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a b s t r a c t

In this paper we propose a robust clustering method for handling LR-type fuzzy numbers.
The proposed method based on similarity measures is not necessary to specify the cluster
number and initials. Several numerical examples demonstrate the effectiveness of the
proposed robust clustering method, especially robust to outliers, different cluster shapes
and initial guess. We then apply this algorithm to three real data sets. These are Taiwanese
tea, student data and patient blood pressure data sets. Because tea evaluation comes
under an expert subjective judgment for Taiwanese tea, the quality levels are ambiguity
and imprecision inherent to human perception. Thus, LR-type fuzzy numbers are used
to describe these quality levels. The proposed robust clustering method successfully
establishes a performance evaluation system to help consumers better understand and
choose Taiwanese tea. Similarly, LR-type fuzzy numbers are also used to describe data types
for student and patient blood pressure data. The proposed method actually presents good
clustering results for these real data sets.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Cluster analysis is an important tool for data analysis. It is a method for finding groups within data with most similar
groups in the same cluster and most dissimilar groups between different clusters. The hierarchical clustering was supposed
as an earliest clustering method used by biologist and social scientists. Afterwards, cluster analysis becomes a branch in
statistical multivariate analysis so that many theories and various methods were investigated. On the other hand, the
learning and recognition is generally beginning from clustering. In this case, cluster analysis becomes an unsupervised
learning in pattern recognition. Since Zadeh [1] proposed fuzzy sets that produced the idea of partialmemberships described
bymembership functionswith allowingmembership degrees to all clusters, it is very successfully used in cluster analysis. Up
to date, fuzzy clustering has beenwidely studied and applied in a variety of substantive areas (see [2–5]). In fuzzy clustering,
the fuzzy c-means (FCM) algorithm and its variations are the most well-known and used methods.
Fuzzy data is a data type with imprecision or with a source of uncertainty caused not by randomness, but by fuzziness,

such as in linguistic assessments. Real fuzzy data types can be found in natural language, the social sciences and in knowledge
representation. In general, LR-type fuzzy numbers (FNs) are convenient and useful to describe fuzzy data [6]. Hathaway
et al. [7] proposed FCM clustering for symmetric trapezoidal FNs using a parametric approach. Yang and Ko [8] proposed a
fuzzy c-numbers (FCN) clustering algorithm for handling LR-type FNs. But, these methods are always influenced by noise
and outliers and often get improper clustering results when the data set includes different cluster sample sizes. To overcome
these drawbacks, Hung and Yang [9] proposed the so-called alternative fuzzy c-numbers (AFCN) clustering algorithm for
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LR-type FNs by using an exponential-type distance measure. According to their results, AFCN is superior in performance to
FCN. Recently, D’Urso and Giordani [10] defined a weighted distance between symmetric fuzzy data and used a weighted
distance tomodify the FCM clustering algorithm for fuzzy data. However, there are twomain drawbacks in these algorithms.
One is the clustering performance is sensitive to initial guess. Another one is the cluster number needs to be specified a priori.
To solve these drawbacks, we propose a clustering procedure that is robust to initials and cluster number.Wewill employ

the method called ‘‘similarity-based clustering method (SCM)’’ proposed by Yang and Wu [11] to obtain better clustering
results. The SCM clustering can self-organize the cluster number and structure for numerical data. In this paper, we modify
themethod such that it could handle LR-type FNs. In the parameter estimation step,we use a graphicalmethod of correlation
comparisons to replace the original correlation comparison algorithm of Yang and Wu [11] for finding a suitable parame-
ter γ . As a whole, the proposed method can be robust to initials, cluster number, cluster shapes and outliers for handling
LR-type fuzzy data.
The remainder of this paper is organized as follows. In Section 2, the modification of SCM for fuzzy data is first described

and then a suitable parameter γ is selected. We use a graphical method of correlation comparisons to select a suitable
parameter γ . We then create a robust clustering algorithm for LR-type FNs. In Section 3, several numerical examples are
presented to illustrate the effectiveness of the proposed algorithm. Since tea has long been an important agricultural product
in Taiwan and its type and price are wide ranging and complex, to establish an evaluation system for consumers better
understanding Taiwanese tea is an important issue. However, the problem of establishing an evaluation system can be
considered as a clustering process to group the related various criteria together. In addition, due to the vagueness of human
feelings and recognition, fuzzy data are better used to describe the quality levels of criteria. In Section 4, we will apply the
proposed algorithm to create a performance evaluation of Taiwan tea. Moreover, we also apply the proposed algorithm for
clustering student and patient blood pressure data. Finally, conclusions will be stated in Section 5.

2. A robust clustering algorithm for fuzzy data

We propose a robust clustering method for fuzzy data in this section. To consider a clustering method for handling
LR-type FNs, we need to have a distance measure between the two LR-type FNs. Let L (and R) be decreasing, shape functions
from<+ = [0,∞) to [0, 1]with L(0) = 1; L(x) < 1 for all x > 0; L(x) > 0 for all x < 1; L(1) = 0 or (L(x) > 0 for all x and
L(+∞) = 0). An FN X is called LR-type (see [12] pp. 62–63) if form ∈ < = (−∞,∞), α > 0, β > 0,

X(x) =


L
(
m− x
α

)
for x ≤ m,

R
(
x−m
β

)
for x ≥ m,

where m is called the mean value of X and α and β are called the left and right spreads respectively. Symbolically X is
denoted by (m, α, β)LR. Then, a distance for any X = (mX , αX , βX )LR and Y = (mY , αY , βY )LR is defined as follows (see [8]):

d2(X, Y ) =
1
3
{(mX −mY )2 + [(mX − lαX )− (mY − lαY )]2 + [(mX + rβX )− (mY + rβY )]2}

where l =
∫ 1
0 L
−1(w)dw and r =

∫ 1
0 R
−1(w)dw. In LR-type FNs, the triangular fuzzy numbers (TFNs) are most commonly

used. For a LR-type FN X = (m, α, β)LR, if L(x) = R(x) = 1− x then X is called a TFN, denoted by X = (m, α, β)T , i.e.

X(x) =


1−

m− x
α

for x ≤ m(α > 0),

1−
x−m
β

for x ≥ m(β > 0).

Obviously, r = l = 1
2 in d

2(X, Y ) for two TFNs X = (mX , αX , βX )T and Y = (mY , αY , βY )T .
Let G = {X1, . . . , Xn} be a set of LR-type FNs with Xj = (mXj , αXj , βXj)LR, j = 1, . . . , n and let c be the specified cluster

number. Our goal is to cluster G into c clusters. Let Zi = (mZi , αZi , βZi)LR be the ith cluster center. Adopting Zadeh’s idea [13],
the following similarity measure S(Xj, Zi) between Xj and Zi is used:

S(Xj, Zi) = exp
(
−
d2(Xj, Zi)
σ 2

)
, (1)

where the σ 2 is the normalized constant defined by

σ 2 =

n∑
j=1
d2(Xj, X̄)

n
with X̄ = (mX̄ , αX̄ , βX̄ )LR, (2)

mX̄ =
1
n

n∑
j=1

mXj , αX̄ =
1
n

n∑
j=1

αXj , βX̄ =
1
n

n∑
j=1

βXj .
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Fig. 1. The data set with two well-separated clusters.

Fig. 2. The density shapes with different γ .

Then the total similarity measure is given by (cf. [11])

J(Z) =
c∑
i=1

n∑
j=1

(
exp

(
−
d2(Xj, Zi)
σ 2

))γ
, (3)

where γ > 0. The role of γ is similar to the bandwidth in the kernel estimator. Increasing γ is equivalent to decrease the
bandwidth. Thus, larger γ yieldsmore peaks in the objective function J(Z), i.e., more clusters. Later wewill discuss the effect
of γ on the clustering results.
In this paper, we use a graphical method of correlation comparisons to find the suitable γ which is different from the

CCA of [11]. Considering the following function

J̃(Xk)γ =
n∑
j=1

(
exp

(
−
d2(Xj, Xk)
σ 2

))γ
k = 1, . . . , n, (4)

this function represents the density shape of the data points and is similar to the mountain function proposed by Yager and
Filev [14]. We use the data set with triangle fuzzy numbers, shown in Fig. 1 to explain how to use Eq. (4) to find a suitable γ .
Fig. 1 clearly indicates that there are twowell-separated clusters. Thus, the density shape of the data points should have two
peaks. From Fig. 2, the curves with γ = 2, 3, 4 also have two peaks. Furthermore, the shapes are unchanged with γ = 3
and γ = 4, the correlation coefficient between { J̃(Xk)γ=3|k = 1, . . . , n} and { J̃(Xk)γ=4|k = 1, . . . , n} is very close to 1.
Therefore, γ = 3 is a suitable parameter estimate. The following example is illustrated the graphical method of correlation
comparisons to find the suitable γ .
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Fig. 3. The correlation coefficients between { J̃(Xk)γ |k = 1, . . . , n} and { J̃(Xk)γ+1|k = 1, . . . , n} for Example 1.

Example 1. We consider the data set given in Fig. 1. The correlation coefficients between { J̃(Xk)γ |k = 1, . . . , n} and
{ J̃(Xk)γ+1|k = 1, . . . , n} are shown in Fig. 3. In Fig. 3, the y-coordinate of the first star point represents the correlation
coefficient between γ = 1 and γ = 2. The second star point represents the correlation coefficient between γ = 2 and
γ = 3. The third star point represents the correlation coefficient between γ = 3 and γ = 4, etc. Since the density shape
will be unchanged when the correlation coefficient is close to 1, we may choose γ with the star point close to the line of
value 1. Note that the shapes are unchanged with γ = 3 and γ = 4 for the aforementioned Fig. 2. It is seen that γ = 3 is a
suitable estimate as shown in Fig. 3.

After the parameter γ is estimated by the previous approach, the next step is to find Zi that maximize the objective
function J(Z). Differentiating J(Z)with respect to all Zi = (mZi , αZi , βZi)LR, we obtain the following necessary conditions:

mZi =

n∑
j=1
Sγij [3mXj + l(αZi − αXj)+ r(βXj − βZi)]

3
n∑
j=1
Sγij

, i = 1, . . . , c, (5)

αZi =

n∑
j=1
Sγij (mZi −mXj + lαXj)

l
n∑
j=1
Sγij

, i = 1, . . . , c, (6)

βZi =

n∑
j=1
Sγij (mXj −mZi + rβXj)

r
n∑
j=1
Sγij

, i = 1, . . . , c, (7)

where

Sij = exp
(
−
d2(Xj, Zi)
σ 2

)
. (8)

Note that mZi , αZi and βZi in Eqs. (5)–(7) cannot be solve directly. However, the fixed-point iterative method can be used
to numerically solve them. This forms the similarity clustering algorithm (SCA). After the graphical method of correlation
comparisons gets an estimate γ , the SCA will be used to find the peaks of the objective function (3). The SCA algorithm for
LR-type FNs can be summarized as follows:
SCA algorithm for LR-type FNs

(S1) Fix any ε > 0. Choose initial mean value, left and right spreads, say Z (0)i = (m
(0)
Zi
, α

(0)
Zi
, β

(0)
Zi
), i = 1, . . . , c .

(S2) Calculate S(0)ij using Z
(0)
i and Eq. (8).

(S3) Update Z (0)i by Z
(1)
i using S

(0)
ij and Eqs. (5)–(7).

(S4) IF maxi d2(Z
(0)
i , Z

(1)
i ) < ε, stop. Otherwise, set Z (1)i = Z

(0)
i and GO TO (S2).
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We mention that the value of γ determines the number of peaks in the objective function J(Z). The reasons are below.
Let

lim
γ→0

mZi = m
∗

Zi , lim
γ→0

αZi = α
∗

Zi , lim
γ→0

βZi = β
∗

Zi .

Then

lim
γ→0

mZi =

n∑
j=1
[3mXj + l(α

∗

Zi
− αXj)+ r(βXj − β

∗

Zi
)]

3n
, (9)

lim
γ→0

αZi =
1
l
m∗Zi −

1
l
mX̄ + αX̄ , (10)

lim
γ→0

βZi =
1
r
mX̄ −

1
r
m∗Zi + βX̄ . (11)

Substituting Eqs. (10) and (11) into Eq. (9), we obtain

m∗Zi = mX̄ +
l
3
(α∗Zi − αX̄ )+

r
3
(βX̄ − β

∗

Zi)

= mX̄ +
1
3
(m∗Zi −mX̄ )+

1
3
(m∗Zi −mX̄ )

=
1
3
mX̄ +

2
3
m∗Zi .

This impliesm∗Zi = mX̄ . It follows α
∗

Zi
= αX̄ , β

∗

Zi
= βX̄ .

This illustrates that when γ → 0, the objective function J(Z) has only one peak on the sample mean X̄ = (mX̄ , αX̄ , βX̄ )LR.
We point out what will happen as γ →∞ as follows. Let S∗ij = Sij/S, where S = max{Si1, . . . , Sin}. After simple calculations,
we have

lim
γ→∞

mZi =

∑
S∗ij=1

mXj∑
S∗ij=1

1
, lim

γ→∞
αZi =

∑
S∗ij=1

αXj∑
S∗ij=1

1
, lim

γ→∞
βZi =

∑
S∗ij=1

βXj∑
S∗ij=1

1
.

It means that when γ →∞, almost of data points are the peaks.
When one processes the SCA algorithm, all the cluster centers, Zi, will change positions for each iteration. If the data set

has only one peak on the objective function J(Z), all the centers will gradually centralize to that unique peak. In this case,
we will claim there is only one cluster for this data set. When the data set has more than one peak on the objective function
J(Z), we can randomly give more initial cluster centers to process this algorithm and these centers will then centralize to
the peaks of the objective function J(Z). The problem here is what kind of the initialization can guarantee that all peaks
(clusters) will be found simultaneously. To solve this problem, we adopt Yang andWu’s [11] suggestion to set all data points
to be the initial centers (i.e., Z (0) = (Z (0)1 , . . . , Z

(0)
n ) = (X1, . . . , Xn)).

Because SCA is processed with Z (0) = (Z (0)1 , . . . , Z
(0)
n ) = (X1, . . . , Xn), the final n cluster centers will show the final

states of all data points. This provides a method to classify the data points using their final states. For example, Z (0)1 and Z
(0)
n

converge to the same peak. Then Z (0)1 and Z (0)n should belong to the same cluster and so should X1 and Xn. Therefore, when
Z (0) = (Z (0)1 , . . . , Z

(0)
n ) = (X1, . . . , Xn) is centralized to c∗ clusters, the data set will also be classified into those c∗ clusters

simultaneously. By processing the final states of Z (0) = (Z (0)1 , . . . , Z
(0)
n ) = (X1, . . . , Xn) into the single linkage hierarchical

algorithm, the optimal cluster number c∗ and the identified clusterswill be found simultaneously. Thus, the proposed robust
clustering algorithm for LR-type FNs can be summarized as follows.
A robust clustering algorithm for LR-type FNs
Step 1. Use the graphical method of correlation comparison to select γ .
Step 2. Process SCA for LR-type FNs with Z (0) = (Z (0)1 , . . . , Z

(0)
n ) = (X1, . . . , Xn).

Step 3. Process the hierarchical algorithm with the final states of the data points.
Step 4. Find the optimal cluster number c∗ according to the dendrogram.
Step 5. Identify these c∗ clusters.

3. Numerical examples

In this section we present some examples to illustrate the effectiveness of the proposed robust clustering algorithm.
The data set in Example 2 is from [9] where there are 20 LR-type FNs with two clusters. To see the effects of outliers on
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Table 1
Data set G1 .

No. 1 2 3 4 5

X = (m, α, β)T (7.56, 0.27, 1.00) (8.56, 1.95, 1.93) (9.89, 0.56, 1.17) (10.89, 0.89, 0.88) (11.78, 0.12, 1.21)
No. 6 7 8 9 10
X = (m, α, β)T (12.90, 1.19, 0.41) (13.67, 1.82, 0.90) (14.87, 1.90, 1.85) (15.45, 1.79, 1.95) (15.78, 1.47, 0.42)
No. 11 12 13 14 15
X = (m, α, β)T (20.77, 0.63, 0.47) (21.88, 1.08, 0.66) (22.45, 1.48, 1.26) (23.88, 1.79, 0.16) (24.88, 0.66, 0.64)
No. 16 17 18 19 20
X = (m, α, β)T (25.25, 0.52, 1.71) (25.47, 1.95, 0.15) (26.56, 0.92, 0.63) (27.98, 1.74, 1.69) (28.77, 1.71, 0.79)

0

2

4

6

8

10

12

15 16 17 14 18 19 20 11 12 13 1 2 3 4 5 6 7 8 9 10

Fig. 4. The dendrogram through the proposed algorithm for Example 2.

the proposed robust clustering method for LR-type fuzzy numbers, we use Example 3 by adding two outlying points to the
data set in Example 2. In Example 4, we consider a well-known clustering problem (cf. [15]) where there is an inordinate
difference in the number of members in each sample cluster. We implement the robust clustering algorithm for these
examples with ε = 0.0001.

Example 2. In this example, we use the data set as shown in Fig. 1. We present these data points in Table 1. The data set
are fuzzy data with two well-separated clusters. From Example 1, γ = 3 is a suitable estimate for this fuzzy data set. We
then run the SCA algorithm for the data set and then use the single linkage hierarchical algorithm with the final positions
of all data points to find the optimal cluster number c∗. The results are shown as the dendrogram in Fig. 4. This dendrogram
clearly indicates that there are twowell-separated clusters and hence the optimal cluster number c∗ = 2. The corresponding
cluster centers are Z1 = (12.797, 1.199, 1.081)T and Z2 = (24.843, 1.230, 0.781)T . Therefore, the identified clusters are
found that data numbers 1–10 belong to cluster 1 and data numbers 11–20 belong to cluster 2.

Example 3. To see the effect of outliers on the proposed clustering algorithm for fuzzy data, we add two points (40,
1.82, 0.15)T and (50, 0.71, 1.79)T to the data set G1. Fig. 5 shows that these added points are far away from the other
fuzzy data so that they can be regarded as outliers. Based on the graphical method of correlation comparisons as shown
in Fig. 6, γ = 7 is a suitable estimate. In the same way, we implement the SCA for the data set and then single linkage
hierarchical algorithm on the final clustering data. The result is shown as the dendrogram in Fig. 7. This dendrogram clearly
indicates that there are four well-separated clusters and hence the optimal cluster number c∗ = 4. The corresponding
cluster centers are: Z1 = (12.606, 1.188, 1.106)T , Z2 = (24.763, 1.236, 0.792)T , Z3 = (40.004, 1.818, 0.154)T and
Z4 = (49.983, 0.712, 1.787)T . Compared with the results of Example 2 without outliers, we find that the first two cluster
centers keep the values of the cluster centers around 12 and 24. This reflects that the proposed robust clustering algorithm
for fuzzy data is able to tolerate outliers. Furthermore, the proposed SCA for fuzzy data not only gives a perfect clustering
result but also identifies outliers.We have the results that data numbers 1–10 belong to cluster 1 and numbers 11–20 belong
to cluster 2 where these two added points are outliers.

Example 4 (cf. [9]). We consider a well-known clustering problem (cf. [15]) where there is an inordinate difference in
the number of members in each sample cluster. We give the data set as shown in Table 2 where there is one large
cluster (from data numbers 1 to 30) and one small cluster (from data numbers 31 to 35). The data set is also shown in
Fig. 8. The corresponding ideal centers are (22.947, 1.130, 1.082)T and (42.806, 1.368, 0.994)T , respectively. According
to the graphical method of correlation comparisons shown in Fig. 9, γ = 4 is a suitable estimate. In the same way, we
implement the SCA for the data set and then single linkage hierarchical algorithm on the final clustering data. The result
is shown as the dendrogram in Fig. 10. This dendrogram clearly indicates that there are two well-separated clusters and
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Fig. 5. The data set for Example 3.

Fig. 6. The correlation coefficients between { J̃(Xk)γ |k = 1, . . . , n} and { J̃(Xk)γ+1|k = 1, . . . , n} for Example 3.

0

5

10

15

15 16 17 14 18 19 20 11 12 13 1 2 3 4 5 6 7 8 9 10 21 22

Fig. 7. The dendrogram through the proposed algorithm for Example 3.

hence the optimal cluster number c∗ = 2. The corresponding cluster centers are: Z1 = (26.759, 1.171, 0.975)T and
Z2 = (42.741, 1.342, 1.018)T . Compared with the ideal centers, we find that the cluster centers are close to those ideal
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Table 2
Data set for Fig. 8.

No. 1 2 3 4 5

X = (m, α, β)T (9.56, 0.27, 1.00) (10.56, 1.95, 1.93) (10.89, 0.56, 1.17) (13.89, 0.89, 0.88) (14.78, 0.12, 1.21)
No. 6 7 8 9 10
X = (m, α, β)T (14.90, 1.19, 0.41) (15.67, 1.82, 0.90) (16.87, 1.90, 1.85) (17.45, 1.79, 1.95) (19.78, 1.47, 0.42)
No. 11 12 13 14 15
X = (m, α, β)T (21.02, 0.63, 1.92) (22.56, 1.19, 0.41) (22.89, 0.56, 1.17) (23.78, 0.12, 1.21) (23.92, 1.19, 0.41)
No. 16 17 18 19 20
X = (m, α, β)T (24.67, 1.82, 0.90) (25.13, 0.69, 0.64) (25.92, 1.79, 1.95) (26.02, 1.47, 0.42) (26.30, 1.61, 1.92)
No. 21 22 23 24 25
X = (m, α, β)T (27.77, 0.63, 0.47) (28.08, 1.08, 0.66) (28.90, 1.48, 1.26) (29.00, 1.79, 0.16) (29.67, 0.66, 0.64)
No. 26 27 28 29 30
X = (m, α, β)T (30.77, 1.63, 1.47) (31.08, 0.87, 1.66) (31.90, 1.08, 0.68) (32.00, 0.79, 1.16) (32.67, 0.86, 1.63)
No. 31 32 33 34 35
X = (m, α, β)T (40.25, 0.52, 1.71) (40.47, 1.95, 0.15) (43.56, 0.92, 0.63) (43.98, 1.74, 1.69) (45.77, 1.71, 0.79)

Fig. 8. The data set for Example 4.

Fig. 9. The correlation coefficients between { J̃(Xk)γ |k = 1, . . . , n} and { J̃(Xk)γ+1|k = 1, . . . , n} for Example 4.

centers. Furthermore, the proposed algorithm for the data set well classifies these two clusters. That is, data numbers 1–30
belong to cluster 1 and data numbers 31–35 belong to cluster 2.
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Fig. 10. The dendrogram through the proposed algorithm for Example 4.

Fig. 11. The correlation coefficients between { J̃(Xk)γ |k = 1, . . . , n} and { J̃(Xk)γ+1|k = 1, . . . , n} for data set T .

4. Applications to real data sets

In this section, we apply the proposed robust clustering algorithm to real fuzzy data sets.We first consider a real example
of Taiwanese tea from Hung and Yang [9].

Example 5. The Taiwanese tea data set has about 69 types of tea tree in Taiwan. The types of tea produced in Taiwan include
green tea, Paochong, Oolong andblack tea. In recent years, themajority of teas produced in Taiwanhave beenof the Paochong
and Oolong varieties. Black tea and green tea are relatively minor types in comparison. Many consumers are confused due
to the tea varieties and prices being numerous and complicated. To give consumers a better understanding of Taiwanese
tea, the Taiwan Tea Experiment Station (TTES) is ongoing in its attempts to formulate an evaluation system for tea quality.
This motivates us to develop an evaluation system by clustering method. In general, there are four criteria used to evaluate
tea quality: appearance, tincture, liquid color and aroma and the quality levels are described using the terms: perfect , good,
medium, poor and bad. The data are shown in Table A of Appendix.

In this data set, the overall performance Ȳj for the jth type of tea is our interesting. A typical problem is ‘‘How to
perform a clustering algorithm for Ȳj?’’. According to Hung and Yang [9], there are four criteria used to evaluate tea
quality: appearance, tincture, liquid color and aroma and the quality levels are described using the terms: perfect , good,
medium, poor and bad. These terms are described by TFNs as follows: Xperfect = (1, 0.25, 0)T , Xgood = (0.75, 0.25, 0.25)T ,
Xmedium = (0.5, 0.25, 0.25)T , Xpoor = (0.25, 0.25, 0.25)T and Xbad = (0, 0, 0.25)T . The final evaluation data is shown in
Table A. Let Yjk = (mYjk , αYjk , βYjk)T be assessed by the kth criterion for the jth type of tea, k = 1, 2, 3, 4, j = 1, . . . , n.
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Fig. 12. The dendrogram through the proposed algorithm for data set T .

Fig. 13. The correlation coefficients between { J̃(Xk)γ |k = 1, . . . , n} and { J̃(Xk)γ+1|k = 1, . . . , n} for data set T1 .
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Fig. 14. The dendrogram through the proposed algorithm for data set T1 .

The overall performance for the jth type of tea is determined as Ȳj = (mȲj , αȲj , βȲj)T where

mȲj =
1
4

4∑
k=1

mYjk , αȲj =
1
4

4∑
k=1

αYjk , βȲj =
1
4

4∑
k=1

βYjk .

Thus, we run the proposed clustering algorithm on the data set T = {Ȳ1, . . . , Ȳ69}. According to the graphical method
of correlation comparisons shown in Fig. 11, γ = 6 is a suitable estimate. In the same way, we implement the SCA for
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Fig. 15. The correlation coefficients between { J̃(Xk)γ+0.5|k = 1, . . . , n} and { J̃(Xk)γ+1|k = 1, . . . , n}, γ = 0.5, 1, 1.5, . . . , for Student data.

Table 3
Student data for Example 6.

No. Student Mathematics 1 Mathematics 2 Physics 1 Physics 2

1 Tom (15, 0) (12, 2) (10, 10) (15, 1)
2 David (9, 0) (16, 2) (12, 2) (10, 0)
3 Bob (6, 0) (10.5, 0.5) (16.5, 3.5) (16, 2)
4 Jane (12, 2) (19, 1) (19, 0) (11, 1)
5 Joe (1, 1) (8, 2) (12, 2) (14, 0)
6 Jack (1, 0) (5, 1) (9, 0) (7.5, 1.5)
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Fig. 16. The dendrogram through the proposed algorithm for Student data.

the data set and then single linkage hierarchical algorithm on the final set T . The result is shown as the dendrogram in
Fig. 12. This dendrogram clearly indicates that there are five well-separated clusters and hence the optimal cluster num-
ber c∗ = 5. The corresponding cluster centers are: Z1 = (0.4359, 0.1841, 0.2480)T , Z2 = (0.3754, 0.1432, 0.2476)T ,
Z3 = (0.3135, 0.1283, 0.2499)T , Z3 = (0.2517, 0.1249, 0.250)T and Z5 = (0.1251, 0.0625, 0.2500)T . The clustering re-
sults showed that data no. 1–19 belong to Grade 1, data numbers 20–38 belong Grade 2, data numbers 39–54 belong to
Grade 3, data numbers 55–61 belong to Grade 4 and data numbers 62–69 belong to Grade 5. We mention that these clus-
tering results are the same as Hung and Yang [9], but, in [9], the cluster number needs to be given a priori.
White-tip Oolong is the best andmost famous tea in Taiwan. Experts rate its appearance, tincture, liquid color and aroma

as perfect , good, good and perfect , respectively. The overall rating, for Ȳ70, is (0.875, 0.25, 0.125)T . We now add theWhite-tip
Oolong tea Ȳ70 to the data set T to investigate its effect on the original 69 types of tea. We also run the proposed clustering
algorithm on this new data set, T1 = {Ȳ1, . . . , Ȳ69, Ȳ70}. According to the graphical method of correlation comparisons
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Fig. 17. The correlation coefficients between { J̃(Xk)γ |k = 1, . . . , n} and { J̃(Xk)γ+1|k = 1, . . . , n} for blood pressure data.
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Fig. 18. The dendrogram through the proposed algorithm for blood pressure data.

shown in Fig. 13, γ = 8 is a suitable estimate, and the dendrogram is shown in Fig. 14. This dendrogram clearly indicates
that there are six well-separated clusters and hence the optimal cluster number c∗ = 6. Please note that the last cluster
only includes the data number 70. In addition, the clustering results keep the same five clusters of the 69 types of tea and
treat theWhite-tip Oolong tea as single cluster. Thus, White-tip Oolongmust be regarded as a special tea according to these
clustering results. This illustrates that the proposed clustering algorithm is robust and able to tolerate this special (outlier)
tea.
We next consider two fuzzy data sets from [10] where the data are symmetric TFNs. That is, the left spread is equal to

the right spread in which each datum is represented by (m, α).

Example 6. The student data set (cf. [16]) consists of four attributes (Mathematics 1,Mathematics 2, Physics 1 and Physics 2)
and six students. D’Urso and Giordani [10] used the symmetric TFNs to model this data set. Table 3 shows the corre-
sponding fuzzy data. According to the graphical method of correlation comparisons shown in Fig. 15, γ = 2 is a suit-
able estimate. We implement the SCA for the data set and then single linkage hierarchical algorithm on the final data.
The dendrogram shown in Fig. 16 clearly indicates that there are two well-separated clusters and hence the optimal clus-
ter number c∗ is 2. The clustering results show that the data points 1, 2 and 4 belong to cluster 1 and the data points
3, 5 and 6 belong to cluster 2. That is, Tom, David and Jane belong to cluster 1 and Bob, Joe and Jack belong to clus-
ter 2. The corresponding cluster centers are: Z1 = ((9.606, 0.381), (15.498, 1.658), (13.579, 2.461), (11.288, 0.479))
and Z2 = ((3.113, 0.550), (9.004, 1.426), (13.305, 2.413), (14.061, 0.783)). From these two cluster centers, we find that
(i) the members of cluster 1 have high marks in Mathematics 2 and Physics and the moderate mark in Mathematics 1,
(ii) the members of cluster 2 have very lower mark in Mathematics 1, moderate mark in Mathematics 2 and higher mark in
Physics. In the sense, the students in cluster 2 have bad performance in Mathematics.
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Table A
Quality comparison of 69 types of tea tree in Taiwan.

No. Type Appearance Tincture Liquid color Aroma Ȳ

1 Bai Mao Hou Perfect Poor Poor Good (0.5625, 0.2500, 0.1875)
2 Hei Mao Hou Good Poor Poor Good (0.5000, 0.2500, 0.2500)
3 Qing Xin Hei Nou Good Poor Poor Good (0.5000, 0.2500, 0.2500)
4 Qui Zi Keng Bai Mao Good Poor Poor Good (0.5000, 0.2500, 0.2500)
5 Da Nan Wan Bai Mao Perfect Bad Bad Good (0.4375, 0.1250, 0.1875)
6 Qing Xin Oolong Good Bad Poor Good (0.4375, 0.1875, 0.2500)
7 Dan Shui Qing Xin Good Bad Poor Good (0.4375, 0.1875, 0.2500)
8 Bu Zhi Chun Good Bad Poor Good (0.4375, 0.1875, 0.2500)
9 Tao Ren Chong Good Bad Poor Good (0.4375, 0.1875, 0.2500)
10 Wan Chong Good Bad Poor Good (0.4375, 0.1875, 0.2500)
11 Hong Xin Da Nou Good Bad Poor Good (0.4375, 0.1875, 0.2500)
12 Bai Xin Oolong Good Bad Poor Good (0.4375, 0.1875, 0.2500)
13 Shui Xian Good Bad Poor Good (0.4375, 0.1875, 0.2500)
14 Gui Hua Chong Good Bad Poor Good (0.4375, 0.1875, 0.2500)
15 Niu Pu Chong Good Bad Poor Good (0.4375, 0.1875, 0.2500)
16 Lin Kou Heng Zhe Good Bad Poor Good (0.4375, 0.1875, 0.2500)
17 Feng Zi Lin Good Bad Poor Good (0.4375, 0.1875, 0.2500)
18 Pu Xin Chong Good Bad Poor Good (0.4375, 0.1875, 0.2500)
19 Da HuWei Good Bad Poor Good (0.4375, 0.1875, 0.2500)
20 Hong Xin Oolong Good Bad Bad Good (0.3750, 0.1250, 0.2500)
21 Fu Chou Chong Good Bad Bad Good (0.3750, 0.1250, 0.2500)
22 Tieh Kuan Yin Medium Bad Bad Perfect (0.3750, 0.1250, 0.1875)
23 Heng Zhe Da Ye Good Bad Bad Good (0.3750, 0.1250, 0.2500)
24 Gan Zi Chong Good Bad Bad Good (0.3750, 0.1250, 0.2500)
25 San Cha Zhi Lan Good Bad Bad Good (0.3750, 0.1250, 0.2500)
26 Ying Zhi Hong Xin Good Bad Bad Good (0.3750, 0.1250, 0.2500)
27 Da Ye Oolong Good Bad Bad Good (0.3750, 0.1250, 0.2500)
28 Tian Gong Chong Good Bad Bad Good (0.3750, 0.1250, 0.2500)
29 Gan Zi Chong (Huang) Good Bad Bad Good (0.3750, 0.1250, 0.2500)
30 Wen Shen Da Ye Good Bad Poor Medium (0.3750, 0.1875, 0.2500)
31 Hei Mian Zao Chong Good Bad Bad Good (0.3750, 0.1250, 0.2500)
32 Qing Xin Zao Chong Medium Bad Poor Good (0.3750, 0.1875, 0.2500)
33 Lin Kou Da Ye Good Bad Bad Good (0.3750, 0.1250, 0.2500)
34 Zao Chong Good Bad Bad Good (0.3750, 0.1250, 0.2500)
35 Han Kou Chong Medium Bad Poor Good (0.3750, 0.1875, 0.2500)
36 Niu Shi Wu Good Bad Poor Medium (0.3750, 0.1875, 0.2500)
37 Ping Shui Chong Medium Bad Poor Good (0.3750, 0.1875, 0.2500)
38 Yan Chuan Chong Good Bad Poor Medium (0.3750, 0.1875, 0.2500)
39 Da Ye Zhu Ye Medium Bad Bad Good (0.3125, 0.1250, 0.2500)
40 Tao Ren Wu Good Bad Bad Medium (0.3125, 0.1250, 0.2500)
41 Hu Nan Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)
42 Huang Zhi Chong Medium Bad Bad Good (0.3125, 0.1250, 0.2500)
43 Ji Long Jin Gui Good Bad Bad Medium (0.3125, 0.1250, 0.2500)
44 Wu Jin Chong Medium Bad Bad Good (0.3125, 0.1250, 0.2500)
45 Jin Gui Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)
46 Da Ji Ling Chong Medium Bad Poor Medium (0.3125, 0.1875, 0.2500)
47 Huang Gan Good Bad Bad Medium (0.3125, 0.1250, 0.2500)
48 Zhi Lan Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)
49 Shi Tea Good Bad Bad Medium (0.3125, 0.1250, 0.2500)
50 Bai Xin Wu Yi Good Bad Bad Medium (0.3125, 0.1250, 0.2500)
51 Mao Er Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)
52 Ji Long Bai Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)
53 Zhu Ye Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)
54 Yu Zhi Chong Good Bad Bad Medium (0.3125, 0.1250, 0.2500)
55 Xiao Ye Zhu Ye Medium Bad Bad Medium (0.2500, 0.1250, 0.2500)
56 Shen Man Chong Medium Bad Bad Medium (0.2500, 0.1250, 0.2500)
57 Bai Chong Medium Bad Bad Medium (0.2500, 0.1250, 0.2500)
58 Bai Ye Chong Medium Bad Bad Medium (0.2500, 0.1250, 0.2500)
59 Yellow Tea Medium Bad Bad Medium (0.2500, 0.1250, 0.2500)
60 Manipuri Good Bad Bad Bad (0.1875, 0.0625, 0.2500)
61 Shan Good Bad Bad Bad (0.1875, 0.0625, 0.2500)
62 Gao Lu Chong Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)
63 Indigenou Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)
64 Nan Tou Shen Tea Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)
65 Japuri Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)
66 A Sa Mu Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)
67 Mian Dian Chong Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)
68 Shan Tea Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)
69 Kyang Medium Bad Bad Bad (0.1250, 0.0625, 0.2500)
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Table B
Blood pressure data.

No. Systolic pressure Diastolic pressure No. Systolic pressure Diastolic pressure No. Systolic pressure Diastolic pressure

1 (131.0, 26.0) (90.0, 28.0) 37 (131.5, 28.5) (84.5, 17.5) 73 (147.0, 40.0) (68.0, 23.0)
2 (134.5, 25.5) (91.0, 27.0) 38 (127.5, 19.5) (84.5, 22.5) 74 (144.0, 31.0) (72.5, 17.5)
3 (130.0, 27.0) (88.0, 29.0) 39 (136.0, 31.0) (83.0, 30.0) 75 (147.5, 30.5) (69.0, 17.0)
4 (132.5, 24.5) (93.0, 27.0) 40 (140.0, 33.0) (85.5, 31.5) 76 (152.0, 28.0) (78.5, 14.5)
5 (135.5, 32.5) (86.5, 32.5) 41 (127.0, 28.0) (84.0, 17.0) 77 (152.5, 32.5) (80.5, 16.5)
6 (132.5, 28.5) (89.5, 18.5) 42 (140.0, 41.0) (90.5, 33.5) 78 (153.0, 32.0) (79.0, 14.0)
7 (133.5, 26.5) (93.5, 30.5) 43 (131.0, 40.0) (82.5, 31.5) 79 (145.5, 35.5) (72.0, 30.0)
8 (132.0, 28.0) (88.0, 19.0) 44 (126.5, 19.5) (81.5, 20.5) 80 (147.5, 29.5) (70.5, 16.5)
9 (130.0, 27.0) (85.0, 30.0) 45 (123.0, 20.0) (81.5, 20.5) 81 (155.5, 29.5) (79.5, 19.5)
10 (134.5, 29.5) (93.5, 21.5) 46 (145.0, 31.0) (93.0, 30.0) 82 (147.0, 31.0) (72.0, 15.0)
11 (129.0, 27.0) (85.0, 29.0) 47 (124.0, 20.0) (80.5, 20.5) 83 (146.5, 26.5) (73.0, 19.0)
12 (139.0, 33.0) (87.5, 28.5) 48 (122.5, 18.5) (80.5, 24.5) 84 (148.0, 30.0) (72.0, 16.0)
13 (135.0, 26.0) (95.0, 29.0) 49 (146.0, 31.0) (94.0, 28.0) 85 (150.5, 35.5) (79.5, 29.5)
14 (127.5, 25.5) (86.0, 30.0) 50 (145.5, 33.5) (93.0, 32.0) 86 (148.5, 28.5) (71.5, 17.5)
15 (132.5, 27.5) (95.0, 30.0) 51 (148.5, 40.5) (86.5, 38.0) 87 (147.0, 42.0) (71.5, 20.5)
16 (132.5, 39.5) (88.0, 32.0) 52 (147.5, 33.5) (93.5, 29.5) 88 (153.0, 28.0) (78.5, 18.5)
17 (129.0, 31.0) (88.5, 18.5) 53 (148.0, 32.0) (92.5, 31.5) 89 (148.5, 38.5) (70.5, 23.5)
18 (133.5, 19.5) (88.5, 20.5) 54 (150.0, 36.5) (88.0, 40.0) 90 (147.0, 36.0) (71.5, 26.5)
19 (128.0, 19.0) (91.0, 23.0) 55 (135.5, 40.5) (75.0, 38.0) 91 (155.0, 43.0) (78.0, 20.0)
20 (132.0, 18.0) (87.0, 23.0) 56 (132.5, 21.5) (78.0, 24.5) 92 (150.0, 30.0) (74.5, 15.5)
21 (135.0, 41.0) (88.5, 32.5) 57 (150.0, 26.0) (74.5, 22.0) 93 (157.0, 39.0) (76.5, 21.5)
22 (135.0, 27.0) (93.0, 18.0) 58 (152.5, 48.5) (87.5, 32.5) 94 (147.5, 29.5) (73.5, 18.5)
23 (133.5, 18.5) (86.5, 21.5) 59 (152.0, 47.0) (87.0, 33.0) 95 (157.0, 39.0) (75.5, 22.5)
24 (126.0, 27.0) (84.5, 27.5) 60 (150.5, 43.5) (85.0, 36.0) 96 (153.0, 31.0) (76.0, 16.0)
25 (136.5, 26.5) (94.5, 20.5) 61 (153.5, 47.5) (87.0, 33.0) 97 (154.0, 35.0) (76.0, 30.0)
26 (136.0, 40.0) (90.5, 33.5) 62 (138.0, 26.0) (84.0, 22.0) 98 (155.0, 37.0) (77.5, 27.5)
27 (135.5, 28.5) (95.0, 19.0) 63 (144.0, 48.0) (79.5, 35.5) 99 (154.0, 42.0) (78.0, 24.0)
28 (128.5, 18.5) (87.0, 20.0) 64 (144.5, 47.5) (79.0, 37.0) 100 (148.0, 28.0) (73.5, 20.5)
29 (132.0, 28.0) (85.0, 18.0) 65 (147.5, 46.5) (82.0, 34.0) 101 (155.5, 37.5) (77.5, 24.5)
30 (129.5, 40.5) (86.0, 32.0) 66 (152.0, 48.0) (82.5, 34.5) 102 (154.5, 36.5) (75.5, 28.5)
31 (137.0, 30.0) (94.0, 18.0) 67 (145.5, 46.5) (79.0, 33.0) 103 (149.5, 29.5) (76.5, 17.5)
32 (138.0, 38.0) (93.5, 33.5) 68 (144.0, 47.0) (77.0, 32.0) 104 (150.0, 30.0) (74.5, 28.5)
33 (136.0, 42.0) (90.5, 33.5) 69 (151.5, 28.5) (82.5, 17.5) 105 (152.5, 32.5) (77.5, 17.5)
34 (130.5, 38.5) (85.5, 35.5) 70 (144.5, 34.5) (71.0, 32.0) 106 (147.0, 41.0) (73.5, 22.5)
35 (139.0, 38.0) (89.0, 33.0) 71 (147.0, 35.0) (68.5, 28.5) 107 (150.0, 36.0) (78.0, 28.0)
36 (141.5, 32.5) (89.5, 29.5) 72 (153.5, 30.5) (78.0, 12.0) 108 (151.5, 40.5) (74.0, 22.0)

Example 7. The data set has 108 patients who the daily systolic and diastolic blood pressures are recorded. The data are
shown in Table B of Appendix. First, the graphical method of correlation is used to find a suitable γ . From Fig. 17, the
estimate of γ is 4. We implement the SCA for the data set and then single linkage hierarchical algorithm on the final
data. The dendrogram as shown in Fig. 18 clearly indicates that there are two well-separated clusters and hence the
optimal cluster number c∗ = 2. The corresponding cluster centers are: Z1 = ((132.509, 28.046), (88.446, 25.360)) and
Z2 = ((150.397, 33.211), (75.201, 21.114)). It means that cluster 1 has low values of systolic blood pressure for both of
centers and spreads and high values of diastolic blood pressure for both of centers and spreads and cluster 2 has in an
opposite way. Furthermore, we have the data numbers 1–50, 52–53, 56 and 62 belong to cluster 1 and the data numbers 51,
54–55, 57–61 and 63–108 belong to cluster 2. These clustering results are slightly different from [10]. But the characteristics
of clusters 1 and 2 are the same as theirs.

5. Conclusions

In this paper, we proposed a robust clustering method which was presented to be robust to cluster number, initial guess
and outliers and cluster shapes for clustering fuzzy data. Numerical examples actually demonstrated the effectiveness of
the proposedmethod. In particular, we apply the proposed clustering algorithm to Taiwanese tea evaluation. The clustering
results show that the algorithm can retain the original grades of the 69 types of tea (or the market price) and rank White-
tip Oolong tea as an exceptional tea boosting consumer confidence and a better understanding of Taiwanese tea despite the
addition of any newor special tea added to the classification process. Thus, themethod can assist the Taiwan Tea Experiment
Station to successfully formulate an evaluation system for tea quality. Moreover, we also applied the method to two data
sets from [10]. We found that it is good for analyzing these real data sets.
In Taiwan, there has been a rapid development in higher education in the last decade. Now the numbers of university-

level institutions have reached 160. To face intense competition, these institutions strive to maintain a leading position by
offering quality teaching, research and service. Again this background, the Taiwan Assessment and Evaluation Association
(TWAEA), a non-profit organization, was established in 2000 to provide third-party evaluation of the performance of the
various universities. The function of TWAEA is to help each institution understand the strength, weakness, opportunity and



W.-L. Hung et al. / Computers and Mathematics with Applications 60 (2010) 151–165 165

threat of its subordinate departments. Therefore, it is necessary to develop more objective performance evaluation models
for various academic departments. In the future, we will apply the proposed robust clustering algorithm in establishing
academic performance evaluation in the higher education system in Taiwan.

Appendix

See Tables A and B.
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