames”, or to carry on with the execution. 

Just before replay begins (i.e. following a selective highlighting choice or a 

request to replay from the beginning), the LDV is “wound back” to the user-selected 

point. The interesting thing about the LDV at this point is that it shows a “pre- 

ordained” execution space, i.e. nodes in the tree which TPM guarantees will eventu- 

ally form part of the execution space, but which at the moment of replay have yet to be 

traversed. This provides a context within which the user can watch execution unfold, 
and is considerably more constrained than the full-blown search space would be. 
The replay control panel (which is always visible to the user) can then be used to 
initiate the actual replay. 

On a color display we use green nodes to represent success, and red ones failure. 
Nodes on the active or pending goal stack are indicated by their distinctive 
(thick-outline) shape. A typical replay scenario runs as follows: the “preordained” 
LDV changes to indicate the initial area of execution, followed by nodes turning 
green to indicate success. The execution tree is engulfed in a swathe of green, with 
isolated patches of red denoting local failures. However, on encountering backtrack- 
ing, the successful green nodes are retried and turn pink on failure. In the event of 
extensive backtracking which eventually succeeds, we see large areas of green turn 
to pink until finally the process stops and the green starts to regain its lost territory. 
The whole process can be stopped and frozen at an instant to allow for closer 

inspection by a mouse click. 
What is most important here is for the gestalt to be right, i.e. for the display not 

only to be informative, but also to feel like an accurate version of the underlying 
PROLOG machine. 

3.5. Zooming 

Zooming links the LDV and AORTA representations by allowing the user to switch 
between the two, enabling the user to zoom in on the unification history of 
particular clauses from the LDV. In this way the complementary nature of the two 
views is emphasized. The LDV allows the user to view the program from a clear 
perspective, uncluttered by unwanted information, and explore its behavior in an 
orderly, informed manner. The AORTA diagrams as described in Section 2 show the 
overall success/failure information, as in the LDV, with the additional detail 
regarding the finally invoked clause body, its matching head, and the other clauses 
that matched, and their history. Switching from the LDV of a particular node to the 
AORTA view thus increases the amount and type of information available to the user. 
Not only is this AORTA view useful for teaching novices, but it also (in conjunction 
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with the LDV and zooming) allows the expert rapid and easy access to a large 
amount of unification history and surrounding information. 

The close-up view shows not only the focused-upon goal, but also that goal’s 
mother, sisters, stepsisters, and daughters. It thus provides both clarity of detail and 
some surrounding context within which to perform debugging. We call this our 
three-ply close-up uiew, because three generations of goals are visible at once. The 
replay facilities described in Section 3.4 are also available in the close-up view, 
which means that the precise details of unification history can be observed if 

necessary. 
The collection of facilities mentioned above allows the user, whether novice or 

expert, to be told much more detail about the history of program execution. Since 
zooming and highlighting requests always begin with the LDV, all the perspective 
information associated with the LDV is available at the point of choice, allowing the 
user clearly to understand the context of the code which is being observed close up. 
This approach removes the “forest-versus-trees” problem associated with conven- 
tional “spy” packages. In such packages, once a “spied” goal is reached, it may no 
longer be clear how one arrived there, how the instantiations of the variables have 
been derived, what state the program is in, what side effects have taken place, 
whether the program has only reached this point on backtracking, or (if a “redo” is 
involved) the nature, cause, and scope of the backtracking involved. By the combi- 
nation of the LDV, AORTA, zooming, selective highlighting, and replay facilities, the 
user may more readily understand the state of the program, and thus arrive rapidly 
at the source of problematic bugs. 

Section 4 illustrates the facilities in greater detail by presenting worked examples. 

4. WORKED EXAMPLES 

To illustrate some of the features of our notation and the environment in which it is 
embedded, we present several PROLOG programs and show how they are dealt 
with by TPM. Sections 4.1-4.3 contain examples of code which we consider to be 
representative of situations we have observed during the writing and debugging of 
large PROLOG programs. Section 4.1 illustrates TPM’s long-distance-view and 
selective-highlighting features, applied in the context of a small expert system. 
Section 4.2 illustrates the role of selective highlighting and zooming in debugging a 
database manipulation program. Finally, Section 4.3 illustrates how the replay 
facility is used in debugging a soLo-to-PROLOG compiler. 

4.1. An Expert System (Showing LDV, Quick Zoom, Quick Label, 
and Selective Highlighting) 

Although space precludes the discussion of extremely large programs, it is useful to 
look in some detail at an expert-system example, devised originally by Winston [28] 
and adapted for PROLOG by Coelho, Cotta, and Pereira [4]. Representative 
portions of the code are shown in Figure 25. Only selected portions of the database 
are shown, with ellipsis dots (“. . . “) indicating “more of the same type of code”. 

Figure 26 shows the LDV of program execution given the query 
?-recognition(animal). In this case, the user has typed a “yes” response to each 



rufe( 1, animal, mammal, [cl]). 
rule(2, animal, mammal, [c2]). 
. . . 

rule(9, carnivore, cheetah, 1~12, ~131). 
. . . 

rule(l5, bird, albatross, [c21]). 

/* recognition process: discover animal’s name */ 

recognition(X) :- 
rule(N, X, Y, Z), discover(Z), found(nde), 
conclusion(X, Y, N), recognition(Y), 
abolish(fact, 2). 5% could have used retractall. 

recognition(_) :- 
retract(rule), write( ’ Done. ’ ), nl. 

recognition(_) :- 
write( ‘Don ’ ’ t know this animal. ’ ), nl, abofish(fact, 2). 

found(X) :- 
X! . 

found(X) :- 
assert(X). 

/* discovey process */ 
discover( [ I). 
discover( [x 1 Y]) :- 

ask(X), discover(Y). 

ask(X) :- fact(X, yes), ! . 
ask(X) :- fact(X, no), ! , fail. 
ask(c1) :- write( ‘has it hair?‘), nl, ! , complete(c1). 
ask(c2) :- write( ‘does it give milk’), nl, ! , complete(c2). 
. . . 

ask(c9) :- write(’ has it eyes pointing forward’), nl, ! , complete(c9). 
. . . 

ask(c21) :- write( ‘is it a good flyer ‘), nl, ! , complete(c21). 
complete(X) :- 

read(Y), assert(fact(X,Y)), Y = yes. 

/* conclusion of the recognition process */ 
conclusion(X, Y, N) :- 

nl, tab(4), write( ’ ---the ‘), write(X), 
write(’ is a ‘), write(Y), write(’ by rule ‘), 
write(N), nl, nl. 

/* description process */ 
description(X) :- 

rule(N,Y,X, Z), descriptionl(Y, L, [I), 
conclusionl(X, L, Y, Z, N). 

description(_) :- 
nl, write( ‘Don ’ ’ t know this animal. ‘), nl. 

descrfptionl(Y, L, Ls) :- 
rufec, X, Y, _), descriptionl(X, L, [x 1 Ls]). 

description&L, L). 

/* conclusions of the description process */ 
conclusionl(X, L, Y, Z, N) :- 

nl, tite( ’ a ‘), write(X), write( ’ is an ’ ), 
output(L), write(Y), 
write( ’ satisfying conditions: ’ ), nl, 
output(Z), nf, write( ‘by rule ’ ), write(N), 
write(‘.‘). 

output(] I). 
output([A 1 B]) :- write(A), tab(l), output(B). 

FIGURE 25. Code for Winston’s [28] expert system. This implementation is taken from 
[4, pp. 47-521. 



A 
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discover([ X 5d YSO ] ) 
Quick Zoom Viewport 

FIGURE 27. Selective highlighting of the place where discover gets called with a multi- 
element list as its argument. The highlighted node (shown with a diamond surrounding it) is 
in the fourth tier of goals in the tree. The quick-zoom display at the top reveals that the list 
passed in to discover at this point is in fact [c12,c13]. 

question, so that the conclusion was that the animal was a cheetah. The “show LDV 

predicates” option is disabled; hence the tree is drawn without predicate names. 
However, using the “quick label” option introduced in Section 3, we have labeled 
individually a few nodes in the LDV for convenience. Notice the telltale shape of the 
tree every time recognition is called. 

From the code in Figure 25 we can see that a rule may lead to single or multiple 
conclusions. The predicate that deals with this is discover. Suppose that we wish 
only to focus on the time(s) when discover gets called with a multiitem list passed in 
as its argument, i.e. when we are dealing with multiple conclusions. To highlight the 
node we use the selective-highlight pop-up form and specify that we want to see the 
predicate discover called with more than a one-element list e.g. [_, _ 1 ] anywhere 
where this combination occurs. The node in the diamond in Figure 27 shows the 
highlighted node. To quickly get a better view we change the function of the right 
mouse button to quick zoom, using the LDV pop-up menu. If we now mouse-click on 
the highlighted node, the result is shown in the quick-zoom viewport at the very top 
of the graphics area. The result of the quick zoom has been to draw the AORTA 

procedure status box for the highlighted node. 
In this example, TPM was used just to confirm that the program was working as 

expected. In the upcoming examples, we see how TPM can be used to home in on 
buggy code. 
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==ch_db(B IV, (x I W:- 
jones(_, _, X, _, J, 
storetiones, X), 
search_db(T,Ts). 

search_db( Ix ) T], m 1 Ts]):- 
jaeK,_,X_,_), 
store(jacks, X), 
search_db(T, Ts). 

search_db(fi 1 T], p 1 Ts]):- 
smitK_,Xs,_,_), 
store(smiths, Xs), 
search_db(T, Ts). 

-rch_db(I I,[ I):- 
nl, write( ‘All items are known ’ ), nl. 

=reh._db([X IA, I I):- 

% check to see if jones supplied the item 

% place in new database 
% check rest of the list 

% test, manufacturer was jacks 

% test, manufacturer was smiths 

% empty list, success 

% unknown item, indicate so and return list 
% processed to date 

write( ’ List contains unknown item: ’ ), write(X), nl. 

store(Manu, Item):- 
manufacturer(Manu, Item). % in database already, then ignore 

store(Manu, Item):- 
assert(manufacturer(Manu, Item)). % otherwise assert new item. 

FIGURE 28. A buggy program to check a list against a known database. 

4.2. Database Manipulation (Showing Selective Highlighting and AORTA 

Three-Ply Close- Up View) 

Consider the following scenario: A prestored database describes the contents of a 
warehouse, giving the reference number, order number, item, price, and quantity, all 
referenced in terms of the supplier. The database looks like the following: 

jones(1609, llla, tyres, 12.46,30). 

jacks( 1620,444, pumps, 23.00,15). 
jacks(1621,477a, wheels, 9.99,5). 

smiths( 1640,370, hubcaps, 5.49,43). 
. . . 

Now suppose that since the original database was developed, things like the old 
reference number, price, and quantity in stock have changed. What we wish now to 
do is to take items which are currently in stock and check them against the old 
database, writing out a new database of items and suppliers. If an item is new, i.e. 
not in the old database, then the program will warn us that a new item has been 
encountered and return the list of known items so far processed. Items that are 
included in the new database already are ignored. The program to do this is 
presented in Figure 28. 

Given the query ?- search db([tyre, wheels, hubcaps], P), the program appears to 
be working correctly, and the-following new facts are asserted: 

manufacturer(jones, tyres). 
manufacturer(jacks, wheels). 
manufacturer(smiths, hubcaps). 
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‘h search_db 

FIGURE 29. LDV for the initial query ?- search_db( [tyres, wheels, hubcaps], P), given the 
program shown in Figure 28. 

The LDV for this example is displayed in Figure 29. The option “show LDV 

predicates” is enabled this time, so every LDV node is shown with its predicate 
name. If the query is rerun, then the LDV is much the same except for the behaviour 
of store. Figure 30 illustrates this. 

So far the program has behaved as desired. Now, if we present it with the query 
?- search_db([tyres, wheels, hubcap], P), we expect the program to print out ‘List 
contains unknown item: hubcap ’ , and return with the truncated list P = 
[tyres, wheels]. Unexpectedly, however, the query succeeds with P = 
[tyres, wheels, hubcap]. That is, the program claims to know all the items, instead of 
reporting that it contained an unknown item, namely hubcap. If we ask for an LDV 

of the program, we shall get the same diagram as Figure 30. The program appears to 

FIGURE 30. A second run of the query ?- search_db([tyres, wheels, hubcaps], P). The query 
succeeds, with P = [tyres, wheels, hubcaps]. The figure differs from that in Figure 29 insofar as 
the items in the list are already known by manufacturer and therefore are not asserted as new 
facts. 
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search_db GOAL functor : 

PARENTruncm : 

CONSTRAINTS 

arguments : ( [hubcap I_] , _ ) 

arguments : 

FIGURE 31. We’ve asked to see the call to search_db highlighted when its first argument is 
instantiated to some list beginning with hubcap, and we want to see all possible occurrences. 

have behaved in the same manner. Since we are interested in what happened when 
search_db came to deal with hubcap, we can use the selective-highlight facility to 
show us everywhere in the tree search_db gets called with first argument instantiated 
to [hubcap 1-1, as shown in Figure 31. Notice that, having set the history filter to 
“all”, we now cannot choose before/after, first/latest, or success/failure; hence 
these check-box options are shown faded, indicating that they are passive to mouse 
clicks. The result of our highlighting request is shown in Figure 32. 

Having located this node, we can ask TPM to zoom in on the goal. As Figure 33 
shows, this gives us a three-ply view of the goal, with the chosen goal in the middle 
of the AORTA diagram. The AORTA diagram initially appears with the arguments of 
only the zoomed-upon node displayed, but by menu selection any other node may 
also have its arguments displayed. In the snapshot shown in Figure 33 the procedure 
status boxes for smiths and store have been selected for full-argument display. From 
the AORTA diagram we can see that the program’s behavior prior to reaching the 
chosen goal was entirely as predicted. Once attempting the goal, it tries to prove 
clause 1 of search_db but fails. Clause 2 is then attempted, but this also fails. This is 
what is expected. However, we can see that the first subgoal (smiths) in the body of 

FIGURE 32. LDV of the query ?- search_db( [tyres, wheels, hubcap], P), which unexpectedly 
succeeded. The goal searcb_db with first argument [hubcap I_] is highlighted. 

m search_db 
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search_db( [ X, / T3 ] , 

smiths(1640,370.hubcaps,5.49,43) 

Q ’ ’ 
I I I I t 

FIGURE 33. Zoomed view of the goal search_db((hubcapl_],_) as chosen from the LDV. 

clause 3 succeeds. Now notice what the unification arrows indicate for the smiths 
goal. From these arrows we can clearly see that Xs, is not instantiated at invocation 
time, but is instead an output variable which becomes instantiated to hubcaps. The 
unification arrows also show us two other things. Firstly, the newly instantiated 
variable Xs, passes its value to store, where store(smiths, hubcaps) succeeds. Sec- 
ondly, notice for search_db how the instantiation of X,, the head of the input list 
(argument l), is passed directly across to the head of the output list (argument 2), 
but is not passed “down” to the first subgoal, smiths. This is why the variable Xs, is 
uninstantiated when smiths is invoked. This is clearly not what was meant to 
happen. The program should have tried to prove smiths(_, _, hubcap, _, _), but we see 
that smiths was erroneously invoked with the uninstantiated variable Xs, as its third 
argument. This argument subsequently got instantiated by unification with the first 
fact found for smiths, namely smiths(_,_, hubcaps,_,_). By introducing a simple 

lexical error (Xs instead of X in the first subgoal of clause 3 of search_db), we have 
caused a wrong-mode problem: the third argument of smiths should be input only, 
but is used accidentally as output. Given the users we have observed, we feel it is a 
safe assumption that mode declarations for such a specialized piece of code would 
not normally be made. The correct code for clause 3 of search_db is shown below: 

search_db([X IT], [X 1 Ts]):- 

smiths(_, _, X, _, _), 
store(smiths, X), 
search_db(T, Ts). 

With this change, the call to smiths will now be smiths(_, _, hubcap,_,_), which will 
(correctly) fail. TPM helped us to find bugs within two steps: the LDV highlight and 

the zoom to the AORTA diagram. Many modem PROLOG implementations will find 
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TO INFECT /X/ 
1 NOTE /X/---HAS--->FLU 
2 CHECK /X/---KISSES--->?Y 

2A If present: INFECT *Y; EXIT 
2B If absent: PRINT “ADIOS”; EXIT 

DONE 

infect(X) :- 
assert(triple(X, has, flu)), 
(triple(X, kisses, Y), 

infect(Y)) ; 
tite( ’ adios ’ ). 

FIGURE 34. SOLO code for “recursive forward propagation of a side effect”, and its 
counterpart in PROLOG shown on the right. 

and report as a warning any single occurrences of a variable in a clause. However, 
the clause that was in error here contained all the variables twice. Indeed, the 
pattern of their occurrence was entirely plausible, since smiths might have used an 
output variable which was to be dealt with by store if the program semantics had 
been different. Either way, the AORTA will show clearly the behavior of the program. 

Interestingly, the more elegant general version of search_db, using “univ” to 
generate the various predicates (smiths,jacks, etc.) at runtime, is just as easy to 
debug with TPM. This is because both “univ” and call are displayed as circular 
nodes, and every runtime instantiation built by “univ” and invoked by call gets its 
own full-fledged status box in the display. An illustration of the replay facility run 
on a simple compiler is shown in the next section. 

4.3. A som-to-PROLOG Compiler (Showing Zooming and Replay) 

SOLO is a simple semantic-network manipulation language developed for teaching 
AI and cognitive modeling techniques to undergraduate psychology students [9]. 
SOLO procedures work by inspecting and side-effecting a global database which is a 
labeled, directed graph. The primitives for storing, deleting, and retrieving relational 
triples are called NOTE, FORGET, and CHECK. CHECK provides for conditional 
branching depending upon its success, and also allows simple pattern matching. 
These features are illustrated in Figure 34, which shows a SOLO procedure on the left 
and its PROLOG counterpart on the right. 

An interesting idiosyncrasy of SOLO is its imposition of “mental hygiene” on the 
user by (1) prompting for both branches of conditional statements (If present and If 
absent), and (2) obligatory use of the control-flow indicators EXIT and CONTINUE 
at the end of each conditional branch. The point of the control-flow indicators is to 
force the user to state whether the procedure is to continue (to the next main 
numbered step in the program) or to exit (“return”) to the calling procedure. This in 
turn eliminates many of the “falling through conditional branch” bugs to which 
many novice programmers are prone. 

SOLO has been superseded by PROLOG in our own teaching activities, but the 
language itself remains useful as a case study for the implementation of parsers, 
interpreters, compilers, syntax-directed editors, and user interfaces. The remainder 
of the discussion in this section concentrates on the implementation of a SOLO-to- 
PROLOG compiler, and the use of TPM to track down bugs therein. 

Before proceeding, the reader may wish to verify that within any CHECK state- 
ment, there are only four possible combinations of EXIT and CONTINUE control-flow 
indicators, and that each combination results in a particular mapping of SOLO code 
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TO JUDGE /X/ 
1 CHECK /X/---VOTES---XNDEPENDENT 

LA If present: PRINT “AHA, A FREE THINKER”; CONTINUE 
1B If absent: PRINT “UH OH: A PUPPET”; EXIT 

2 PRINT “WHICH IS ALL RIGHT WITH ME” 
DONE 

FIGURE 35. SOLO code for “criticizing a person’s voting habits”. 

onto PROLOG code. These combinations form the basis for the heart of the 
compiler to be illustrated momentarily. Before getting into the details, let’s look at 
another SOLO procedure called JUDGE (Figure 35). The equivalent PROLOG code 
is shown in Figure 36. For expository purposes, we assume a mapping from SOLO 

onto a single PROLOG clause containing embedded conjunctions and disjunctions. 
In our actual implementation, we include a puriJer which converts potentially 
awful embeddings into easier-to-follow multiclause definitions. 

The details of the SOLO user interface and the front-end parsing routines 
(developed in our laboratory by Tony Hasemer) are not relevant to the current 
discussion, so we just take it as given that the SOLO program shown in Figure 35 can 
be parsed into the internal representation (i.e. SOLO code depicted in the form of a 
PROLOG structure) shown in Figure 37. We use the predicate solodef with two 
arguments: the name of the SOLO procedure (including its arguments, if any), and a 
list of lists containing the main steps of the SOLO procedure in order. CHECK 

statements are represented as six-element lists containing: 

(1) the key word check, 

(2) the triple which needs to be looked up in the database, 

(3) the action to perform if the triple is present, 

(4) what to do after (3), i.e. exit or continue, 

(5) the action to perform if the triple is absent, 

(6) what to do after (5), i.e. exit or continue. 

Converting a procedure from SOLO to PROLOG is now a matter of retrieving its 
definition, and doing some pattern matching to detect the different possible 
control-flow combinations involving CHECK. Below we show a workhorse predicate 
called compile which does this. Our top-level driver is called convert. It uses an 
auxiliary predicate called when enabled which conditionally (i.e. when an appropri- 
ate enabled assertion is stored in the database) performs some action for the user’s 
benefit, such as listing code on the terminal. When the appropriate body of the 

FIGURE 36. PROLOG version of the SOLO code presented in Figure 35. Single-clause 
definition is produced deliberately. 

judge(X) :- 
(triple(X, votes, independent), 

write( ‘aha: a free thinker’), 
write( ‘which is all right with me ‘)) ; 

write( ‘uh oh: a puppet’). 
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solodef(judge(X), 
I [check, 

[x, votes, independent], 
[print, ‘aba: a free thinker’], 
cant, 
Iprint , ’ uh oh: a puppet ’ 1, 
exit], 

[print, ‘which is all right with me’] 
I). 

FIGURE 37. Internal representation of SOLO code shown in Figure 35. The parser itself is not 
discussed in this paper. 

definition is obtained by instantiating the variable PrologCode in compile, the head 
and body are both asserted into the database. A listing of the top-level driver is 
shown in Figure 38. 

The workhorse predicate compile, defined in Figure 39, takes a list of SOLO 

statements as its input (first argument), and returns a PROLOG clause body as its 
output (second argument). Typically, the SOLO code for either the “if present” 
branch (Prescode) or the “if absent” branch (Abscode) also needs to be converted to 
PROLOG. There are two possibilities: 

(1) A trivial conversion takes place via the predicate decode, which does such 
things as convert NOTE FIDO ISA DOG to the PROLOG form assert(tri- 

ple(fido, isa, dog)). 

(2) The SOLO statement itself is part of a longer list of SOLO statements, which 
can in turn be converted by means of a recursive call to compile. Which 
branches of SOLO code run together to form a nice PROLOG conjunction is 
uniquely determined by the four combinations of EXIT/CONTINUE, EXIT/ 

EXIT, CONTINUE/EXIT, and CONTINUE/CONTINUE. 

The SOLO triple JOHN KISSES MARY is converted into the PROLOG form 
triple(john, kisses, mary) rather than kisses(john, mary) for historical reasons, related 

FIGURE 38. Top-level driver and auxiliary predicates for soLo-to-PROLOG compiler. 

convert(Pred, PrologCode):- 
solodef(F+ed, Solo&de), % retrieve dejnition 
compile(SoloCode, Prolog&de), % map SOLO into PROLOG 
when_enabled(show_code(Pd, Prolog&de)), % inform user 
assert((Pred :- Prolog&de)), 9;; put new code in database 
retract(compiling). % kill old Jag 

when_enabled(ACIlON) :- % cute way to do actions conditionally 
enabled(ACTION), % is there a jag in db allowing us to proceed? 
call(ACTION). % then perform the action 

when_enabled(ACTION). % no Jag? OK-default success (i.e. carry on) 

enabled(show_code(_,_)). % Jag to run show-code when requested 

show_code(Pred, Body):- 
write(Pred), write(’ :- ‘), nl, tab(l2), tite(Body). 



322 MARC EISENSTADT AND MIKE BRAYSHAW 

% FOUR CHECK CASES: EXIT/CONT; EXIT/EXIT; CONT/EXIT; CONT/CONT: 
compile([[cbeck, [A, B, C], Prescode, exit, Abscode, cent] (Rest], 5% EXIT/CONT 

(triple(A, B, C), Thencode ; Elsecode)) :- 
decode(Prescode, Tbencode), 
compile([Abscode 1 Rest], Elsecode). 

compile([[check, [A, B, C], Prescode, exit, Abscode, exit] (Rest], % EXIT/EXIT 
(triple(A, B, C), Tbencode ; Elsecode)) :- 

decode(Prescode, Tbencode), 
decode(Abscode, Elsecode). 

compile( [[check, [A, B, C], Prescode, con& Abscode, exit] 1 Rest], 5% CONT/EXZT 
(triple(A, B, CT), Tbencode ; Elsecode)) :- 

compile((prescode I Rest], Tbencode), 
decode(Abscode, Elsecode). 

compile([[cbeck, [A,B, C],Prescode,cont,Abscode,cont] IRest], % CONT/CONT 
((triple(A,B, C),Tbencode ; Elsecode) , Restcode)) :- 

decode(Prescode, Tbencode), 
decode(Abscode, Ekecode), 
compile(Rest, Restcode). 

% TWO cases not involving check at ail: 
compile( [[F ( Args] I 01, (Fcode, Ocode)) :- 

decode([F I Args], Fcode), 
compile( 0, Ocode). 

compile([ 1, true). 

% most general case 
% convert first part of code trivially 
% then recurse on rest 

decode( [ 1, true). % no code? convert to “true” 
decode( Iprint, Arg], tite(Arg)). 5% map “print” onto “write” 
decode([note, A, B, C], assert(triple(A, B, C))). % map “note ” onto “assert ” 
decode([Any (Rest], PrologPred):- % FOO A B C in SOLO = [ foo, a, 6, c] 

PrologPred = . . [Any IRest]. % . . then try your luck with “foo(a, b, c)” 

FIGURE 39. Workhorse predicates compile and decode. 

to the need to access any part of the triple with equal ease. Figure 39 provides the 
remainder of the code necessary to continue illustrating TPM in action. 

The code shown in Figures 38 and 39 contains a bug. In response to the top level 
query ?- convert(judge(P),L), not only does the goal fail, but also show-code 
succeeds multiple times and prints out ten answers rather than just one. Worse still, 
listing the clauses that now exist for judge, we find there are now twenty (nineteen of 
which are totally meaningless). If we use TPM to run a post-mortem trace on the 
same top-level query, it is immediately obvious what has happened. Figure 40 shows 
the final LDV. On examination of the final LDV, we can see clearly how we came to 

backtrack and produce multiple solutions. All the goals can be seen to have 
succeeded at least once, but to have failed later on backtracking, with the exception 
of retract(compiling), which is the youngest (rightmost) subgoal of the top-level goal 
in Figure 40. To confirm this we can select the replay menu option to display the 
tree precisely as it would have looked at the very point at which the goal 
retract(compiling) was attempted. This is done using the selective-highlight pop-up 
form, as shown in Figure 41. 

Following the selective highlight shown in Figure 41, the LDV is automatically 
“wound back” to the point where retract was initially invoked, as the history filter 
in the selective-highlight pop-up form specified. The LDV at this point shows a 
preordained execution space, i.e. nodes in the tree which TPM guarantees will 
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retract 

compile A =.. de CLrite 

FIGURE 40. LDV depicting final snapshot of the execution of ?- convert(judge(P),L). 

eventually form part of the execution space, but which at the moment of replay have 
yet to be traversed. User-defined procedures in the preordained execution space are 

shown as horizontal bars (“unvisited squares”), while system primitives in the 
preordained execution space are shown as dots (“unvisited circles”). Figure 42 
depicts the LDV execution snapshot precisely one frame before retract’s first failure. 
Notice in Figure 42 that there are cases in which an ordinary white-square node in 
the (already traversed portion of the) LDV has daughter nodes which are all in the 
preordained execution space (i.e. small dots or horizontal bars). Such situations can 
only mean that an early success was achieved trivially (i.e. a PROLOG fact), but 
that later on in the execution history there will be further attempts (after backtrack- 
ing) involving other clauses which will be spawning subgoals. 

FIGURE 41. Using the selective-highlight pop-up-selection form to rewind the LDV to just 
before retract failed. Strictly speaking, even the specification of the goal retract could have 
been omitted, and TPM would find the point at which any goal failed for the first time. 

GOAL /uncror : retract 

PARENTfmror : 

CONSTRAINTS 

arguments : 

arguments : 

11 CANCEL 1 r OK II 
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retract 

FIGURE 42. LDV wound back to the point where retract(compiling) was first attempted. 

Every goal invoked up to the execution snapshot shown in Figure 42 has 
succeeded. If we were to quick-zoom on the uppermost node for compile, we would 
see that it succeeded in the expected manner, i.e. with its second argument 
instantiated to the entire body of the clause shown earlier in Figure 36. From this it 
is clear that the retract(compiling) goal is the one at fault, and needs to be fixed. 
However it is also informative to look at the subsequent backtracking that caused 
the twenty clauses for judge to be produced. If we carry on from the point reached 
in Figure 42, we can watch as first assert is reattempted, followed by when enabled, 
which leads to both show-code and enabled being retried without success; Figure 43 
takes the story up at this point. 

As can be seen from Figure 43, all when-enabled’s previous subgoals have been 
retried and failed. However, if we step to the next frame, shown in Figure 44(a), we 
can see that it succeeds trivially (no further subgoals involved). This leads to assert 
being retried, as shown in Figure 44(b). Figure 44(c) shows that indeed assert did 
succeed a second time, depositing the same judge clause into the database. This 
accounts for one extra occurrence in the final database. Next, retract(compiling) is 
reattempted, as shown in Figure 44(d). It will fail again. Carrying on in single-step 
mode from here would show that this time when enabled is not resatisfiable a 
second time. As a consequence, compile would be reattempted. Figure 45(a) to (f) 
show the initial consequences of this. Initially compile is retried, as shown in Figure 
45(a), leading to an attempt to resatisfy decode as in Figure 45(b). The first time 
through, decode had won trivially, via a fact. On retry, however, decode now calls a 
hitherto unused primitive, ’ = . . ’ , and we begin to traverse a previously preordained 

leaf of the execution tree. In Figure 45(c), notice how the thick-border nodes in the 
LDV clearly indicate the size and contents of the goal stack at any given moment. 
Figure 45(d) shows ’ = ..I succeeding, and in Figure 45(e) we see that decode wins 
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retract 

=.. Yecode-complle 

FIGURE 43. LDV replayed to the point where when-enabled is being retried but the previous 
clause’s subgoals, show-code and enabled, have failed on backtracking. 

anew. Examination of the LDV node for decode via a quick zoom would show that 
this success is due to clause 4. The final execution snapshot in this sequence, Figure 
45(f), shows compile succeeding yet again. 

Thus we can use the replay facility to trace and find the source of resatisfaction 
of a backtracking program. From the above we can see that each time decode 
initially wins on clause 2, it can be retried and succeed incorrectly a second time on 
clause 4 (it also wins on clause 4 anyway in the example). If we were to follow this 
through, we would also observe that when compile succeeds on clause 3, on 
backtracking it may be resatisfied on clause 5, bringing back an incorrect answer. 
The user could have prevented this behavior by placing “green” cuts in clauses 2 
and 3 of decode, clause 1 of when-enabled, and clauses l-4 of compile, to indicate 
their determinacy. 

5. CODE ABSTBACTIONS 

Even given our commitment to telling the truth about the procedural side of 
PROLOG, and our belief in the power of gestalt patterns in viewing large execution 
spaces, there are cases in which the user may not wish to know about certain 
execution details, either because a lump of code is tried and tested, or because it is 
not relevant to the problem at hand. What is frequently needed is a way of 
abstracting away from some of the low-level details. 

We have extended our notation to deal with four different kinds of abstractions 
that we believe to be of central importance to the functioning of a practical trace 
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retract 

l =__ decode Ucompile l =._ Grita (&rite OnI UtabWwrite 

(a) 

fert 

retract 

” decode 

l =.. 

(b) 

FIGURE 44. Four successive LDV replay snapshots: (a) The goal when-enabled succeeds 
trivially a second time when it is retried. (b) A new call is made to the assert goal. (c) The 
assert goal succeeds. (d) A new call is made to the retract goal. 
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FIGURE 44. Continued 
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retract 

(a) 

’ =.. l+lecade klcompile ’ =.. CLrite &rite bnl 

(b) 

-0 retract 

FIGURE 45. Six more successive LDV replay snapshots: (a) compile is retried. (b) decode is 
retried. (c) A new branch of the execution space: a primitive is attempted. (d) The primitive 
succeeds. (e) decode is resatistiable and succeeds a second time. (f) compile is likewise 
resatisfiable and also succeeds. 
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FIGURE 45. Continued 
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FIGURE 45. Continued 
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package. These abstractions are itemized here, and then dealt with in detail in the 
remainder of this section4 

Compression: The user may wish to hide away inner details of code (as if it were 
bundled inside a new system primitive), with the ability to expand the details 
later if necessary. We add a new shape (triangle) to our LDV display to cater 
for “compressed” code. 

Higher-order predicates: For certain primitives such as call and not, it is neces- 
sary to see how their arguments behave. This is not problematic, as we simply 
need to display the goals that are invoked within call and not. In fact, Figures 
42-45 included an example of a user-defined procedure, show_code, nested 
inside call, and therefore displayed as a square node underneath a circular 
node. More interesting is the behavior of collection-abstraction relations such 
as bagof and setof. We introduce a new ghost lozenge to indicate the multiple 
instantiations of a variable which occur during collection and mapping opera- 
tions, and allow the intricacies of primitives such as setof to be displayed 
concisely or in fine detail, as the user chooses. 

Algorithmic control: Although we do not advocate the use of certain algorithmic 
constructs such as “if-then-else” in logic programming, there are certainly 
cases where users revert to it out of either habit or genuine need. Many 
implementations of PROLOG support the notation A-X&C to mean “if A 
then B else C”. We adopt a simple notational addition to our LDV display 
which caters for this. 

Definite-clause grammars: Many users wish to see the progression of parsing in 
an intuitive way. Our LDV handles definite-clause grammars in just the way 
they are written, allowing for terminal nodes in the grammar (i.e. words) to be 
displayed on their own. 

We now take up each of these abstractions in turn. 

5. I. Compression 

The LDV display can be simplified by the user on demand. The key concept here is 
that of compression, which takes a segment of code and treats it as a black box 
analogous to a system primitive, with the added virtue that it can be expanded later 
if it turns out to be necessary to examine the details of execution. The user can do 
this either by mouse/menu interaction after the display is already on the screen, or 
else by placing directives to compress a goal in the source file alongside the relevant 
predicate’s source-code definition. Using the latter method, the user is able to build 
up over time a series of declarations next to the source code in a file about how to 
view the program trace. A typical scenario might be for all previously written and 
tested (and trusted) modules of a program to be compressed so that the user isn’t 
bored with unwanted information in a debugging session. This will be of particular 
value with very big programs, since it provides a way to focus on just the part of a 
program of particular interest, e.g. the most recent, unfinished part. 

4Some system primitives, such as setof, need to be redefined by us for behind-the-scenes execution in 
order for our abstract representation to work. 
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The user can instruct TPM to throw away information which would otherwise 
allow retroactive expansion of compressed nodes. This option allows the user to 
benefit from increased execution speed (since “compressed” goals can simply be 
proved without additional tracer history storage overheads). Of course, the user 
must weigh this benefit against the loss of potentially valuable debugging informa- 
tion. In the case of well-tried and robust code the user may deem this worthwhile. 

In Figure 46 we see the LDV display shown earlier in Figure 26 with the nodes 
corresponding to invocations of conclusion and ask “compressed” into single 
triangular-shaped nodes. The shading conventions for success, failure, etc., remain 
consistent across all LDV nodes, regardless of shape. If the user chooses to expand 
such compressed nodes, the previous LDV with the still-compressed nodes is pre- 
served in a small viewport at the top of the display to provide some useful 
contextual cues. 

5.2. Higher-Order Predicates: setof 

Higher-order predicates such as setof pose a particularly challenging problem to the 
designer of a trace package. One could always “hand-code” setof, and then just 
show the full blown details using TPM’s existing tracing facilities, or even use the 

compress option described in Section 5.1. However, such a solution is not represen- 
tative of the very abstraction which setof was designed to capture. Indeed, setof was 
meant to liberate the user from the tedium of having to design and implement 
low-level iteration/collection cliches by hand, so a brute-force trace of the hand- 
coded implementation of setof would be something of a retrograde step. 

Our solution is to use the concepts and notation we have already developed, but 
to make it expressive at the appropriate level of abstraction. We shall use a single 
piece of code and several different invocations of setof to illustrate the notation. The 
code, shown in Figure 47, is meant to designate the nodes and links in an arbitrary 
directed graph. Now consider the following query, which retrieves all node-node 
links: 

?- setof(X-Y, arc(X, Y), Ans). 
Ans = [a-b, a-c, b-c, b-d, c-d] 
x= -310 
Y= -311 

The AORTA diagram representation of the above interaction is shown in Figure 48. 
Here are the important things to note about Figure 48: 

The large arrow underneath the circle indicates that this particular higher-order 
primitive obtains multiple solutions from its lower-order predicate (in this case 
arc). The details of the execution of the lower-order predicate can be obtained 

FIGURE 47. A database showing how nodes a, b, c, and d are linked in a directed graph. 

da, W. 
da, cl. 
arc(b, c). 
arc(c, d). 
arc(b, d). 
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) FIGURE 48. AORTA represen- 
ta tie n 0 f setof(X- 
Y, arc@, Y), Am), given the 
database shown in Figure 47. 

by clicking on this arrow, as shown later. The same notation (circle with 
dangling arrow) is used in the LDV. 

The variables X and Y are subscripted with an italic n and m, respectively, 
whereas Ans is subscripted with a 1. This is to reflect the iteration abstraction 
in which X~and Y run through numerous particular instantiations, all of which 
are ultimately discarded. Am, in contrast, ends up with a single instantiation 
which is accessible to the user. 

The lozenges containing the b and the d reflect the latest instantiations chronolog- 
ically, and are superimposed on top of ghost lozenges which show earlier 
instantiations. Notice that b-d is not the last element of Ans, even though it 
corresponds to the latest instantiations of X, and Y,,,, because setof sorts its 
third argument. The ghost lozenges are designed to be mouse-sensitive, like 
ghost status boxes, to make it possible for the user to step back through the 
history of instantiations without having to inspect the details of the goals 
invoked by setof (which in general can be arbitrarily complex). 

The shadowy right-angle arrows are used to indicate that multiple instantiations 
have “passed through” them. Different shading is used, as before, just to make 
it easier to follow the fate of different variables. The flow indicated by the 
arrows is significant. It indicates that the instantiations pass from the second 
argument of setof into the first argument, which bundles them into a larger 
term (in this case using the infix operator “-“). The bundled term is then 
collected during iteration into the third argument of setof. 

A special collection funnel is attached to the appropriate right-angle arrow to 
represent the collection abstraction associated with the third argument of 
&of. 

A mouse click on the thick arrow beneath the large circle would yield the AORTA 
snapshot shown in Figure 49. The significance of Figure 49 is that goals appearing 
within setof are forced through their entire search space. That is why even clauses 
which succeeded are ultimately depicted as failures (i.e. tick/cross combinations) in 
the final execution snapshot. 

The next query asks for the set of nodes which are linked to something: 

?- setof(X, Y-arc& Y), Ans). 
Ans = [a, b, c] 
x= -312 
Y= -313 

In the above interaction, notice that the variable Y is existentially quantified. 
Without that specification, there would be three separate answers obtainable, 
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lr 
)P Ans, 1 

[a-b,a-c.b-c,b-d,c-d] 

FIGURE 49. More fine- 
grained view of exhaustive 
search of are(X,Y), using the 
same example as that shown 
in Figure 48. 

corresponding to the three different instantiations of Y, as the following interaction 
shows: 

?- setof@, arc@, Y), Ans). 
Ans = [a] 
Y=b; 

Ans = Ia,b] 
Y = c; 

Ans = [b,c] 
Y=d; 
no 

The AORTA diagram corresponding to the existentially-quantified query is shown in 
Figure 50. 

Had the existential quantifier notation not been used, Y would have received an 
ordinary subscript, like Ans, reflecting its role as an ordinary variable which can 
receive but a single instantiation. As shown in Figure 50, however, Y is subscripted 
with an italic letter, indicating that it can run through numerous possible instantia- 
tions. 

Since the second argument of setof is an arbitrary (conjunction of) PROLOG 
goal(s), it is possible to nest setof within setof. The following query uses this idea to 
retrieve a set of “families”, i.e. nodes and all of the “children” (i.e. recipients of the 
arc link) of each node: 

?- setof(Pa-Kids, setof(K, arc(Pa, K), Kids), Ans). 
Ans = [a-lb, c], b-[c, d], c-Id] ] 

setoft&, kAarc(X, , V, ), Ans, ) 
b (-g@ ([a,b,cl 

FIGURE 50. AORTA representation of 

b 

setof@, Y^arc(X, y), Am), given the 
database shown in Figure 47. 
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setof(Ps -Kids,,, ,setof(Kg ,arc(Ps 

0 ._ 

FIGURE 51. Using setof within setof. 

The AORTA representation of the above query is shown in Figure 51. Once again 
special shadowy unification arrows are needed to indicate the multiplicity of 
instantiations. This time, we use longer and shorter arrows to indicate the flow of 
instantiations within and between the respective occurrences of setof. Notice the 
two collection funnels, and the shadow on the innermost one indicating that this 
collection itself occurs on more than one iteration. 

5.3. Algorithmic Control: If-Then-Else 

Whether or not it is a sensible way to write PROLOG code, many users revert to 
using the syntax A->B; C to implement if-then-else algorithmic control. To illustrate 
how this control variant is integrated into TPM, consider the problem of retrieving 
the location of a database Jug whose setting depends upon the particular release of 
software. In order to find a particular location for a flag, you need first to choose 
one of several available versions of software. If that version is later than release 7 
(say), then you look in a particular set of new locations stored in the database, else 
you look at some standard default ones. Additionally, suppose that a given location 
is only of use to you if its flag happens to be set to true. The code to find a good 
location is shown in Figure 52. 

Figure 53(a), (b) show the LDVS corresponding to the processing of the query 
?- location(X). The sideways arrow between two subgoal branches separates the “if” 
branch from the “then” branch, and the thickened tree branch indicates the 
location of (possibly several conjoined) “then”s. The “then” branch is in turn 
separated from the “else” branch as an ordinary disjunction. The sideways arrow 
and thick line together show what amounts to an implicit “cut” in the “if-then-else” 
construct. In Figure 53(a) we see the execution at the point where the goal 
flag(5015,true) is about to be attempted. The figure shows that both the “if’ and 
“then” branches have been successful. However, flag(5015,true) now fails, and 
backtracking into the “then” branch does not produce any more successful clause 
matches, so check-version fails (we do not retry the “if” because of the implicit 
cut). Retrying version produces a different version number, which this time is prior 
to release 8. Next, there is a new invocation of check-version. This time, the “if” 
goal (7>7) fails, causing the “else” part of the conditional to be tried. Notice that 
the “then” branch from the previous invocation of check-version is shown faded, as 
appropriate for earlier invocations [cf. Figure 18(b)]. The “else” branch succeeds, so 
check-version succeeds, as does the flag goal, and therefore the top-level goal 
location(X) succeeds, with X = 3149, as depicted in Figure 53(b). 
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location(Location):- 
version(Release_numher), % choose a version 
check_version(Releasnumher, Location), % look for locations 
flag(X.ocation, true). % are they set to true? 

‘% if you are using a release after version 7 then only look up new-location, 
% else (i.e. a preview release) look in a set of default locations 
check_version(Release, Location) :- 

Release > 7 -> new_location(Release, Location); 
default_location(Release, Location). 

% available versions of the software 
version@). 
version(7). 
version( 10). 

% locations after release 7, in the form (Release-Number, Location) pairs 
new_location(9,1234). 
new_location((l, 5015). 

58 default locations for older releases of software 
default_location(_, 3149). % release number ignored here 
default_location(_, 3800). 

% Jags, their locations, and settings 
flag( 1234, false). 
flag(5015,false). 
flag(3 149, true). 
flag(3800, true). 

FIGURE 52. Code to find a location for a hypothetical true flag, taking into account software 
release versions. 

5.4. Dejinite-Clause Grammars 

PROLOG users who implement parsers frequently use the special grammar-rule 
operator ’ -->I for writing definite-clause grammars (DCGs). Bear in mind that 
DCG notation actually translates internally to ordinary PROLOG clauses, with two 
extra arguments (reflecting the input word list consumed so far and the remainder to 
be consumed). A DCG parse tree therefore looks to TPM just like any ordinary 
execution-space tree, with two caveats: (1) in keeping with the expressiveness of 
DCGs, the implicit extra arguments are not shown to the user, unless specially 
requested; (2) terminal nodes of the grammar (words) are displayed as precisely that 
-boldface words in the LDV with no accompanying status box. 

Figure 54 depicts a simple context-free grammar used by Winograd [27], ex- 
pressed in DCG notation. Figure 55 shows the LDV corresponding to processing of 
the query ?- sentence([the, little, orange, rabbit, nibbled, a, cucumber, with, a, saw], [ I). 
The first argument reflects the input list, and the second argument reflects the list 
meant to remain when the parse is successfully completed. 

In the spirit of the work of Kahn [14], we have found that we can use TPM’s 
replay facility to walk through both the parsing and generating of sentences in a 
perspicuous manner. Figure 56 shows an LDV snapshot just after the generation of 
the second of an infinite number of possible sentences obtained (in live-trace mode) 
during backtracking using the grammar presented in Figure 54. Notice the use of 
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FIGURE 53. LDV for execution of ?- location(x), given the code shown iu Figure 52: (a) 
Snapshot at first invocation of the flag goal. (b) Final snapshot. 

the strikethrough notation to indicate “succeeded earlier but failed upon backtrack- 
ing” for terminal nodes of the grammar, ie. words. 

6. CONCLUSIONS 

Our aim has been to reconcile a global view of PROLOG program execution with 
the truth about unification and clause selection. Moreover, we have wanted to 
satisfy both the needs of novices learning PROLOG and the needs of expert 
PROLOG users writing and debugging very large programs. These intentions have, 
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sentence --> np, vp. 
np --> det, np2. 
np --> np2. 

np2 -4 noun. 
np2 --> adj, np2. 
np2 --> np2, pp. 

pp 4 prep, np. 

vp --> verb. 
vp --> verb, np. 
vp -3 verb, pp. 

verb--> [nibbled]. 
verb --> [sings]. 
verb --> [saw]. 

noun --> [rabbit]. 
noun --> [cucumber]. 
noun --> [saw]. 

det --> [the]. 
det --> [a]. 

adj --> [orange]. 
adj --> Ilittle]. 

prep --> [with]. 

FIGURE 54. A simple context-free grammar expressed in DCG notation. The example is 
taken from [27, pp. 1971. 

in turn, led us along a pathway of “creative tension” to satisfy somewhat contradic- 
tory constraints. The key ingredients of our approach have been (1) appreciation of 
the power of gestalt patterns, (2) recognition of the need (and the ability) to display 
thousands of nodes at a time, (3) enhancement of traditional AND/OR tree branches 
with individual clause details, (4) enhancement of AND/OR tree nodes with goal 
status boxes, and (5) ability to vary the type of detail being investigated with the 
particular grain size, rather than using a physical zoom. 

Our work has developed from both ends simultaneously. That is, we were 
developing video-based teaching material for novice PROLOG programmers at the 
same time as we were implementing graphics facilities for observing a 2- or 
3-thousand-node search space. Only by forcing these two paths to converge could 
we cater for the “upwardly mobile student” who learned about PROLOG in the 
early phases and then went on to become a serious PROLOG programmer. 

TPM lends itself immediately to visual representation of parallel logic programs. 
In particular, the LDV diagrams should prove to be useful for monitoring the 
simultaneous execution of hundreds, or even thousands, of subgoals. Debugging of 
large parallel programs can be extremely difficult, and our intention is to expand our 
representation to cope with problems of both real-time and retrospective display of 
parallel execution. 

An important motivating factor in all of our work has been the desire to build a 
system that we were happy to use ourselves. Toward this end, we are now using 
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_sentence 

the 

&10un #yep 

T T A,* 
rabbit cucumber with u u 

"0"" 
a I 

saw 

FIGURE 55. Parse tree for the deliberately anomalous sentence [the, little, 
bled, a, cucumber, with, a, saw]. 

orange, rabbit, nib- 

n sentence 

FIGURE 56. Snapshot during the generation 
of multiple sentences using the grammar pre- 
sented in Figure 54. 

+iiM+A- sings 

rabbit 
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TPM as part of our regular work, and are in the midst of a project to make the 
facilities described herein available in a practical, portable, and high-speed PROLOG 
environment. 

REFERENCES 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

Bundy, A., Pain, H., Bma, P., and Lynch, L., A Proposed Prolog Story, DA1 Research 
Paper 283, Dept. of Artificial Intelligence, Univ. of Edinburgh, 1986. 

Bundy, A., Pain, H., Bma, P., and Lynch, L., Impurities and the Proposed Prolog story, 
DAI Research Paper Addendum, Dept. of Artificial Intelligence, Univ. of Edinburgh, 
1986. 

Byrd, L., Understanding the control flow of Prolog programs, in: S.-A. Tamlund (ed.), 
Proceedings of the 1980 Logic Programming Workshop, 1980, pp. 127-138. 

Coelho, H., Cotta, J. C., and Pereira, L. M., How to Soive it with Prolog. Laboratbrio 
National de Enginharia Civil (Minestt%io da Habita@ e obras publicas), Lisbon, 1982. 

Coombs, M. J., Hartley, R. T., and Stell, J. G., Debugging user conceptions of interpreta- 
tion processes, in: Proceedings of the Fifth National Conference on ArtiJicial Intelligence 
(AAAZ-86), Philadelphia, 1986. 

Coombs, M. J. and Sell, J. G., A Model for Debugging Prolog by Symbolic Execution: 
The Separation of Specification and Procedure, Research Report MMIGR137, Dept. of 
Computer Science, Univ. of Strathclyde, 1985. 

duBoulay, J. B. H., O’Shea, T., and Monk, J., The black box inside the glass box: 
Presenting computing concepts to novices, Internal. J. Man-Machine Stud. 14(3):237-249 
(1981). 

Dewar, A. D. and Cleary, J. G., Graphical display of complex information within a 
Prolog debugger, Internat. J. Man-Machine Stud. 25:503-521 (1986). 

Eisenstadt, M., A user-friendly software environment for the novice programmer, Comm. 
ACM 26, No. 12 (1983). 

Eisenstadt, M., A powerful Prolog trace package, in: Proceedings of the Sixth European 
Conference on Artificial Intelligence (ECAI-84), North-Holland, Amsterdam, 1984. 

Eisenstadt, M., Retrospective zooming: A knowledge based tracing and debugging 
methodology for logic programming, in: Proceedings of the Ninth International Joint 
Conference on Artificial Intelligence (ZJCAZ-85), Morgan Kaufmann, Los Angeles, 1985. 

Eisenstadt, M. (ed.), Intensive Prolog, Open University Press, Milton Keynes, U.K., 1988. 

Francez, N., Goldenberg, S., Pinter, R. Y., Tiomkin, M., and Tsur, S., An environment 
for logic programming, in: ACM Workshop on Software Engineering Environments, 1985, 
pp. 179-190. 

Kahn, K., A grammar kit for Prolog, in: M. Yazdani (ed.), New Horizons in Educational 
Computing, Ellis Horwood, Chichester, U.K., 1984. 

Komorowski, H. J. and Omori, S., A model and an implementation of a logic program- 
ming environment, in: ACM Workshop on Software Engineering Environments, 1985, pp. 
191-198. 

Lloyd, J. W., Declarative Error Diagnosis, Technical Report 86/3, Dept. of Computer 
Science, Univ. of Melbourne, 1986. 

Matsumoto, H., A Static Analysis of Prolog Programs, Programming Systems Group 
Note 24, AI Applications Inst., Univ. of Edinburgh, 1985. 

Model, M., Monitoring System Behavior in a Complex Computational Environment, 
Technical Report No. CSL-79-1, Xerox Palo Alto Research Center, 1979. 

Pain, H. and Bundy, A., What stories should we tell novice Prolog programmers, in: R. 
Hawley (ed.), Artificial Intelligence Programming Environments, Wiley, New York, 1987. 

Pereira, L. M., Rational debugging in logic programming, in: Proceedings of the Third 
International Conference on Logic Programming, London, 1986. 



342 MARC EISENSTADT AND MIKE BRAYSHAW 

21. 

22. 

23. 

24. 

25. 

26. 
27. 

28. 

Plaisted, D. A., An efficient bug location algorithm, in: Proceedings of the Second 
International Conference on Logic Programming, UppsaIa, 1984, pp. 151-157. 
Plummer, D., Coda: An Extended Debugger for Prolog, AI TR 87-54, Artificial Intelh- 
gence Lab., Univ. of Texas at Austin, 1987. 
Rajan, T., APT: A Principled Design for an Animated View of Program Execution for 
Novice Programmers, Technical Report No. 19, Human Cognition Research Lab., The 
Open Univ., Milton Keynes, U.K., 1986. 
Reiss, S. P., Graphical program development with PECAN program development systems, 
ACM SIGPUN Notices No. 19, 5 (1984). 
Rich, C. and Waters, R. C. (eds.), Readings in ArtiJcial IntelIigence and Software 
Engineering, Morgan Kaufmamr, Los Angeles, 1986. 
Shapiro, E. Y., Algorithmic Program Debugging, MIT Press, 1982. 
Winograd, T., Language as a Cognitive Process. Volume 1: Syntax, Addison-Wesley, 
Reading, Mass., 1983. 
Winston, P. H., Artificial Intelligence, 1st ed., Addison-Wesley, Reading, Mass., 1977. 


