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A b s t r a c t - - F r e e  form volumes in rational Bdzier representation are derived via homogeneous coor- 
dinates. Some properties and constructions are presented and two applications of free form volumes 
are discussed: definition of solid primitives and curve and surface modelling by the way of volume 
deformation. 
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1. I N T R O D U C T I O N  

While in the past, CAGD has been mostly concerned with curves and surfaces, more recently, 
there has been an increasing interest in higher dimensional, tr ivariate objects such as free form 

volumes which are suitable to describe inhomogeneous solids. The two most widely used meth- 
ods of representing solids are the Constructive Solid Geometry  Representation (CSG-Rep . ) - -  
a solid based m e t h o d - - a n d  the Boundar:~ Representation (B-Rep . ) - -a  surface based method 
(see, e.g., [1]). However, free form character of both methods is not very substantial,  and they 

also assume internal homogeneity. On the other hand, free form volumes, with which this paper  
is dealing, possess per definition a very high free form characteristic and describe every interior 
point as well as every point on the boundary surface of the volume uniquely. No assumption on 
internal homogeneity or structure is done. Besides solid modelling, there are some more applica- 
tions of free form volumes, for instance, the description of spatial movement  or deformation of a 
surface, the description of physical fields, such as tempera ture  or pressure, etc., as functions of 
several variables, e.g., the positional coordinates, the modification of curves and surfaces through 

volume deformation, etc. 
Free form volumes can be defined by the tensor Cartesian) product definition, 

zfifi v ( u ,  v, w) = ~ v~,~,k u ~ v~ w k, 
i=o j=o k=o 

u,v,w e [0, 1]. (1) 

The above given definition is based on monomials, in CAGD (Computer  Aided Geometric Design) 
Bernstein polynomials, (see [2,3]), 

B~(w)= (nk) wk(1 -w)  n-k, w c [ 0 , 1 ] ,  (2) 

of degree n in w, and analogously for v and u, are very popular. This is, because the expansion in 
terms of Bernstein polynomials yields, first, a numerically very stable behavior of all algorithms. 
Secondly, a geometric relationship between subject and coefficients of its defining equation. Note, 
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that  these properties are not available in the case of monomials and Lagrange or Hermite poly- 
nomials. Probably this is one of the main reasons why B~zier representations, which are based 
on the use of Bernstein polynomials, became the de facto industry standard in CAGD during 
the past years. Thus, a tensor product Bdzier volume--briefly TPB volume---of degree (l, m, n) 
in (u, v, w) is defined by 

l m n 

v, w) = X; Z 
i=0 j=0 k=0 

u, v, w e [0,1]. (3) 

The coefficients Vi,j,k E ]R 3 are called Bdzier points. They form, connected in the ordering 
given by their subscripts, a spatial net which is called Bdzier grid [3]. 

Because of the polynomial character of (3), only polynomials can be represented exactly. Sphere 
(segments), for example, cannot be constructed by (3). Therefore, many (primary) elements of 
CAD systems cannot be converted exactly into this kind of free form representation. Rational 
B~zier representations overcome this disadvantage for the most part: Primary elements like 
conic sections and quadrics, as well as tori and cyclids, for example, can be constructed, thus 
allowing exact conversion from CSG-Rep. and B-Rep. based solid primitives into rational free 
form representation. 

This paper is concerned with free form volumes in rational B~zier representation defined via 
the Cartesian product. Mathematical description using homogeneous coordinates, properties and 
constructions such as point and derivative evaluation, degree raising, subdivision, and continuity 
conditions are presented in Section 2. Section 3 and 4 discuss two examples of application of 
free form volumes: generation of solid primitives defined by rational TPB volumes and curve and 
surface modelling by free form deformation. 

2. Bl ZIER V O L U M E S  

Using homogeneous coordinates r i, points R = (x, y, z) T of R 3 c a n  be represented by points 

R = (r 1, r 2, r 3, r4) T of R 4 via the projection of R4: into the hyperplane r 4 = 1 according to 
(cf. Figure 1) 

1 (rl, r2 ' r3 ) T for r 4 ~ 0, 
7-/(R) = ~ 

(rl, r2 ' r3 ) T , for r 4 = 0. 

The center of projection is the origin of the 4D Cartesian coordinate system. A point R = 
(x, y, z) T is the projection of w(x, y, z, 1) T, where w ~ 0, w C JR. The real number w is called 
weight of the corresponding point. Note, R E R 4 and QR C ~ 4  Q ~ 0, Q C ]R, describe the same 
point of R 3. ?-((R) is unlimited for r 4 --* 0, r 4 ~t 0. In this way, infinite points of R 3 can be 
described by finite points of R 4 with r 4 = 0. In ]R 3 these points will be represented by direction 
vectors [4]. 

Now, a rational tensor product Bdzier volume--briefly rational TPB volume---of degree (l, m, n) 
in (u, v, w) is defined by [5,6], 

V(u)  = (V(u)) ,  (4) 

where 

V(u) = ~ ~ X~ V~j,k B~(u) B~(v) B'~(w), u, v, w c [0, 1], 
i=0 j=O k=O 

and u = (u, v, w). V(u) is called homogeneous form of V(u).  Thus, a rational TPB volume 
of degree (l, m, n) in R 3, V(u),  is defined by a nonrational, polynomial TPB volume of degree 
(l, m, n) in ]R 4, V(u), i.e., is the projection of a polynomial TPB volume into the hyperplane 
r 4 = 1 .  
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/ 
r3 J R  = (r ~, r 2, r 3) T 

, ~ ~  r4 -1  

Figure  1. In t roduc ing  homogeneous  coordinates  via  projec t ion 7-/(.) of po in t s  of  R 3 
into t h e  p lane  r 3 = 1. 

T 
1 2 3 4 = Vi , j ,k ,O2i , j ,k)  E R 4, where V i , j ,  k : ifwewriteVi,j,k=(Vi,j,k,Vi,j,k,Vi,j,k,Vi,j,k ) (wi , j ,kT  T 

(Xi, j ,k ,  Yi,j ,k, Zi,j ,k) T E R 3, 02i,j,k E ~ ,  and assume 

l m n 

~ ~ w,,3,k B~(u)B?(v)B~(w) ~ O, 
i=O j=O k=0 

u , v , w  e [0,1], 

then, 

v ( . )  = E~=° Ej~0 E~=0 ~,j,k v~,j,k B~(~) S?(v) B~(w) 
z m n t , (5) 

E~=0 Ej=0 Ek=0 ~,J,~ B~(~) By(v) BE(w) 
and 319 Bdzier points Vi , j ,  k a r e  projections, V i , j ,  k ~- ~'~ (Vi , j , k )  , of 4D Bdzier points Vi,j,k. B4zier 
points form in their natural ordering, given by their subscripts, the vertices of the Bdzier grid. 
Scalars wi,j,k E R are called weights: If we increase one wi,j,k the volume will be pulled towards 

the corresponding Vi,j,k. 
The assumption of (5) will be fulfilled if weights wi,j,k are nonnegative and all 8 corner B4zier 

points of the grid are not infinite control points that  will be required from now on. If a con- 
trol point Vi,j,k is a point at infinity, i.e., wi,j,k = O, we replace, according to definition of 
~'~(.) ,o2i, j ,kVi, j ,  k by Vi,j,k in the numerator of (5). Note, infinite control points, also called 

control vectors, can be eliminated by degree elevation (cf., [2, p. 260]) as stated by (7). 
One of the weights (e.g., w0,0,0) can be normalized to be of value one and on boundary curves 

u = 0, v = 0 and w = 0, the parameterization can be chosen so that ,  for instance wz,0,0, = 
w0,m,0 -- w0,0,n = 1. All other weights directly influence the shape of the volume. If all weights 
are equal, (5) yields the nonrational, polynomial TP B volume because Bernstein polynomials 

sum to one (see, e.g., [2, p. 42; 3, p. 116]). 
Positive weights result in volumes which have all the properties and algorithms we do know 

from polynomial representations. Because of definition (4) via the projection ~( . ) ,  properties of 
rational T P B  volumes can be deduced from properties of the nonrational T P B  volume scheme. 
This means that  relations between B~zier grid and rational TP B volume can be deduced from 
those of the underlying B4zier curve scheme, and that  many constructions in different para- 
meters commute, such as degree raising, de Casteljau construction and derived constructions, 
segmentation for example. We list a few properties (see [5,6]). 

CONVEX HULL PROPERTY. The rational T P B  volume lies completely within the convex hull of 

its Bdzier points. 

C A ~  29:8-.H 
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PARAMETRIC SURFACES. The parametric surfaces of constant u are rational TPB surfaces of 
degree (m, n) and analogously for parametric surfaces of constant v and w, respectively. 

PARAMETRIC LINES. Lines u ,v  = constant, so-called w parameter lines, are rational B~zier 
curves of degree n and analogously for v and for u parameter lines. 

BOUNDARY SURFACES. The boundary surfaces of a rational TPB volume are rational TPB sur- 
faces whose B~zier points and weights are the corresponding boundary points and weights of the 
B~zier grid. 

BOUNDARY CURVES. The boundary curves of a rational TPB volume are rational B~zier curves 
whose B~zier points and weights are the corresponding boundary points and weights of the B~zier 
grid. 

VERTICES. The eight vertices of a rational TPB volume coincide with the eight corresponding 
vertices of the B~zier grid. 

VISUAL APPROXIMATION. The B~zier grid gives a rough impression of the rational TPB volume. 

DERIVATIVES. The partial derivatives of order (p, q, r) of a rational TPB volume of degree 
(l, m, n), V(u)  = N(u) /D(u ) ,  are given by (cf., [2, p. 256]) 

0u,~ V(u) - D(u) 0-~*u ~N(u)  - E ~ D(u) N(u)  , (6) 
iEI 

where I = {i = ( i , j , k ) :  i = 0(1)p, j = 0 (1) q, k = 0(1) r and  ( i , j , k )  ~ (0,0,0)} and/3  = lil -- 
i + j + k, using the notation 

0~ 01pl ~" " oP+q+r F(u), 
0u ~ F(u) = ~up ~(u) - Oup Ovq Ow ~ 

where p = (p, q, r), a = [Pl = P + q + r, to indicate partial derivatives of a (vector valued) 
function F(u). Derivative calculation of D(u) is according to 

0 a l! m! n! l-p m-q n-r  
0U a D(u) = (l - p)! (m - q)! (n --- r)! ~ Z Z AP'q'~ wi,j,k S~-P(u) Br~-q(v) B~-r(w),  

i=0 j=0 k--0 

with forward differences AP'q'rcdi,j,k, and similarly for N(u),  employing forward differences 
A p'q'r (w~,j,kVia,k). 

DEGREE RAISING. If we write a rational TPB volume, (4), of degree (l, m, n) as one of degree 
(1 + A, m, n), the new 4D B~zier points V~j,k are given by 

I = O  

(7) 

This can be seen as follows: A(u)V(u), with an arbitrary real-valued function A(u) which does 
not vanish on [0, 1], and V(u) axe associated with the same rational TPB volume V(u).  If we 
choose A(u) to be of degree A, A(u) = ~-~I=O AIB~(u) ,  then A(u)V(u) is of degree 1 + A in u, and 
equation (7) results. As a special case, A = 1, the degree (l + 1, m, n) B~zier points are given by 

( i )  i 
v l ,  j ,k : v~ 0 1 -- ~ Vi,j, k Jr- ~ l ~ - ~ V i - l , j , k .  

Equation (7) means, since )/I E R, that  there is an infinite number of ways to represent a degree 
(/, m, n) volume as one of degree (l + A, m, n). The same holds, with corresponding formulae, for 
degree raising in the v and w variables. 
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POINT AND DERIVATIVE EVALUATION. A volume point V (u0), for any u0 --- (uo, v o , w o ) ,  uo, 

v0, w0 E [0, 1], can be computed by repeated de Caste l jau  steps adapted on 4D B~zier points in 
u, v and w, for example, in the u direction by the recursion formula 

,,~,a,~ (Uo) ( I  ~ ' '  ,,~-1,a,~ + uoV~:~. r  e = (u0) (-0) (8) 

and analogously for v and w, where 

~ll,rn,n 
V(U0) =--0,0,0 (U0), 

V (U0) = (V (u0)) • 

This result stems from the fact that  in (4), the de Casteljau algorithm can be applied separately 
to each of the parameter directions. The de Casteljau steps in different directions commute, and 
the result is independent of the order. Similarly, the derivative of order (p, q, r) of a rational T P B  
volume of degree (l, m, n) can be found using the de Casteljau algorithm. Indeed, starting with 
equation (6) derivatives of N(u)  are given by 

O p+q+~ l! m!  n! 

O u P O v a O w  r N(u)  = ( l - p ) !  ( m -  q)! ( n -  r)! 
_ _  Ap ,q , r  [ 1 - p , m - q , n - r - , r l - p , m - q , n - r ~  kuJ0,0,0 V0,0,0 J '  

with forward differences A p'q,r (~d 13'~'~ V 13'6'~'~ which are now operating on both the subscripts \ a,~ ' ,~  ~ ~")'~ } 

and superscripts, and similarly for derivatives of D(u).  

SUBDIVISION. A rational TPB volume of degree (/, m, n) can be subdivided into two rational T P B  
volumes of the same degree which join along the parametric surface corresponding to u -- u0 with l 

~li,j,k v~,j,k continuous derivatives in u direction. The B~zier points -0,j,k and -i , j ,k of the two subsegments 
can be found by applying the de Casteljau algorithm for u = u0 to all i polygons of the B6zier 
grid. Using the parameter transformations f~ -- u / u o  for u E [0,u0] and fi -- (u - u0) / (1 - u0) 
for u E [u0, 1], respectively, we can reparameterize the subsegments to again be defined on the 
unit cube. 

CONTINUITY CONDITIONS. To construct G C  r or C r continuous rational volumes, V(u )  and 
V(fi) ,  defined via homogeneous coordinates, i.e., as volumes V(u) and V(fi), we have to take into 
account that  all 7/(u)V(u) and V(u) with an arbitrary real valued function ~/(u) which does not 
vanish for any u of parameter domain, are associated with the same rational volume V(u)  in R 3, 
and similarly for V(fi).  In view of this, the two 3D volumes meet continuously along a common 
regular boundary surface B, V(fi)[B = V(u)[B, iff the R 4 representations satisfy 

V ( a ) l B  = (9) 

Note, V and V do not have to meet continuously, for V and V joining continuously. 

Suppose B is given by v -- 1, ~ = 0, V ( ~ , 0 , ~ )  = V ( u , l , w )  for all ~2 = u, ~ = w, then 
continuity condition (9) results in 

Vi,o,k "~ ~0 Vi ,m,k ,  

where Q0 = Q (u, 0 ,~)  = const. ¢ 0 or in terms of inhomogeneous coordinates of IR 3 

"~i,o,kVi,o,k -~ ~0 ~Ji,rn,k V i , m , k ,  

~di,O, k -~- ~O ~di,m,k, 

and, therefore, 
m 

Vi,O,k ~ Vi,ra,k. 
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m 

Iff 0o = 1, then w~,0,k = W~,m,k and polynomial denominators of V(u) and V (fi) join continuously 
too. 

V(u)  and V (fi) join GC" continuously (with contact of order r) across B iff (cf. [3]) 

0~ V(~)B 0~ ( )B' 0 ~  = 0 ~  ~ ( ~ )  v ( u ( ~ ) )  ~ = 0 (1) r, (10) 

where V(u) has been reparameterized by u --* u (fi). Applying the chain rule, we get the following 
additional condition for a GC ~ continuous connection in v direction 

Vo = ~Oo (uzV,~ + V lV .  + w iVe)  + #~V, (11) 

where Qo > 0, bl > 0, and for a GC 2 continuous join in v direction the additional condition 

Voo=oo(ulvlwl). V,,~ V~ V~ v l  

k Vu~ V.~ Vm~ Wl 
//~ou~ + 2~Ul ) 

+ (V~ V. V~) ~ ~ov~ + 2~vi + e~V, 
\ t~ow2 + 2plW~ 

(12) 

where we have used the abbreviations 

0a B' 0~ B 0a B' 0a B" u s  = o - ~  u (~ )  v .  - o r "  ' (~)  ' ~ = ~ w (~) e~ = ~ e (~) 

Notice, V and V do not have to meet GC r continuously, for V and V joining GC r continuously. 
Suppose V(u),  of degree (/, m, n), and V (ill, of degree (l, ~ ,  n), join continuously along bound- 

ary surface B given as above, then, GC 1 continuity condition (11) results in 

~ A  °'1'° Vi,0,k = Q1 Vi,m,k 

+ Qo ((l  - i)ao Al'°'° Vi,m,k + ial A l'°'° Vi-l,,n,k + mbo A°'l'° V~,m-l,k 

-~- (n - k)co t ° ' ° ' l  Vi,m,k "-~ kcl A0'°'l Vi,rn,k-1), (*) 

where, for the purpose of solving (11) by comparing coefficients and to keep calculations easy, 
we assumed functions Q0, ~1 and b0 - Vl to be constants, such that  ~ob0 > 0, function Ul to 
be linear in u, Ul = (1 - u)ao + ual,  ao,al E R, and function Wl to be linear in w, wl = 
(1 - w)co + w o ,  Co,C1 E R. (.) represents four conditions: the fourth equation of (*) is a 
condition on volume weights and looks exactly like (*) but with weights wi,j,k and ~i,j,k, the 
first three equations of (*) are conditions on the products of weights and 3D B~zier points. If we 
solve the ~i,j,k equation for ~lw~,m,k and insert this expression in the condition for Wi,l,kV~,l,k a 
formula for 3D B~zier points V~,l,k, very similar to (*) can be derived: 

A0,1,0 Vi,O,k ~. __Q'-"~-O ((l  -- i)ao w~÷l,m,k A 1'°'° V~,m,k -4- lax oJi-l,m,k AI'°'0 Vi_ 1,m,k 
02i,l,k 

+ mbo Wi,m-l,k AO'I'° Vi,m-l,k 

(n - k) co wi,.~,k+l A °'°'1V,,m,k + kcl w~,..,k-1 A °'°'1 V,,m,k-1). + 

To get, for GC 1 continuity, necessary and sufficient conditions for B~zier points and weights, 
more general factors Q0, •1 and Ul, Vl, wl have to be allowed. However, calculations become very 
technical, extensive and difficult to view. We omit them, but want to point out that  [7] gives 
a very detailed treatment of GC r continuous B~zier surfaces that  can be extended to volume 
representations. 
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3. S O L I D  P R I M I T I V E S  

Compared with solid definitions such as CSG or B-Rep, TPB volumes possess a very high free 
form characteristic, describe every interior point as well as every point on the boundary surface 
of the volume uniquely, and no assumptions are done on internal homogeneity or structure. On 
the other side, they also allow the exact representation of solid primitives. B4zier volumes can 
be constructed in various ways. First, by specification of all control points (and weights), second, 
by interpolation or approximation of digitized points, and third, by performing sweep, spin, loft, 
etc., transformations on profile surfaces, [1,8]. Rational volumes are, in particular, very useful 
for giving exact descriptions of solid primitives such as sphere, cylinder, torus, etc. Following the 
idea of [9], we calculate B4zier points of volumes V(u) by performing a continuum of geometric 
transformations M(w) on a profile surface F(u, v). To be able to generate solid primitives as well 
as free form volumes, we base our considerations on rational representations and homogeneous 
coordinates. Therefore, M(w) might be given by the following 4 x 4 matrix 

/ m l ,  1 ml, 2 71%1, 3 t in  
m2,1 m2,2 m2,3 t 2 

M ( w ) =  /m3,1 ,/n3,2 ,/Tt 3, 3 
\ pt p2 p3 

where m ~,~ indicates rotation, reflection, scaling and shear, t ~ indicates translation, pa perspec- 
tive projection, and s an overall scaling. In the following, we demonstrate the construction of 
solid primitives applying this method. We start by looking at Sweep volumes which result by 
moving a given surface F(u, v) along a prescribed curve K(w) which is sometimes referred to as 
directrix. Translation volumes are special sweep volumes and we are going to discuss them first. 
Translation volumes are specified by Theorem 1. 

THEOREM 1. Let K(w) be the homogeneous form of a rational Bdzier curve K(w) of degree n 
with 4D Bdzier points Kk = (K~, "k'"k'*'kjk'2 Ig3 F.C4~ T ~--- (/3kgT,flk) T, where Kk = (xk,yk,zk)  T and 
weights flk (w.l.o.g. t3o = fin = 1). 

Let F(u, v) be the homogeneous form of a rational TPB surface F(u, v) of degree (l, m) with 
F 1 2 F3 " F,4j)T FT T 4D Bdzier points Fij  ( i,j, F~j, ~,3 = , = , w h e r e  F , , j  = T 

and weights fi~,j (w.l.o.g. fl0,0 = ill,0 = fl0,m = 1). 

i ,j  ,k ' V3 i ,j  ,k , --  U4 i , j ,k ~ T ) = - (tO i , j ,k V i , j ,k ,  tO T i , j ,k  ) 4D Bdzier points Vi,j,k = (V li,j,k,V 2 , with weights 
T 

tOi,j,~ and Vij,k = (xi,j,k, Yi,j,k, zi,j,k) T of a rational Bdzier solid, V(u), represented in homoge- 
neous form V(u), and generated by the movement ofF(u,  v) along K(w), such that V(u, v, 0) = 
F(u, v), V(0, 0, w) = K(w), are given by 

Vi,j,k = Mk F~j, (13) 

where Mo = 14 and 

1 
Mk = (K~)---- ~ 

4 4 1 / K o K k 0 0 Ko 4 K k - Ko 1 K~ 

i Ko 4K~ 0 K~K~-K 2K~ . 

0 Ko 4K~ Ko 4K 3 - K  3K~ 

0 0 Ko4K~ 

PROOF. Since all 7?(w)V(u), with nonvanishing real-valued function ~(w), are associated with 
the same sweep volume of coordinate space, V(u) has to be defined by 

V(u) = 7/(w) M(w) F(u,v) (14) 
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where I3 is a 3 x 3 unit matrix and T = T(w) = (I?(wJ),~~(w),~~(w))~ describes moving of 

F(u, w) along K(w). 
Since V(O,O, w) = K(w) and V(u, v, 0) = F(u, w), (14) implies 

K(w) = v(w) M(w) Ko. 

Solving this 4 x 4 system of linear equations for the components of q(w) M(w) yields 

K; K’(w) - K; K4(w) 

K; K2(w) - K; K4(w) 

’ K; K4(w) K; K3(w) - K; K4(w) 

0 K; K4(w) 

Now, K(w) = (Kl(w), K2(w), K3(w), K4(~))T ’ g’ 1s lven in B6zier representation, therefore, we have 

v(w) M(w) = 2 M/c B,“(w) 
k=O 

c*> 

with Mk as given in Theorem 1. Substituting the BBzier representations of F(u,v) and of V(u) 
as well as (*) into (14) yields by comparing coefficients (13). I 

Note, while 3D BBzier points Vi,j,k E lR3 result by moving the surface net defined by Fi,j 
according to the control points of directrix K(w), this is not true for volume weights Wi,j,k E B3, 

according to Theorem 1 they are given by 

wi,j,k = 
Pk h,j 

PO,0 

Also notice, although V(u) was generated by moving a surface along a w line, parametric surfaces 

of constant u are congruent as well and the same holds for isoparametric surfaces of constant 21. 

For n = 1 the trivariate analogy of a cylindrical surface is created for which BBzier points in w 

direction define parallel lines, 

Vi,j,o = Fi,j, Vi,j,l = Fi,j + T, 

where T = K1 - Ko is translation vector and Wi,g,k = pi,j, for all i,j and k = 0,l. 
A generalization of the translation volume is the blending volume (loft volume, [S]): here two 

noncongruent surfaces F”(u, TJ) and Fn(u, v) defined by BBzier points Fy,j and Flj are connected 

appropriately. For polynomial blending, n has to be specified and, in case of n > 1, BBzier points 

of intermediate nets F~,j, k = l(1) n - 1. Then, 

vi,j,k = Ff,i. (15) 

BBzier points Ft,j of intermediate nets can be provided in different ways. For example, via 

interpolation of n - 1 intermediate surfaces (skinning, lofting), via continuity construction (see 

Section 2), if Fy,j and Ftj are supposed to be boundary surfaces of connecting volume segments 

or, via interactive input procedures. 
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n = 1 gives a very special blending volume, the linear blending volume. It is the trivariate 
generalization of a ruled surface and thus is sometimes called ruled volume (see, e.g., [1]). Defined 
by taking a convex combination, 

V(u)  = (1 - w ) F ° ( u , v ) + w r n ( u , v ) ,  w • [0, 1], 

of surfaces F°(u ,v)  and Fn(u,v),  n = 1, B~zier points are given by (15). 
Volumes of revolution also referred to as spin volumes are sweep volumes as well and can be 

created easily as stated by Theorem 2 (see [5,6]). 

THEOREM 2. Let F(u, v) be the homogeneous form of a rational TPB surface F(u,  v) of de- 
2 3 4 T gree (/, m) with 4D Bdzier points Fi,j (F~,j, Fi,j, Fi,j, Fi,j) = (3i , jFi ,  T , /3 ,d)  T, where F , j  = 

(Xi,j, Yi,j, Zi,j ) T and weights ~i,j (w.l.o.g. /30, 0 = ill,0 = 30.m = 1). 
The rational TPB volume V(u) of degree (l, m, n), n = 2, with 4D Bdzier points 

Vi,j,k = Mk Fi,j, (16) 

where Mo = 14, 

M1 

(cos  ° ° / (cos sin  ° ° / 
i a e s ine  cosc~ 0 0 si y cos ~- 0 0 M2 -- 

' 0 0 1 0 ' 0 cos ~ 0 
0 0 cos -~ 0 0 0 1 

represents a rotation of F(u, v) through the arc a,  with [a[ < 180 °, round the z-axis such that 
V(u,  v, 0) = F(u, v). 

PROOF. For a rotation of F(u, v) about the z-axis by the angle a,  M of (14) now has to be given 
by 

M = 

(cos  sin  0 i) 
sin a cos a 0 

0 0 
0 1 " 
0 0 

With the same arguments as in proof of Theorem 1, we result in equation (.) but with Mk now 

M k  

given by 
K,~ K~ + K~ K 2 
(K~) 2 + (K~) 2 

K 2 Ko 1 - K~ K~ 

K 2 K01 l 2 - K k Ko 
(K~) 2 + (K~) 2 

K~ K~ + K 2 K 2 
(K~) 2 + (K2) 2 (K1) 2 + (K2) 2 

0 0 

0 0 

0 0 

0 0 

K~ 0 
Ko 
o 

(*) 

Note, k -- 0 yields M0 ---- [4.  Since Mk is supposed to represent a rotation, entries of Mk, k -- 1, 2 
can be specified further: 

Rotations (about the z-axis by the angle a) can be described exactly by rational quadratics 
K 1 2 3 ~ T T defined by B~zier points Kk ---- ( k, Kk, Kk, K~) T (/3kKk,Dk) , k = 0,1,2, where /30 -- 1, 

/31 ---- cos ~, ~2 = 1, and rotation of Ko by cq R(a) ,  yields K2 while rotation of Ko by ~, ~ R (~) ,  
followed by a radial scaling with 1/cos ~, S (1/cos ~), gives K1, see [3, p. 152]. 

Now, solving of K2 = 7R(c~)Ko and of Kt -- 75 (1/cos ~) R (~) K0 for the components of 
7R(a) and of 75 (1 /cos~)  R (~) proves that  7R(a) is equal to M2 and 7S (1 /cos~)  R (~) is 
equal to M1 in (*) and that  components are given as stated in Theorem 2. | 
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Note, B@zier points Vi,j,1 = M1 Fi,j become infinite control points for [a[ = 180 °. Figures 2 
and 3 show two examples of volumes of revolution, in both cases solid definition involves several 
infinite control points. 

Figure 2. Solid half-torus described by a 
rat ional  T P B  volume of degree (1,2,2). 

Figure 3. Par t  of a solid hyperboloid of 
revolution of one sheet  descr ibed by a 
rational T P B  volume of degree (1,1,2). 

Rotations about the x-axis and the y-axis can be described analogously. 

Since matrices Mk (and start point K0) define directrix K(w),  different curves can be described 
by changing these matrices and all w parameter lines of V(u)  will adapt the geometry introduced 
by the Mk. For example, if we choose parameter s2 in 

2 

K(w) = r/(w) M(w) Ko = ~ IVIkKo B~(w) (17) 
k=0  

with Mk = Sk Mk, Mk according to (16), so = s2 = 1, appropriately, we obtain an arc of an 
ellipse, parabola or hyperbola, [5,6]: A parabola results for s2 = s* = 1/cos ~, because in that  
case K(w) is a nonrational, polynomial quadratic B@zier curve (all weights are equal!), for s2 > s* 

a hyperbola results, for s2 < s* an ellipse and, for s2 = 1, we have Theorem 2, i.e., K(w) defines 
a circle, see Figure 4. 

Figure 4. Three  rational T P B  volumes with arcs of circles (s2 ---- 1), parabolas  
(s2 = s*, middle) and hyperbolas  (s2 = 3s*), as w parameter  lines. 

4. C U R V E  A N D  S U R F A C E  M O D E L L I N G  

Free form volumes can be interpreted as deformation of the associated parameter domain, i.e., 
the unit cube, under the mapping induced by their defining equation. In general, the position of 
every point in the interior as well as those on the boundary surfaces is altered. It is of particular 
interest for designers to be able to embed curves, surfaces, and volumes in the parameter domain 
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of a free form volume, since this allows concentrating on well-defined subsets of the parameter 
space. In simple cases, these subsets are in fact isoparametric lines and planes, which under the 
deformation are mapped to isoparametrie curves and surfaces of the free form volume. The more 
interesting subsets, however, are nonisoparametric subsets, which might be given by any kind of 
representation. In context of these more general nonisoparametrie subsets, the term FFD (Free 
Form Deformation) is commonly used [10-13]. 

In order to carry out an FFD modelling process, for every point of the object, we nmst first 
find the associated parameter value in the parameter space of the volume. For this, we define 
a box-shaped local coordinate system, the deformation domain, which includes all parts of the 
object to be deformed. It might be subdivided into sub-boxes corresponding to a segmented T P B  
volume. By comparing coordinates, we find the sub-box Q0, defined by P0, U, V, and W as in 
Figure 5 which contains the given point P of the object. We have 

P = P0 + u U  + vV + w W ,  

where local coordinates u, v, w are calculated by 

(18) 

V x W -  (P - P0) U x W .  ( P -  P0) U x V .  (P  - P0) 
% z  V ~  W ~ 

V x W . U  ' U x W . V  ' U x V . W  

Now we have to prescribe the polynomial degree, corresponding weights and a control point 
grid which covers the deformation domain. Figure 6 illustrates this process in case of a volume 
segment of degree (3, 2, 2). The control points of the grid are given by 

Vi , j , k  ~- P0 + ~U + !Vm + W,  (19) 

and initially weights aJi,j,k are chosen to be equal to one. 

Figure 5. Local coordinate system. Figure 6. Control point grid. 

The actual deformation of the object involves translation of points, Vi,j,k ~-~ Vi,j,k, changing 
of weights, aJi,j,k ~-* ~i,j,k, and evaluation of the FFD defining equation with coefficients Vi,j ,k,  
weights -~'i,j,k, and parameter values u, v, w of the object point P calculated above. 

Prom a mathematical point of view, the FFD construction involves composing two mappings, 
the mappings of the object and of the volume definition (el. Figure 7) and has been investigated 
in [14-16]. For the case of modelling a rational B~zier curve using a rational T P B  volume, the 
mathematical foundation for exactly and explicitly describing the FFD is given by Theorem 3. 

THEOREM 3. Let  K(t)  = (u(t), v(t),  w(t ) )  -c be a rational Bdzier curve of degree N with Bdzier 

points K t  :- (ui ,  vi ,  wi )  7 and weights ~I" 

Let  V(u,  v, w) = ( x( u, v, w ), y( u, v, w ), z( u, v, w)) T be a rational T P B  volume of degree ( l, m, n) 

with B6zier points Vi4 ,k  = (x~,j,k, Yi,j,k, Zi,j,k) T and weights o3i,j, k. 
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V(t)  = V (K(t))  = V(u(t) ,  v(t), w(t)) is rational and can be represented as rationM Bdzier 
curve of degree rN,  r = 1 + m + n. We have, in terms of homogeneous coordinates, 

r N  

V(t) = V(K(t ) )  = E ~N VRBR (t), (20) 
R=0 

where 4D Bdzier points MR = (V~, V 2, V 3, V 4) T (f~RVRT, f~R) -F = are given by I 

l m n = ml'm'n (N, I) ~/,,n,n (ui,,, VI~, WI" ) VR ~ B l'm'~ (I) ~ R  -0,o,0 , 
III=R 

(21) 

with combinatorial constants 

cL,m,, (N, I) = 
R r N  (22) 

and, 

tv 
I I I  

I L ~ 4  

K#) \ ) 

t ~ l~ I Bt 'm'"(I )  = H /3i~,, H /3i~,, /3i~,,. (23) 
Q~'=I Q"=I  Q ~ = I  

"~~l:(K2ltl} 

u 

2" 

- - - i  / K2{fi 
# 

Figure  7. F F D  as a composi t ion  of two mappings :  Deformat ion  of p l ana r  curves  
K l ( t )  and  K2( t )  by a surface  m a p p i n g  F ( u , v )  : R 2 ~-* R3. 

The proof of Theorem 3 is analogous to the proofs presented in [16] (cf. [15]). 
.. I ~ ~-]rIf=R has the meaning of summation over all I = (Iu,I ' , IW),  where I ~ -- (I{~, ' ,  z ), 

V W - -  • - -  - -  , - -  I" = ( I ~ , . . . , I ~ ) ,  I ~ -- ( I ~ ' , . . . , I n  ~), and where 0 < I~, . . , I ~  < N, 0 < I~ , . . .  I~  < N, 

0 _< I ~ , . . . , I  z <_ N, I I i=  IIUl + iIVl + [I~I = I~' + . . .  + I ~  + I ~  + . - .  + 1 ~  + I ~  + . . .  + I z = R. 
Vt,m,n is defined recursively by de Casteljau's construction. The argument (u~ vi,m,,w~w) 0,0,0 

indicates that  ~t°'°'° has to be calculated by performing l de Casteljau constructions in u direction W l , r / % , n  

• . / U  for the u parameter values given by the indices I u = (I~, ", I ), i.e., for the parameter values 
u q , , . . . , u ~ : ,  m de Casteljau constructions in v direction for the v parameter values given by 
the indices I v = (I~, . . . , I~n) ,  i.e., for the parameter values vi~, . . . ,v i~ ,  and n de Casteljau 

W constructions in w direction for the w parameter values given by the indices I ~ = ( I ~ , . . . ,  I~ ), 
i.e., for the parameter values WlF, . . . ,  wi~. Calculations for different parameter values commute, 
and the order in which we carry out calculations has no influence on the final result. 

Note, isoparametric lines of (u, v, w) domain space should not be handled by Theorem 3 which, 
in that  case, would yield degree raised isoparametric B4zier curves of V(u,  v, w). 

1Please note,  no ta t ion  varies f rom the  one used in [16]. 



Rational Tensor Product B4zier Volumes 107 

Spline curves are processed using Theorem 3 one curve segment at a time. Modelling by 
spline volumes requires the determination of intersections of K(t)  and boundary planes of volume 
segments in domain space and splitting of K(t)  at these intersection points by adding new knots 
applying de Casteljau's curve subdivision algorithm. Then, for all segments of V(u )  Theorem 3 
can be adapted. Smoothness of V (K(t))  results from application of the chain rule: if K( t )  is 
Ca-continuous in t = t*, and V(u)  is Cb-continuous in the corresponding point K( t )  = K(t*)  of 
(u, v, w) domain space, V (K(t))  is Ce-continuous in V (K(t*), with e = min{a, b}. 

Generalizing Theorem 3, the mathematical foundation for the FFD approach to rational surface 
design via rational volume modelling is provided by Theorem 4 (see [15,16]). 

THEOREM 4. Let  F(# ,v )  = ( u ( # , v ) , v ( # , ~ ) , w ( # , ~ ) )  T be a rational T P B  surface of degree 

( L, M )  with Bgzier points F I , j  = (uAg, vi,g, wi ,y  ) 7 and weights flI,J. 

Let V(u,  v, w) = ( x ( u, v, w ), y ( u, v, w ) , z ( u, v, w ) ) T be a rational T P  B volume of degree ( l, m, n) 

with Bdzier points  Vid ,k  = (xi,j,k, Yi,j,k, zi,j,k ) 7 and weights coi,j, k. 
V(# , ~ )  = V ( F ( # , , ) )  = V ( u ( p , , ) , v ( t t , , ) , w ( # , , ) )  is rational and can be represented as 

rational T P B  surface of degree (rL, r M ) ,  r = l + m + n. We have, in terms of homogeneous 
coordinates, 

rL rM 
rL BrMtp~ (24) v ( . ,  = v ( F ( . , . ) )  = Z v ,s ( . )  s 

R=O S=O 

V 1 V 2 V 3 V~,s) T ( ~ R , s V T , s , ~ R , s ) T  are given by 2 where 4D Bdzier points  Vn , s  = ( R,S, R,S, R,S, = 

VR,s = g g Bl'm'n (I, J)  "~Rr~/'m'" (L,I)  "-~s~Z'm'n(M, J) "O,O,0%ll'm'n (UI"j"l ,  VI~j ~ m  , W~,~j~) . (25) 

III=R IJI=S 

~ g l =  R with I = (I u, I v, I ~) has the same meaning as in Theorem 3, ~-~dJl=S with J = (J ~, j r ,  jw)  

similarly. Constants C~ m'n ( L, I) and v sr~'m'n ( M,  J)  are calculated according to equation (22) and 
%ll,m,n Bl,m,n(I ,J)  is defined as in (23) but now using surface weights ~I,J. -o,o,o is specified by de 

Casteljau ' s construction. 

As with curves, remarks concerning isoparametric planes of domain space of V(u )  as well as 
t reatment  of spline surfaces prove to be right again. 

We observe that  because FFDs involve functional composition, the degree of FFDs can grow 
very quickly. High degrees might cause problems in successive interrogation actions such as 
intersection calculations and also might not be supported by some CAD systems. Therefore, 
the exact description of FFDs will not always be the best approach. Suitable approximation 
techniques taking advantage of the knowledge of the exact and explicit FFD representation to 
describe V (K(t))  and V (F(u, v)) by lower polynomial degrees are under investigation. 
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