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Abstract

The Shape Calculus is a spatio-temporal logic based on an n-dimensional Duration Calculus tailored for
the specification and verification of mobile real-time systems. After showing non-axiomatisability, we give
a complete embedding in n-dimensional interval temporal logic and present two different decidable subsets,
which are important for tool support and practical use.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Motivation

Mobile real-time systems are omnipresent today, e.g., in airplane and railroad control systems.
Failures in these systems may have severe consequences which can even endanger lives. Formal
specification and automatic verification are promising approaches to increase the safety of such
systems. However, for these systems real-time aspects as well as spatial aspects are important.
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Thus, commonly used formalisms that concentrate on either timing or spatial behaviour fall short
in these cases because they need to abstract from important issues.

A pivotal task in the UniForM [32] project in cooperation with the industrial partner Elpro was
the development of a control for a single-tracked line segment (SLS) for tramways. The problem is
to ensure the safety of trams if only one track is available and this track is passed in both directions
and occupied by up to two trams simultaneously as long as they head into the same direction. A
controller has been derived, simulated, and partially verified using techniques for real-time sys-
tems, namely PLC-Automata [19]. However, the main safety requirement, i.e., mutual exclusion of
trams with opposite directions on the critical section, is a spatio-temporal property and cannot be
expressed in purely time-dependent models like PLC Automata [18].

Similar problems arise in the specifications of mobile robots [42]. Each robot itself constitutes a
real-time system, whereas the specification of the overall system behaviour has additional spatial
requirements, for example collision avoidance.

1.2. Research contributions

The shortcomings described above led us to the idea to extend the Duration Calculus, a well-
known formalism for real-time systems, with proven applicability [28], to be able to describe also
spatial properties. The use of the formalism is similar to the use of the original Duration Calculus
when no spatial reasoning is required. Thus, experienced users of temporal logics can easily adopt
the new features.

We present the Shape Calculus1 (SC), a spatio-temporal logic based on the Duration Calculus,
extending the results in [42] and [43]. Shape Calculus is interval based and possesses an integral op-
erator

∫
for measuring time as well as space. We elaborate that this formalism is well suited for the

application domain of mobile real-time systems. We present four major results for this formalism.
First, we prove that the full logic is undecidable and non axiomatisable, even for discrete infinite
models of time and space. To this end, we present a reduction of its validity problem to the emptiness
problem of tiling languages. The full real-time logic Duration Calculus is known to be non-axiom-
atisable for continuous temporal domains, but still decidable for a subset in the discrete setting
which shows to be undecidable in the multi-dimensional case. This relates to the undecidability of
multi-dimensional products of decidable modal logics as discussed in [24]. Second, we present an ax-
iomatisation of Shape Calculus relatively to an n-dimensional interval logic without the

∫
operator,

a result similar to the one for continuous time Duration Calculus. In practice, acceptance of formal
methods is increased dramatically by tool support. Hence, we discuss decidable subsets of the Shape
Calculus. Our third contribution is a decidable subset of Shape Calculus based on results for dis-
crete Duration Calculus. There the subset assumes a discrete and infinite temporal domain but finite
spatial domains. The decision procedure reduces validity to emptiness of regular languages. This
subset has already led to a prototypical implementation of a model checker [38]. Forth, we elaborate
a decidable subset of discrete Shape Calculus using ideas from logic combination [24] and relating
a syntactical subset of Shape Calculus without chop alternation to fusions of Duration Calculus.
This approach proceeds by reducing validity to iteratively checking emptiness of regular languages.

1 The name Shape Calculus was proposed by A. Ravn during a presentation of early ideas.
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Technical context. We review the technical context of our contribution.

1.3. Real-time systems

Concerning real-time aspects, the operational model of Timed Automata [2] is the most popular
and widespread. Due to its decidable emptiness problem, it allows for the automatic verification
of real-time properties. Thus, it enables the development of tools like Uppaal [4,5] and Kronos [8],
which contributed much to the applicability of Times Automata as shown in several case studies
[29,33].

The temporal logics Duration Calculus (DC) [12,28], TCTL [30], and TPTL [3] provide the pos-
sibility to specify and reason about real-time behaviour. The tool DCValid [36] is able to verify a
restricted subset of Duration Calculus using the second order model checker MONA [31] as backend.
A detailed discussion on decidability for subsets of Duration Calculus is given in [22]. However,
neither the automata theoretic nor the logical formalism do provide support for specifying and
verifying spatial properties.

Except for our approach, other extensions of Duration Calculus consider hybrid aspects [13] and
superdense time [37].

1.4. Process calculi

For modelling mobility of concurrent processes, the � calculus was introduced by R. Milner [35].
However, it considers a notion of mobility different from the Shape Calculus. In the � calculus
mobility stems from the change of links between processes. A spatial logic for the � calculus is pro-
posed in [9]. This logic integrates support for reasoning about the behaviour and the structure of
systems of concurrent � calculus systems. A model checker for a subset of this logic is implemented
in [44].

Inspired by the � calculus, the Ambient Calculus [10] considers processes that are executed in
hierarchically nested environments (called ambients) and that may be transfered from one ambient
to another. For grasping the structure of the nested ambients and the process behaviour, in [34] a
spatial logic for the Ambient Calculus based on TLA is proposed. Similarly to [9], the ambient logic
based on modal logic is introduced in [11]. The model checking problem of the full logic against am-
bient calculus processes is undecidable and for finite processes (without replication) still PSPACE
hard [16,15,14]. A compositional approach is proposed in [21]. It investigates the combination of
logics via fusion and product. The notion of location and space is covered by a hybrid logic using
nominals [7] whereas the temporal properties are expressed in a temporal logic. The combined logic
is used to describe the overall system behaviour. However, all these approaches do not facilitate
quantitative measuring, neither of time nor of space. Thus, it is impossible to express, for exam-
ple, an upper bound on the reaction time or a minimal distance of two robots that needs to be
kept.

1.5. Spatial and spatio-temporal logics

The Region Connection Calculus (RCC) [39] constitutes a spatial logic having regions as ba-
sic entities. Thereby, it permits qualitative reasoning about relations, e.g., the part-of-relation or
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tangentiality. Its main area of application is AI. As there is no notion of time in RCC, it has been
extended in [25] to a spatio-temporal formalism for describing mobility qualitatively.

Spatio-temporal logics based on modal logics are proposed in [6,1,40] and different techniques
of combining modal logics—namely fusion and product—is extensively investigated in [23,24]. The
logical and mathematical background developed therein can be used to create various spatio-tem-
poral logics. However, none of these logics proposed allows for quantitative spatial and temporal
measures as needed for our intended application domain of physically mobile real-time systems.
Yet, the second decidable subset we present in this paper is gained by treating our formalism as a
fusion of instances of Duration Calculus.

1.6. Organisation of the paper

After giving a short introduction to SC in Section 2, we show in Section 3 that SC is not axiom-
atisable, but nevertheless it can be completely axiomatised relatively to the n-dimensional extension
of interval temporal logic, which is presented in Section 4. In Section 5 we present two decidable
subsets of discrete SC: one obtained by imposing restrictions on the class of models, another one
by imposing restrictions on the class of formulae.

2. Shape Calculus

In this section, we introduce the Shape Calculus originally proposed in [42]. Here we make use
of a simplified version.

In Duration Calculus [12], the behaviour of a system is modelled by a set of time-dependent
variables (observables) whose values change over time. We adopt this approach and use Boolean
observables that depend on space and time. We may choose to have discrete or continuous time and
space depending on the current application. With the number of spatial and temporal dimensions,
say n, being fixed a priori, the semantics of an observable X is given by a trajectory I

I[[X ]] : �n�0→ {0, 1}

in the continuous case or as a function with domain �n for the discrete case. In general, we denote
the spatio-temporal domain by �.

Example 1. To model a mobile robot moving on the floor, we need two spatial and one temporal
dimension, so we fix n = 3. We employ two observables R and A. The observable R is true for a
point in space and time if and only if the robot occupies this point in space at the given moment in
time. Similarly, the bounded safe area is modelled by the observable A.

As we will measure time and space, we have to guarantee that an integral exists and therefore
require Riemann-integrability of all functions.

The language of SC is built from state expressions, terms, and formulae. A state expression char-
acterises properties of one point in time and space. They are denoted by � and built from Boolean
combinations of observables. The semantics is given by a function I[[�]] : �n�0→ {0, 1} defined as
a straightforward extension of trajectories of observables.
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I[[¬�]](�z) df= 1− I[[�]](�z)
I[[� ∧ �′]](�z) df= I[[�]](�z) · I[[�′]](�z)

State expressions are formulae of propositional logic. Like in propositional logic, we therefore
define two state expressions � and �′ to be equivalent, denoted by � ≡ �′, if for all interpretations
I the equality I[[�]] = I[[�′]] holds.

Example 2. The state expression R ∧ ¬A describes exactly the points in space-time where the robot
is outside its restricted area. The interpretation assigns 1 to all points satisfying the condition and
0 to all others.

A term � is either a measure
∫
�, where � is a state expression, a rigid variable x, i.e., a variable that

does not change over time, the special symbol ��ei denoting the diameter of the n-dimensional inter-
val (hypercube) under consideration along the i-th unit vector �ei or the application of a function f .
Commonly used functions are summation or multiplication.

� ::= ∫ � | x | ��ei | f(�1, . . . , �k)

The value of a rigid variable is a real number or a natural number, depending on the time domain.
It is determined by a valuation V which is a function mapping the variables to the spatio-temporal
domain. The set of valuations is denoted by Val. The semantics of terms assigns a real number to

each n-dimensional interval from the set Intn
df={[b1, f1] × · · · × [bn, fn]|bi, fi ∈ �} of all n-dimen-

sional intervals. Thus, it is a function I[[�]] : Intn × Val→ � and defined in the expected way, i.e.,
let

M = [b1, f1] × · · · × [bi, fi] × · · · × [bn, fn] ∈ Intn

and V ∈ Val then

I[[∫ �]](V , M)
df=
∫

M
I[[�]]

I[[��ei ]](V , M)
df= fi − bi

I[[x]](V , M)
df= V(x)

I[[f(�1, . . . , �k)]](V , M)
df= fI(I[[�1]](V , M), . . . , I[[�k ]](V , M))

Example 3. The term
∫
(R ∧ ¬A) is the measure of all points violating the requirement.

Formulae are interpreted over n-dimensional intervals and incorporate a special “chop” operator
( 〈〉 ) to partition the current interval into two parts. A formula F 〈�ex〉G is evaluated to true, if the
interval can be split along the x-axis into two parts, the first satisfying F and the second satisfying
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Fig. 1. Illustration for F 〈�ex〉G.

G. This is sketched in Fig. 1. As we consider a many-dimensional logic, we allow chops along each
cartesian axis. Formally, we define the set of formulae by

F ::= F1 〈�ei〉 F2 | p(�1, . . . , �k) | ¬F1 | F1 ∧ F2 | ∃x : F

where p is a predicate symbol like= or�, x a rigid variable that does not change over time and �ei the
ith unit vector. The other Boolean connectives can be defined as the usual abbreviations. We only
give the definition of “chop” here as the other operators and the existential quantifier are defined
according to in First-Order Logic.

We employ the following notation for describing the application of the chop operation on
intervals.

Definition 4 (Notation). Let M = [b1, f1] × · · · × [bm, fm] denote an m-dimensional interval. We
denote the lower bound bi of the ith dimension by mini M and the upper bound �ei by maxi M,

respectively. Furthermore, denote by M ≺i r df=[b1, f1] × · · · × [bi, r] × · · · × [bm, fm] the first sub-
interval obtained by chopping the original interval along the ith axis at position r and the second

part by M �i r df=[b1, f1] × · · · × [r, fi] × · · · × [bm, fm]. The “interior” M− of M is defined by
M− = [b1, f1)× · · · × [bm, fm).

Using this notation the semantics of the chop operator is defined as follows.

I[[F1 〈�ei〉 F2]](V , M) = true

iff there is an m ∈ [mini M, maxi M] such that

I[[F1]](V , M ≺i m) = true and

I[[F2]](V , M �i m) = true.
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The satisfaction relation |= is defined by

I , V , M |= F iff I[[F ]](V , M) = true.

We define some abbreviations to make specifications more concise. The almost everywhere oper-
ator ��
 expresses that a state assertion � holds almost everywhere in the interval and the interval
is non-empty. The empty interval is denoted by �
. The n-dimensional volume is measured by the
term �.

�
df= ∫ 1 ��
 df=(∫ � = � ∧ � > 0) �
 df= ∫ 1 = 0

The somewhere operator ♦�eiF chops the n-dimensional interval twice in the ith direction such that
in the middle interval F holds, hence it expresses that F holds on some region along the ith axis.

♦�eiF
df= true 〈�ei〉 F 〈�ei〉 true

The dual globally operator is ��ei defined by

��ei
df=¬♦�ei¬F

and expresses that F holds in every region along the ith axis. Although chop is associative only
for chopping in the same direction, ♦�e1♦�e2F still is equivalent to ♦�e2♦�e1F . We will denote the unit
vector corresponding to the time dimension by �et and to spatial dimensions by �ex, �ey , etc.

Example 5. The initial requirement, that at most 10 cm2 of the robot R is ever outside a restricted
area defined by A can be expressed by

��et
(∫
(R ∧ ¬A) � (10 · ��et )

)

where the unit is omitted. The formula reads as follows: for every temporal interval the volume of
all points of R outside of A is less than 10 multiplied by the temporal length. The scenario is sketched
in Fig. 2a. The observable R modelling the robot is true for all points between the solid lines, the
observable A is true for all points between the dashed lines. For simplicity we omitted the second
spatial dimension in the drawing.

Example 6 (Ensuring a minimal distance). Consider the scenario of two moving robots using a col-
lision avoidance system as depicted in Fig. 2b. We require that the minimal distance is always at
least than 1 cm. This is specified by

��et��ex
(
(♦�ex �R1
 ∧ ♦�ex�R2
)⇒
♦�et ((♦�ex�R1
 ∧ ¬♦�ex�R2
) 〈�ex〉

(�¬R1 ∧ ¬R2
 ∧ ��ex � 1) 〈�ex〉
(♦�ex�R2
 ∧ ¬♦�ex�R1
))

)
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a b

Fig. 2. (a) Moving robot scenario and (b) Minimal distance scenario.

This formula reads as follows. For all spatio-temporal subintervals such that RobotR1 and Robot
R2 are contained somewhere in this interval, there is a temporal subinterval such that we can split
space into three parts such that

(1) the lower part contains R1
(2) the middle part neither contains Robot R1 nor R2 and it has length greater than or equal to 1
(3) and the upper part contains R2.

As indicated in Fig. 2b arbitrarily large temporal intervals do not need to satisfy the Condition
(2).

Definition 7 (Validity/satisfiability). A formula F is valid iff it evaluates to true for all interpretations,
valuations and intervals. It is satisfiable iff there is an interpretation, a valuation and an interval
such that F holds.

Note 1. Duration Calculus and one-dimensional Shape Calculus coincide. In this sense the extention
of Duration Calculus is conservative.

3. Undecidability and non-axiomatisability

In this section, we show that validity for Shape Calculus is undecidable and even not recursively
enumerable. Henceforth, Shape Calculus is not recursively axiomatisable by Craig’s Theorem [17].

In [28] it is shown that Duration Calculus is decidable for the discrete time domain and for the
formulae restricted to phase expressions �·
, chop and Boolean operators. This result does not trans-
fer to Shape Calculus when considering more than one dimension. Since one-dimensional Shape
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Calculus and Duration Calculus coincide, for one-dimensional discrete Shape Calculus and this
restricted subset, validity is still decidable.

Theorem 8. For two dimensions and above, the set of valid SC formulae is not recursively enumerable,
neither interpreted in the continuous nor in the discrete domain.

By Craig’s Theorem [17] a theory is recursively axiomatisable if and only if the set of valid
formulas is recursively enumerable. Therefore from the above theorem, we obtain the following
corollary.

Corollary 9. There is not a sound and complete proof system for SC .

Extending the undecidability proof in [42], we provide a reduction from a non recursively enu-
merable tiling problem.

For this proof we restrict ourselves to the class of formulae given by

F ::= ��
 | F ∧ G | ¬F | F 〈�e1〉G | F 〈�e2〉G | ��ei = r
for some fixed r. The corresponding subset of Duration Calculus interpreted in discrete or contin-
uous time domain is known to be decidable [28]. Without loss of generality, we choose r = 1.

3.1. Tiling systems

The theory of string languages can be extended to two-dimensional (also called picture) lan-
guages. We shortly review the main definitions and results. A detailed discussion can be found in
[26].

We fix an alphabet� and a fresh boundary character #. A two-dimensional string (picture) over
� is a two-dimensional rectangular matrix of elements of � such that the boundary is marked by
the fresh symbol #.

A tile p is a 2× 2 matrix with elements in � ∪ # and a tiling system � is a finite set of
tiles. The local language L(�) for a tiling system � is the set of all n× m matrices such that
each 2× 2 block is in � and the boundaries of the matrix consist only of # and # does not
occur in the interior.

Giammarresi and Restivo show in [26] that the emptiness problem
Given a tiling system �, is L(�) = ∅ ?

is undecidable. This problem can be reformulated as follows:
There is no n× m matrix for n,m ∈ � such that every 2× 2 submatrix is contained in the set �

and the boundaries of the matrix consist of # only and # does not occur in the interior.
They provide a reduction such that a Turing Machine M has no successful computation

iff L(�) is empty. With this reduction to the termination problem, the emptiness problem for
tiling systems is not recursively enumerable. Both problems are co-recursively enumerable.

3.2. Encoding tilings in Shape Calculus

We provide a reduction of the emptiness problem for tiling systems as described above to the
validity problem of Shape Calculus. For a set of tiles � = {p1, . . . , pk}, we define a formula F� in
SC, such that L(�) /= ∅ iff F� is satisfiable which is equivalent to L(�) = ∅ iff ¬F� is valid.
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We present an encoding which does not rely on continuous or discrete time and space domain.
Therefore, to avoid chopping at arbitrary positions, we impose a chess-board marking by a fresh
observable� as a region marker to clearly identify 2× 2 blocks in the continuous case. We specify
the grid by a formula Fgrid as follows:

Fgrid
df= ��e1 � 2 ∧ ��e2 � 2 ∧
�� ⇐⇒ (�1 ⇐⇒ �2)
 ∧ (∗)
��e1
(
((��1
 〈�e1〉 ��e1 = 1⇒ ��1
 〈�e1〉 �¬�1
) ∧

(�¬�1
 〈�e1〉 ��e1 = 1⇒ �¬�1
 〈�e1〉 ��1
)
) ∧ (∗∗)

��e1 � 1⇒ (��1
 ∧ ��e1 = 1 〈�e1〉 true) ∧ (∗ ∗ ∗)
��e2

(
((��2
 〈�e2〉 ��e2 = 1⇒ ��2
 〈�e2〉 �¬�2
) ∧

(�¬�2
 〈�e2〉 ��e2 = 1⇒ �¬�2
 〈�e2〉 ��2
)
) ∧ (∗∗)

��e2 � 1⇒ (��2
 ∧ ��e2 = 1 〈�e2〉 true) (∗ ∗ ∗)

We use two auxiliary observables �1 and �2. The observable �1 is true on intervals [i, i +
1] × [a, b] and false on [i + 1, i + 2] × [a, b] when i is even and a, b are arbitrary. The same
holds for �2 and intervals [a, b] × [i, i + 1] and [a, b] × [i + 1, i + 2], respectively. This fact can
be easily proven by induction on i. The quantified subformulae (∗∗) specify that a ��i
 slice
is succeeded by a �¬�i
 slice and vice versa. The initial condition that the first slice has a
size of 1 and satisfies ��1
, respectively ��2
, is specified separately by (∗ ∗ ∗). The chess-
board marking by � is obtained using the equivalence operation on �1 and �2 in (∗). This
idea is formalised in the following lemma.

Lemma 10. Let I be an interpretation and k ∈ �, a, b ∈ �. Then I , [0, k] × [a, b] |= Fgrid if and only if
k � 2, b− a � 2, and for all i ∈ �, i � k and arbitrary [a′, b′] ⊆ [a, b] the following holds:

(�) I , [i, i + 1] × [a′, b′] |=
{ ��1
 if i is even,
�¬�1
 otherwise

(�) I , [a′, b′] × [i, i + 1] |=
{ ��2
 if i is even,
�¬�2
 otherwise

(�) I , [i, i + 1] × [j, j + 1] |=
{ ��
 if i, j are both even or both odd
�¬�
 otherwise.

To describe a 2× 2 block in this grid satisfying the observables P1, P2, P3, P4 in its four cells starting
with P1 in the lower left corner, we use the pattern

F2×2(P1, P2, P3, P4)
df= ((�� ∧ P1
) 〈�e1〉 (�¬� ∧ P2
) 〈�e2〉
(�¬� ∧ P3
) 〈�e1〉 (�� ∧ P4
)) ∨
((�¬� ∧ P1
) 〈�e1〉 (�� ∧ P2
) 〈�e2〉
(�� ∧ P3
) 〈�e1〉 (�¬� ∧ P4
))
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Fig. 3. Sample encoding of tilings in a grid structure.

and assign to every tile pi =
(
c d

a b

)

a formula Fpi
df= F2×2(a, b, c, d). With these sub-formulae we

define F� to be

F�
df= Fgrid

∧��e1��e2
(

F2×2(true, true, true, true)⇒
k∨

i=1

Fpi

)

(∗)

∧�#
 〈�e1〉 (�#
 〈�e2〉 �¬#
 〈�e2〉 �#
) 〈�e1〉 �#
 (∗∗)
∧�

∧

s,s′∈�,s /=s′
s⇒ ¬s′
 (∗ ∗ ∗)

The second conjunct (∗) states that each 2× 2 block in the grid must be in �, whereas the third
conjunct (∗∗) states that the picture must be framed by # and # does not occur in the interior, as
sketched in Fig. 3. The last conjunct ensures mutual exclusion of symbols. With this definition, F�
is satisfiable if and only if the local language L(�) is not empty, so ¬F� is valid if and only if the
local language L(�) is empty.

Proof

“only if” Let I be a satisfying interpretation and [0, k1] × [0, k2] an interval such that I , [0, k1] ×
[0, k2] |= F�. Note that by definition of the grid and F� a satisfying interval must have
integer bounds. Let (pi,j)i,j be the matrix defined by

pi,j = a ⇐⇒ I , [i, i + 1] × [j, j + 1] |= �a
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for a ∈ � ∪ {#}. By (∗ ∗ ∗) there is at most one observable a ∈ � ∪ {#} satisfied on [i, i +
1] × [j, j + 1] and by (∗) there is at least one observable satisfied. Therefore (pi,j)i,j is well-
defined. By (∗) each interval of size 2× 2 satisfies some Fpi . Therefore by construction
each 2× 2 submatrix in (pi,j)i,j is in �. Furthermore, since the boundary satisfies �#
 the
matrix boundaries of (pi,j)i,j consists of #. So, (pi,j)i,j ∈ L(�).

“if” Let (pi,j)i,j ∈ L(�). Define an interpretation I for the observables a ∈ � ∪ {#} by

I[[a]](x, y) =
{

1 if pi,j = a ∧ x ∈ [i, i + 1], y ∈ [j, j + 1],
0 otherwise

and for the auxiliary observables by

I[[�1]](x, y) =
{

1 if there is an even i such that x ∈ [i, i + 1],
0 otherwise

I[[�2]](x, y) =
{

1 if there is an even i such that y ∈ [i, i + 1],
0 otherwise

I[[�]](x, y) =
{

1 if I[[�1]](x, y) ⇐⇒ I[[�2]](x, y),
0 otherwise.

It is straightforward to see that I , [0, i + 1] × [0, j + 1] |= F�. �

We haven proven so far that satisfiability corresponds to non-emptiness of local picture lan-
guages for tiling systems. Therefore validity corresponds to language emptiness, which is known
to be undecidable and not recursively enumerable. By Craig’s Theorem [17] this proves: SC is not
recursively enumerable and not axiomatisable.

4. Relative completeness

In the previous section, we have demonstrated that Shape Calculus is not axiomatisable.
Despite this negative result, it is still possible to give an axiomatisation relatively to an n-di-
mensional extension of Interval Temporal Logic (ITLn). We assume an inference system for
ITLn, i.e, a set of inference rules such that every valid ITLn formula can be derived by finitely
many applications of the inference rules. The inference relation is denoted by �ITLn . Assum-
ing the existence of this inference system for ITLn, we derive a system for the Shape Calculus
such that every valid Shape Calculus formula can be derived. Therefore, this system is called
complete relatively to ITLn.

Thereby, we extend the axiomatisation result for the Duration Calculus presented in [27]
to the Shape Calculus. Duration Calculus itself allows an axiomatisation relatively to interval
temporal logic (ITL). For this axiomatisation, we require a stronger finite variability assump-
tion, namely every finite n-dimensional interval can be partitioned into finitely many sub-in-
tervals such that I is constant on each sub-interval. Considering arbitrary integrable functions
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would require an axiomatisation of the integral calculus which is out of scope for this paper.
The axiomatisation result for Duration Calculus presented in [27,28] relies on the same re-
quirement, namely finite variability. Our proof follows the lines of [27,28] and considers only
the two-dimensional case, but it can easily be generalised to more dimensions.

4.1. Interval temporal logic (ITL)

We shortly introduce the n-dimensional ITL. One-dimensional ITL is discussed in [20,28].
ITLn does not use state assertions nor the integral operator but instead uses flexible vari-
ables v whose values depend on the interval. Furthermore, it incorporates rigid variables x
and lengths ��ei as terms.

�ITLn ::= x | v | ��ei | f
(
�ITLn

1 , . . . , �ITLn
k

)

The semantics of flexible variables is given by an interpretation IITLn that assigns a real number
to each n-dimensional interval. This is extended to terms as follows:

IITLn[[x]](V , M)
df= V(x)

IITLn[[v]](V , M)
df= I(v)(M)

IITLn[[��ei ]](V , M)
df= fi − bi

IITLn[[f
(
�ITLn

1 , . . . , �ITLn
k

)
]](V , M)

df= fIITLn (IITLn[�ITLn
1 ]](V , M),

. . . ,

IITLn[�ITLn
k ]](V , M))

Like in Shape Calculus, V is a valuation of the rigid variables, i.e., variables that do not change
over time and M = [b1, f1] × · · · × [bn, fn] is an n-dimensional interval. Furthermore, we define the

abbreviation �
df= ��e1 · ��e2 to measure the two-dimensional area. For formulae, ITLn incorporates

Boolean combinations, chop and quantification as in SC. Formally, it is given by the following
BNF.

F ITLn ::= F ITLn
1 〈�ei〉 F ITLn

2 | p
(
�ITLn

1 , . . . , �ITLn
k

)
| ¬F ITLn

1 | F ITLn
1 ∧ F ITLn

2 |
∃x : F ITLn

The semantics of the Boolean connectives and quantifiers is the same as in first order logic. The
semantics of the chop operator is the same as in Shape Calculus.

4.2. Axiomatisation

We present the main theorem of this section and give a short proof sketch. To make the presen-

tation more concise, we introduce negated unit vectors and define F 〈−�ei〉G df= G 〈�ei〉 F



38 A. Schäfer / Information and Computation 205 (2007) 25–64

Theorem 11. Two-dimensional SC is axiomatised relatively to ITL2 by the following axioms.

∫
0 = 0 (SC1)
∫

1 = � (SC2)
∫
� � 0 (SC3)
∫
�1 +

∫
�2 =

∫
(�1 ∨ �2)+

∫
(�1 ∧ �2) (SC4)

∫
� = x 〈�ei〉

∫
� = y ⇒ ∫

� = x + y (SC5)

�
 ∨ ((��
 ∨ �¬�
 〈�e1〉 true) 〈�e2〉 true) (FV1)

�
 ∨ ((��
 ∨ �¬�
 〈�e1〉 true) 〈−�e2〉 true) (FV2)

�
 ∨ ((��
 ∨ �¬�
 〈−�e1〉 true) 〈�e2〉 true) (FV3)

�
 ∨ ((��
 ∨ �¬�
 〈−�e1〉 true) 〈−�e2〉 true) (FV4)

The set of axioms can be separated into two groups. The first group (SC1) up to (SC5) speci-
fy properties of the integral calculus need for piecewise constant functions. The second group
(FV1)–(FV4) specifies finite variability, by demanding that for every point we can find 4 rect-
angles to the lower left, lower right, upper left and upper right, respectively, such that the
value of a state expression is constant. The proof of relative completeness proceeds as fol-
lows. For a valid SC formula F we have to construct a derivation using the set of axioms
defined previously. To this end, we construct a valid ITLn formula. As we consider relative
completeness, we can assume an ITLn deduction of this formula. This deduction is lifted to
a Shape Calculus deduction of F .

4.3. From Shape Calculus to ITLn

For a given valid Shape Calculus formula F , we first elaborate an encoding of all Shape Calculus
axioms that are possibly needed for the proof of F into one ITLn formula.

Encoding the axioms in ITLn. Let F be an arbitrary valid SC formula and let X1, . . . ,Xl be the set
of Boolean observables occurring in F and S the set of all state expressions built from these ob-
servables. Note that, since state expressions are formulae of propositional logic, only finitely many
state expressions can be nonequivalent. Let

[�] df={�′ | �′ ≡ �}
denote such an equivalence class and S≡ = {[�]|� ∈ S} denote the set of equivalence classes. For
every equivalence class [�] we introduce an ITLn flexible variable v[�] with the intuition that
v[�] models the the value of

∫
�. We encode the SC Axioms by the following finite sets of ITLn

formulae.

H1
df={v[0] = 0}

H2
df={v[1] = �}
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H3
df={v[�] � 0 | [�] ∈ S≡}

H4
df={(v[�1] + v[�2]) = (v[�1∨�2] + v[�1∧�2]) | [�1], [�2] ∈ S≡}

H5
df={(v[�] = x 〈�ei〉 v[�] = y)⇒ (v[�] = x + y) | [�] ∈ S≡}

H6
df={�
 ∨ ((�v[�]
 ∨ �v[¬�]
 〈 �d1〉 true) 〈 �d2〉 true) |
[�] ∈ S≡, di ∈ {�ei,−�ei}}

where �v[�]
 df=(v[�] = � ∧ � > 0) and �
 df=(�1 = 0 ∨ �2 = 0). We define HIF to be the conjunction
of all formulae in H1 to H6 and F I to be the ITLn formula obtained from F by replacing every
occurrence of

∫
� by v[�]. Note, that this formula depends on F .

We will now show, that an ITLn interpretation IITLn and a valuation V that satisfy the ax-
ioms encoded in HIF can already be used to derive a Shape Calculus interpretation. We will
use such interpretations, valuations and intervals frequently in what follows, so we aggregate
them in triples.

Definition 12 (H-Triple). A triple (IITLn , V , [b1, f1] × [b2, f2]) is called an H-triple if

IITLn , V , [b1, f1] × [b2, f2] |=ITLn ��e1��e2H
I
F

i.e., HIF holds for every subrectangle of [b1, f1] × [b2, f2].
Using this definition and the axioms, we derive some properties of H-Triples that will be used in
the completeness proof. A complete proof of this lemma can be found in [28].

Lemma 13. Let (IITLn , V , [b1, f1] × [b2, f2]) be an H-Triple. Then the following holds:

(1) IITLn , V , [b1, f1] × [b2, f2] |=ITLn v[�] + v[¬�] = �
(2) IITLn , V , [b1, f1] × [b2, f2] |=ITLn v[�] � �
(3) IITLn , V , [b1, f1] × [b2, f2] |=ITLn v[�1] � v[�1∨�2]
(4) IITLn , V , [b1, f1] × [b2, f2] |=ITLn �v[�]
impliesI , V , [c1, d1] × [c2, d2] |= �v[�]
for[ck , dk ] ⊆ [bk , fk ],
k = 1, 2.

Deriving the piecewise constant property. As we require Shape Calculus interpretations to be
piecewise constant, i.e., there is a partition of time and space into intervals such that the in-
terpretation of observables is constant on each interval, we show that this property can be
derived in ITLn from the encoded axioms. We need the instances in H6 and the Theorem of
Heine Borel [41].
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Lemma 14. Given an arbitrary H-triple (IITLn , V , [b1, f1] × [b2, f2]) such that b1 < f1 and b2 < f2, i.e.,
the interval is non-empty, then for every � ∈ S there is a finite partition in sub-rectangles [b1

1, f
1
1 ] ×[b1

2, f 1
2 ], . . . , [bn1 , f n1 ] × [bn2, f n2 ] such that for every rectangle [bi1, f i1 ] × [bi2, f i2] holds either

IITLn , V , [bi1, f i1 ] × [bi2, f i2] |=ITLn �v[�]
 or IITLn , V , [bi1, f i1 ] × [bi2, f i2] |=ITLn �v[¬�]


Proof. Let (x, y) ∈ [b1, f1] × [b2, f2]. Then by H6 there exists x1 � x � x2 and y1 � y � y2 such that

IITLn , V , [x1, x] × [y1, y] |=ITLn �v[�]
 ∨ �v[¬�]
 and

IITLn , V , [x1, x] × [y , y2] |=ITLn �v[�]
 ∨ �v[¬�]
 and

IITLn , V , [x, x2] × [y1, y] |=ITLn �v[�]
 ∨ �v[¬�]
 and

IITLn , V , [x, x2] × [y , y2] |=ITLn �v[�]
 ∨ �v[¬�]

Now (x1, x2)× (y1, y2) is an open interval covering the point (x, y) and the closed interval [x1, x2] ×
[y1, y2] has the desired property. Then by Heine-Borels Theorem there is a finite subset of this infinite
partition covering [b1, f1] × [b2, f2] . The cases where (x, y) is on the border are handled similarly.
This yields the finite partition as required. �

From ITLn interpretations toSC interpretations. We have to show that for every valid SC formula
there is a valid ITLn formula such that we can lift the derivation of the ITLn formula to a derivation
of the SC formula. We will show the contrapositive, i.e., that an ITLn interpretation satisfying the
axioms, corresponds to an SC interpretation. Let (IITLn , V , [b1, f1] × [b2, f2]), be an H-triple. We
construct an SC-interpretation ISC by defining for every observable X the interpretation ISC(X) to
be

ISC(X)((x, y))
df=






1 if there are x1, x2, y1, y2
x1 � x < x2, y1 � y < y2 such that
IITLn , V , [x1, x2] × [y1, y2] |=ITLn �v[X ]


0 otherwise

(1)

This interpretation has the required finite variability property: each interval can be parti-
tioned into finitely many subintervals such that the value of each observable X is constant
on each subinterval. It is to be shown that the SC interpretation given by this definition sat-
isfies ��
 if and only if the ITLn interpretation satisfies �v[�]
. This result is established by
the following lemma.

Lemma 15. For an H-triple (IITLn , V , [b1, f1] × [b2, f2]), a state assertion �, and an SC-Interpretation
as defined in Equation 1, there is a finite partition [m1

1,m
2
1 ] × [m1

2,m2
2], . . . , [mn−1

1 ,mn1 ] × [mo−1
2 ,mo2] of

the two-dimensional interval [b1, f1] × [b2, f2] such that for every point (x, y) ∈ [mi1,mi+1
1 )× [mj2,mj+1

2 )

holds

IITLn , V , [mi1,mi+1
1 )× [mj2,mj+1

2 ) |=ITLn �v[�]
 ∨ �v[¬�]
 (2)

and
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ISC[[�]]
(
(x, y)

) =
{

1 if I , V , [mi1,mi+1
1 )× [mj2,mj+1

2 ) |=ITLn �v[�]

0 if I , V , [mi1,mi+1

1 )× [mj2,mj+1
2 ) |=ITLn �v[¬�]
.

(3)

This lemma can be proven by induction on the structure of �. As the integral
∫
� is derived by

summation over the piecewise constant parts we obtain the following corollary.

Corollary 16. For the interpretation ISC and every state assertion � and interval [b1, f1] × [b2, f2]
ISC[[

∫
�]]([b1, f1] × [b2, f2]) = IITLn[[v[�]]]([b1, f1] × [b2, f2])

4.4. Proving relative completeness

Starting with a valid Shape Calculus formula F , we have shown how to construct an Shape
Calculus interpretation for every ITLn interpretation that satisfies certain instances of the Shape
Calculus axioms in the ITLn formula ��e1��e2HIF .

Corresponding to the Shape Calculus formula F , we define the ITLn formula F I by replacing the
measure

∫
� with a variable v[�]. Using the above result, we can construct for every ITLn interpreta-

tion IITLn which violates ��e1��e2HIF ⇒ F I , i.e, the interpretation satisfies ��e1��e2HIF but violates F I ,
an SC interpretation ISC violating F .

This proves the following lemma.

Lemma 17. |=SC F implies |=ITLn ��e1��e2HIF ⇒ F I .

To show the converse implication, let ISC be an SC interpretation violating F . Define the violating
ITLn interpretation IITLn by

IITLn(v[�])([b1, f1] × [b2, f2]) df= ISC[[
∫
�]]([b1, f1] × [b2, f2]).

Using this interpretation and the soundness of our axiomatisation, we obtain

Lemma 18. |=ITLn ��e1��e2HIF ⇒ F I implies |=SC F.

To prove the relative completeness, suppose |=SC F . Then by Lemma 17 holds |=ITLn ��e1��e2HIF⇒ F I . Take the ITLn derivation of |=ITLn ��e1��e2HIF ⇒ F I and replace every occurrence of v[�]
by

∫
� to obtain an SC derivation. As HF is a boxed conjunction of instances of SC axi-

oms, it can be easily deduced in SC and therefore we obtain a derivation of F by modus
ponens.

5. Decidable subsets

For acceptance of formal methods in practice, tool support is essential. Decidable subsets
therefore play an import role as they facilitate the implementation of model-checkers. Restrict-
ed discrete Duration Calculus is known to be decidable [28] and a model-checking method
is implemented in DCValid [36]. In this section, we present two different types of decidable
subsets of SC. The first is obtained by imposing restrictions on the class of models and the
second by imposing restrictions on the class of formulae. Duration Calculus is already unde-
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cidable in the continuous case except for very restricted subsets which, e.g., miss the possibility
of taking quantitative measures. Henceforth we assume the time-space-domain to be discrete
throughout this section. As First-Order logic is undecidable, we also omit first order variables.
We assume all interpretations to change their values only at points in � and all variables to
have a range in �. A detailed discussion of decidable subsets and undecidability results for
Duration Calculus can be found in [28] and [22].

5.1. Finite space with infinite time

This first subset SCfin imposes a restriction on the class of models: we allow one infinite temporal
dimension and require the other spatial dimensions to be finite and the size to known beforehand.
As we have shown in the previous section, Shape Calculus is already undecidable for two and more
discrete infinite dimensions.

We give a decision procedure for the set of formulae given by the following BNF:

F ::= �P 
 | F ∧ G | ¬F | F 〈�ei〉G
where �ei denotes a spatial or temporal unit vector. The more general integral operator is replaced

by the more specialised everywhere operation �·
 omitting the use of SC terms. We will see later
that other operators can be defined as abbreviations in the discrete setting. The approach for the
decision procedure is sketched in Fig. 4. As there are only finitely many observables, a configuration
for a point in space-time can be represented by the finite set of observables evaluating to true. In
Fig. 4b this set is represented as a bitvector.

We generalise this idea to an arbitrary number of spatial dimensions. All spatial dimen-
sions are finite, so the spatial configuration for a moment in time can be represented by a
finite function mapping the finite space to the powerset of the observables. Due to the fi-
niteness of the domain, there are only finitely many spatial configurations and therefore only
finitely many functions representing a temporal snapshot. For the decision procedure, we use
these functions as an alphabet and represent interpretations over space and time by words
over this alphabet. It proceeds by inductively constructing a regular language representing all
satisfying interpretations. Conjunction is constructed by intersection, negation by complement,
temporal chop by concatenation and spatial chop using inverse homomorphisms for “gluing”
two words letterwise.

Definition 19 (Alphabet �F ). Let F be an n-dimensional SCfin formula, Obs the set of observables
occurring in F and D a finite rectangular subset of �n−1. The alphabet �F (D) of F for space D if
defined by

�F (D) = {c|c : D→ P(Obs)}.
Let space be the subset of �n−1 denoting the finite space, we define

�F =
⋃

D⊆space, D rectangular
�F (D).
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a b

Fig. 4. (a) Two objects in finite space. (b) Their representation using a finite alphabet.

Each function in�F represents a temporal snapshot of a spatial configuration for a point in time.

The intuition is that c((x1, . . . , xn−1)) collects all observables that are true on the interval [x1, x1 +
1)× · · · × [xn−1, xn−1 + 1). As we use discrete time and space, all interpretations are constant on these
intervals. Therefore we can define the satisfaction relation � for a state assertions �, a function
c ∈ �F (D) and a spatial point �x ∈ D inductively by

c(�x)�X iff X ∈ c(�x)
c(�x)��1 ∧ �2 iff c(�x)��1 and c(�x)��2
c(�x)�¬� iff c(�x) � ��

Note that �F is finite since space and the set of observables are both finite.
For handling the chop-operation, we need to restrict the domain of functions in �F . This is

done via a functional hD→D′ restricting the domain from D to a subset D′. This functional is
extended to a homomorphism on words in �∗F and using the inverse of this homomorphism,
we can generate all possible spatial extentions to space D of the word describing space D′.

Definition 20 (Homomorphism hD→D′). Let �F (D) and �F (D′) be alphabets as given by Definition
19 and D′ ⊆ D. The function hD→D′ defined by

hD→D′ :
{
�F (D)→ �F (D

′)
c �→ c|D′

can be extended to a language homomorphism ̂hD→D′ : �F (D)∗ → �F (D
′)∗ in the usual way, i.e.,

̂hD→D′(ε)
df= ε and ̂hD→D′(aw) = hD→D′(a) ◦ ̂hD→D′(w). We omit the distinction between hD→D′ and

̂hD→D′ in the following.
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Definition 21 (Language L(F)). Let F be an n-dimensional SCfin formula, �F the alphabet and
D ⊆ space. Using the notation from Definition 4 the regular language LD(F) over the alphabet
�F (D) is defined inductively by

LD(��
) df=
{

∅ if ∃ i : mini(D) � maxi(D)
{c ∈ �F |∀ x ∈ D− : c(x)��}+ otherwise

LD(¬F) df= �F (D)∗ \ LD(F)
LD(F1 ∧ F2)

df= LD(F1) ∩ LD(F2)

LD(F1 〈�et〉 F2)
df= LD(F1) ◦ LD(F2)

The definition for the spatial chop in direction �ei is more technical.

LD(F1 〈�ei〉 F2)
df=

⋃

r∈[mini D,maxi D]

(
h−1
D→(D≺ir)(LD≺ir(F1)) ∩ h−1

D→(D�ir)(LD�ir(F2))
)

The r ∈ [mini D, maxi D] is the point to chop the interval. We construct the language for
the formula F1 and the lower part of interval and use the inverse homomorphism, i.e. the
preimage, to generate all possible extensions. The same approach is done for the upper part
and formula F2. The intersection assures that F1 holds on the lower and F2 on the upper part
of the interval. n)

By definition, a formula is satisfiable if there is an interval satisfying it. Therefore, all finitely
many spatial subintervals have to be considered for the language of F

L(F) df=
⋃

D⊆space

LD(F)

As regular languages are closed under all operations used in this definition, L(F) is regular. The
correspondence between words and interpretations is established by the following lemma which is
proven by structural induction.

Lemma 22. Let F be an n-dimensional SCfin formula, [0, t] a temporal interval andD = [b1, f1] × · · · ×
[bn−1, fn−1] a spatial interval. Then the following holds:

(�)Let I be an interpretation satisfying F on the interval D × [0, t], then the word 

df= c0 . . . ct−1 ∈

�F (D)
∗ representing I with

ck(�x) df={X ∈ Obs | I(X)(�x, k) = 1}

for k ∈ {0, . . . , t − 1} is in LD(F).
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(�)Let 
 = c0 . . . ct−1 ∈ LD(F), then the corresponding interpretation I defined by

I(X)(�x, t) df=
{

1 if X ∈ ct(�x)
0 otherwise

satisfies I ,D × [0, t] |= F.

The following corollary establishes the correctness of the construction.

Corollary 23. An n-dimensional SCfin Formula F is satisfiable on an interval D × [0, t] where D is a
(n− 1)-dimensional spatial and [0, t] is a temporal interval iff LD(F) is non-empty.

As the emptiness problem for regular languages is decidable, this proves the decidability.

Theorem 24. The validity and satisfiability problems for SCfin are decidable.

The complexity of the decision procedure is non-elementary as each negation may cause an
exponential blow-up due to the complementation of finite automata. The complexity is poly-
nomial in the assumed finite spatial cardinality, the degree of the polynomial is determined
by the number of nested chops. The complexity of deciding validity for Duration Calculus is
also already non-elementary [28]. Although non-elementary seems to be a serious concern, the
application of the procedure for Duration Calculus on several case studies[36] demonstrates
the feasibility of this approach.

Example 25. We illustrate the language construction for the decision procedure by constructing
the language L(�P 
 〈�ey〉 �¬P 
). We assume Obs = {P }, a two-dimensional space, and a maxi-
mal spatial cardinality of 2 in each dimension. For convenience the functions c are represented
by matrices.

L[0,2]×[0,0](�P 
) = ∅ L[0,2]×[2,2](�¬P 
) = ∅

L[0,2]×[0,1](�P 
) = {({P } {P })}+ L[0,2]×[1,2](�¬P 
) = {({} {})}+
L[0,2]×[0,2](�P 
) =

{( {P } {P }
{P } {P }

)}+
L[0,2]×[0,2](�¬P 
) =

{( {} {}
{} {}

)}+

L[0,2]×[0,2](�P 
 〈�ey〉 �¬P 
) = h−1
[0,2]×[0,2]→[0,2]×[0,0](L[0,2]×[0,0](�P 
)) ∩

h−1
[0,2]×[0,2]→[0,2]×[0,2](L[0,2]×[0,2](�¬P 
))

∪
h−1
[0,2]×[0,2]→[0,2]×[0,1](L[0,2]×[0,1](�P 
)) ∩
h−1
[0,2]×[0,2]→[0,2]×[1,2](L[0,2]×[1,2](�¬P 
))

∪
h−1
[0,2]×[0,2]→[0,2]×[0,2](L[0,2]×[0,2](�P 
)) ∩
h−1
[0,2]×[0,2]→[0,2]×[2,2](L[0,2]×[2,2](�¬P 
))

=
{( {P } {P }
{} {}

)}+
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Expressivity. Although the subset SCfin seems to be rather limited, there are several expressions of
the original language that can be obtained as abbreviations using the restricted set and the fact that
the temporal and spatial domain are discrete. The terms ��ei are obtained because it is impossible in
a discrete domain to chop an interval of length 1 into two parts of positive length. So, for k ∈ �+,
we obtain measures as follows.

�
 df⇐⇒ ¬�1

��ei = 1 ∧ ¬�
 df⇐⇒ �1
 ∧ ¬(�1
 〈�ei〉 �1
)

��ei = k + 1 ∧ ¬�
 df⇐⇒ (��ei = k ∧ ¬�
) 〈�ei〉 (��ei = 1 ∧ ¬�
)
��ei > k ∧ ¬�


df⇐⇒ (��ei = k ∧ ¬�
) 〈�ei〉 �1
;

The definition of the other operators �,�,< is analogue. As interpretations may only change
their value at discrete points, the measure

∫
P can be expressed as follows:

∫
P = 0

df⇐⇒ �¬P 
 ∨ �

∫
P = 1

df⇐⇒ ∫
P = 0

〈�ex〉
(∫
P = 0 〈�et〉 (�P 
 ∧ �x = 1 ∧ �t = 1) 〈�et〉

∫
P = 0

)

〈�ex〉
∫
P = 0

∫
P = k df⇐⇒

∨

k1, k2 > 0
k1 + k2 = k

((∫
P = k1

) 〈�ex〉
(∫
P = k2

)) ∨

∨

k1, k2 > 0
k1 + k2 = k

((∫
P = k1

) 〈�et〉
(∫
P = k2

))

5.2. Non-alternating chop.

Another possibility of deriving a decidable subset is to use the fibrings and dovetailing
ideas presented by Gabbay et al [23,24] to combine modal logics. In order to create a struc-
ture for the combined logic, they start with a structure for the first one, associate to each
world a structure for the second logic and so on. The idea is depicted in Fig. 5a. Using this
approach a lot of important properties like axiomatisability and decidability are inherited by
the combination.

As we are interested in models isomorphic to the grid, we need to rule out models like those
sketched in 5b where going up and right is not equivalent to going right first and up afterwards be-
cause our main goal is to reason about objects in �n. To this end, we do not allow chop-alternation.
On the innermost nesting level we only allow formulae using 〈�e2〉 nested in formulae using 〈�e1〉
and so on. To preserve decidability, we restrict the interaction of formulae by adding a constraint
on the length.
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w w’

X0 X0X0

X2 X1 X1

f1

f2

f1 f1

f3f3

a b c

Fig. 5. (a) Dovetailing linear modal structures. (b) Points w and w′ need not to be equal. (c) Dovetailing SC.

The language of this n-dimensional subset SCnAlt is the set of formulae F n generated by the
following BNF:

F 1 ::= �P 
 | F 1
1 〈�e1〉 F 1

2 | F 1
1 ∧ F 1

2 | ¬F 1
1

F n+1 ::= F n+1
1 〈�en+1〉 F n+1

2 | F n+1
1 ∧ F n+1

2 | ¬F n+1
1 | (F n ∧ ��en+1 = 1

)

Let �(F) denote the index of chop used on the topmost level, i.e, the minimal i such that F can be
generated from F i .

Note, that without this restriction, it is already possible to encode the tiling problem and the
resulting subset is undecidable.

Remark 26. An SCnAlt formula of type �(F) = n can not only be interpreted by n-dimensional inter-
pretations In : (Obs× Intn

)→ {0, 1} but also by k-dimensional functions Ik
(
Obs× Intk

)
→ {0, 1}

for any k � n.
A simple consequence is obtained immediately.

Lemma 27. Let F be an SCnAlt formula of type �(F) = n.

(�)Assume Ik for k � n to be a k-dimensional interpretation and D a k-dimensional interval such

that Ik ,D |= F.Define Ik→k+1 as a k + 1-dimensional interpretation by Ik→k+1(X)(�x, y) df= Ik(�x).
Then any interval [b, f] satisfies Ik→k+1,D × [b, f] |= F.

(�)Conversely, assume Ik+1,D × [b, b + 1] |= F for b ∈ �, then for an interpretation Ik+1→k(X)(�x)
df= Ik+1(�x, b) we obtain Ik+1→k ,D |= F.

(�) Let I , I ′ be two n-dimensional interpretations, [0, f] a one-dimensional interval and D,D′ two
(n− 1)-dimensional intervals such that

I ,D × [j, j + 1] |= F n−1 ∧ ��en = 1 iff I ′,D′ × [j, j + 1] |= F n−1 ∧ ��en = 1

for all subformulae F n−1 of type (n− 1) occurring in F and all j ∈ [0, f). Then I ,D × [0, f] |=
F iff I ′,D′ × [0, f] |= F.

The last proposition states that if validity for two interpretations coincides on every slice and
every subformula then validity coincides for the whole formula. Like that for finite spatial
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domains, the decision procedure constructs regular languages associated to fulfilling interpre-
tations. For a model of an n-dimensional formula, we encode each (n− 1)-dimensional slice
of this model by one letter. As this spatial slice is still infinite, we use the set of all (n− 1)-
dimensional subformulae that are true in this slice as a representative of the slice. Conversely,
having no chop alternation, it is possible to obtain an n-dimensional model by joining (n− 1)-
dimensional slices.

This idea gives rise to the following definition of the alphabets where the dimension n is indicated
by a superscript n if necessary for clarity and omitted if it is clear from the context

Definition 28 (Alphabet �nnA(F)). Let F be an n-dimensional SCnAlt formula.

Case �(F) = n = 1. If F is a pure DC formula (i.e. n = 1) a letter characterises which observables
are true at the current position. Henceforth, we define the alphabet to be the powerset of the
observables Obs as �1

nA(F) = P(Obs).
Case �(F) = n > 1. In this case, the subformulae of type (n− 1) play the role of the observ-

ables. Let Subn−1(F) = {F1, . . . , Fy} be the set of subformulae of F with type �(Fi) = n− 1.
A subset of Subn−1(F) is used to characterise the set of all true formulae that hold for
an interval of length one in direction n. Therefore the alphabet is defined by �nnA(F) =
P(Subn−1(F)).

The construction of the language LnnA(F) proceeds inductively on the structure of the formula.

Case �(F) = 1. In this case F is a pure DC formula and we construct the language in the same way
as for discrete DC. LetObs = {X0, . . . ,Xz} be the Boolean observables occurring in F . Then a subset
a of Obs represents a valuation of these observables for an interval of unit length. Define L1

nA(F)

inductively by

L1
nA(��
)

df= {a | a��}+, L1
nA(F1 ∧ F2)

df= L1
nA(F1) ∩ L1

nA(F2),

L1
nA(F1 〈�e1〉 F2)

df= L1
nA(F1) ◦ L1

nA(F2), L1
nA(¬F1)

df= L1
nA(F1).

Case �(F) = n+ 1. In this case the subformulae of type n play the role of the observables. Let
Subn(F) = {F1, . . . , Fy} be the set of subformulae of F with �(Fi) = n. Then a set a ⊆ Subn(F) can
be used to describe which formulae are required to hold for an interval of length one. At first we
construct an auxiliary regular language L′(F) for the formula F in the same way as in the above
case such that for every word holds: if for every letter, i.e. a set of subformulae of F , there is a model
satisfying all the formulae in this set and the models can be joined to obtain a model for the whole
formula F .

L′(F n ∧ ��en+1 = 1)
df= {a|F ∈ a}

L′(¬F n+1)
df= L′(F n+1)

L′(F n+1
1 〈�en+1〉 F n+1

2 )
df= L′(F n+1

1 ) ◦ L′(F n+1
2 )

L′(F n+1
1 ∧ F n+1

2 )
df= L′(F n+1

1 ) ∩ L′(F n+1
2 )
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Different from the simple case, the language L′ does not represent the set of satisfying interpreta-
tions, since a word in L′ does not guarantee that there is a satisfying interpretation. A requirement
that two subformulae F n1 and F n2 of type n hold jointly for the very same interval may not be
satisfiable. Additionally, we have to ensure that

• for each letter occurring in a word, i.e., subset a ⊂ Subn(F), there is an interpretation which
satisfies exactly those formulae F where F ∈ a and

• there is a common length k such that for all letters occurring in words, there is a sat-
isfying interpretation of this length such that joining these models yields a rectangular
model.

To capture these requirements, we introduce the notion of consistency, i.e. the existence of
a common model, first for letters and then for alphabets. A letter a ∈ �n+1

nA (F) denotes a set
of formulae of type n. It is consistent if there is an n-dimensional interpretation satisfying all
formulae in a. For one formula F ∈ a, there is such an interpretation if the language LnnA(F)
is not empty. A set a of formulae is consistent if there is a word in the conjunction of all
such languages and only built from consistent letters of the lower dimensional type n− 1. A
set of letters � ⊆ �n+1

nA (F) is consistent if there are satisfying n-dimensional interpretations
and intervals for each letter having all the same size such that they can be concatenated to
form an n+ 1-dimensional interpretation. Therefore, for every word over a consistent alpha-
bet � ⊆ �n+1

nA (F), there is an interpretation such that each letter corresponds to a slice of
length one in direction (n+ 1) satisfying all the n-dimensional subformulae occurring in the
letter.

For regarding only the length of a word, we employ the following homomorphism, which
“obscures” the actual letters of the word leaving only its pure shape.

Definition 29. Let 
 be an arbitrary symbol and h
 : �∗ → {
}∗ be the homomorphism that replaces
every letter by 
.

For defining consistency formally, we extend the definition of an associated language for a for-
mula F to a set of characteristic formulae a by

LnnA(a)
df=
⋂

F ′∈a
LnnA(F ′) ∩

⋂

F ′ �∈a
LnnA(F ′).

Using this definition, the intuition depicted above is formalised inductively as follows.

Definition 30. A subset �n+1(F) ⊆ �n+1
nA (F) for n > 1 is called consistent iff there is a consistent

�n ⊆⋃a∈�n+1(F)

⋃
G∈a �nnA(G) such that

⋂

a∈�
h
(LnnA(a) ∩ (�n)∗) /= ∅

The basic case is handled directly, every subset �1(F) ⊆ �1
nA(F) is consistent.
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Combining consistency—the existence of interpretations satisfying the formulae for each slice
that can be concatenated—and the property of L′ that piecewise satisfaction of subformulae yields
satisfaction of the whole formula, we define the language by

Ln+1
nA (F)

df= L′(F) ∩







⋃

� ⊆ �
� is consistent

�∗





 .

The correspondence between words in LnnA(F) and n-dimensional interpretations is established
by the following definition and lemma.

Definition 31 (word-interpretation correspondence). Let F be an n-dimensional SCnAlt formula, I
be an n-dimensional interpretation, D an (n− 1)-dimensional interval and [0, f] a one-dimension-
al interval. We associate a word wI = aI

0 . . . a
I
f−1 ∈ �nnA(F)∗ to this interpretation such that for

n = 1

aI
j

df={X |X is an observable occurring in F and I ,D × [j, j + 1] |= �X 
}
and, for n > 1,

aI
j

df=
{
F ′|F ′ ∈ Subn−1(F) and I ,D × [j, j + 1] |= F ′

}
,

respectively. Vice versa, we associate to a word w ∈ �nnA(F)∗ the set of interpretations and intervals
[w] such that

(I ,D) ∈ [w] ⇐⇒ w = wI .

Lemma 32. Let F be an n-dimensional SCnAlt formula.

(�)A subset � ⊆ �nnA(F) is consistent iff for every w = a0 . . . ak ∈ �∗, there is an n-dimensional
interpretation I , an (n− 1)-dimensional intervalD such that I ,D × [j, j + 1) |= G ⇐⇒ G ∈ aj
holds for every j ∈ [0, k] and every G ∈ Subn−1(F).

(�) I ,D × [0, f] |= F implies wI ∈ LnnA(F).
(�) w ∈ LnnA(F) implies [w] /= ∅ and ∀ (I ,D) ∈ [w] : I ,D × [0, |w|] |= F

An easy consequence is the following lemma.

Lemma 33. L(F) /= ∅ iff F is satisfiable

And as all these constructions can be done effectively this proves the following theorem.

Theorem 34. Satisfiability and validity for SCnAlt are decidable.

Like for SCfin the complexity is non-elementary due to the complementation of finite automata for
each negation.
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Example 35. These constructions are illustrated in Fig. 5c. Assume a formula

F
df= (F1 ∧ ��e1 = 1 〈�e1〉 F1 ∧ ��e1 = 1 〈�e1〉 F1 ∧ ��e1 = 1) ∧
(F2 ∧ ��e1 = 1 〈�e1〉 F3 ∧ ��e1 = 1 〈�e1〉 F3 ∧ ��e1 = 1)

with

F1
df= �X1
 〈�e2〉 true, F2

df= true 〈�e2〉 �X2
, F3
df= true 〈�e2〉 �X3
.

The word (1, 1, 0)(1, 0, 1)(1, 0, 1) is in L′(F) and as the alphabet is consistent also in L(F). Therefore
the models for F1, F2, F3 can be combined to form a model for F .

Expressivity. Like in SCfin operators can be obtained in SCnAlt. We illustrate the two-dimensional
case here. At first we give definitions for formulae of type 1 which are to be used in the context of
“ ∧ ��e2 = 1”. We use the superscript 1 here to stress this restriction.

true1 df⇐⇒ �1
1 ∨ ¬�1
1
�1
�e1 = 0

df⇐⇒ ¬�1
1

�1
�e1 = 1 ∧ ¬�
 df⇐⇒ �1
1 ∧ ¬(�1
1 〈�e1〉 �1
1)
�1
�e1 = k + 1

df⇐⇒ (�1
�e1 = k) 〈�e1〉 (�1

�e1 = 1)

�1
�e1 > k

df⇐⇒ (�1
1 = k) 〈�e1〉 �1
1

∫ 1
P = 0

df⇐⇒ �¬P 
1 ∨ �1
�e1 = 0

∫ 1
P = 1

df⇐⇒ ∫ 1
P = 0 〈�e1〉 �P 
1 ∧ �1

�e1 = 1 〈�e1〉
∫ 1
P = 0

∫ 1
P = k + 1

df⇐⇒ ∫ 1
P = k 〈�e1〉

∫ 1
P = 1

For formulae of type 2 the definitions are more complicated. At first “true” can be defined in the
standard way.

true
df⇐⇒ (�1
 ∧ ��e2 = 1) ∨ ¬(�1
 ∧ ��e2 = 1)

As ��e2 is nearly a primitive in SCnAlt, it can be defined as follows:

��e2 = 1
df⇐⇒ (true1) ∧ ��e2 = 1

��e2 = k + 1
df⇐⇒ (��e2 = k) 〈�e2〉 (��e2 = 1)
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The measure
∫
P is non-zero iff there is a subinterval of length 1 on which the measure is non-zero.

Therefore the measure can be defined using the type 1 formula
∫ 1
P = 0.

∫
P = 0

df⇐⇒ ¬
(
true 〈�e2〉

((
¬
(∫ 1

P = 0
))
∧ ��e2 = 1

)
〈�e2〉 true

)

Using the same idea, we can define
∫
P = 1.

∫
P = 1

df⇐⇒ ∫
P = 0 〈�e2〉

(∫ 1
P = 1 ∧ ��e2 = 1

)
〈�e2〉

∫
P = 0

On an interval of lengthm the measure
∫
P equals k iff it is equal to k1 on the leftmost subinterval

of length m− 1, is equal to k2 on the rightmost subinterval of length 1 and k = k1 + k2.

∫
P = k df⇐⇒

∨

k1, k2 ∈ �0
k1 + k2 = k

(∫
P = k1 〈�e2〉

∫
P = k2

)

6. Conclusion

In this paper, we investigated properties of a multi-dimensional extension of Duration
Calculus. We showed that it is not axiomatisable and therefore not decidable. Nevertheless,
we give an axiomatisation relative to an n-dimensional interval temporal logic. Tool support
is crucial for applications of such a formalism in practice. For model-checking tools, decid-
able subsets play an important role. We presented two different subset for discrete spatial
and temporal domains, one obtained by restricting the models to finite space while pre-
serving infinite time and the other by restricting the class of formulae by excluding chop
alternation.

In the future, we would like to apply this formalism to several case studies to derive a set
of lightweight rules that make the handling of this formalism in practice easier. To give tool
support, this should be accompanied by extending and implementing the decision procedures
found so far.
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A. Proofs

Lemma 10. Let I be an interpretation and k ∈ �, a, b ∈ � and Fgrid defined by
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Fgrid
df= ��e1 � 2 ∧ ��e2 � 2 ∧ (A.1a)

�� ⇐⇒ (�1 ⇐⇒ �2)
 ∧ (A.1b)

��e1
(
((��1
 〈�e1〉 ��e1 = 1⇒ ��1
 〈�e1〉 �¬�1
) ∧ (A.1c)

(�¬�1
 〈�e1〉 ��e1 = 1⇒ �¬�1
 〈�e1〉 ��1
)
) ∧ (A.1d)

��e1 � 1⇒ (��1
 ∧ ��e1 = 1 〈�e1〉 true) ∧ (A.1e)

��e2
(
((��2
 〈�e2〉 ��e2 = 1⇒ ��2
 〈�e2〉 �¬�2
) ∧ (A.1f)

(�¬�2
 〈�e2〉 ��e2 = 1⇒ �¬�2
 〈�e2〉 ��2
)
) ∧ (A.1g)

��e2 � 1⇒ (��2
 ∧ ��e2 = 1 〈�e2〉 true) (A.1h)

Then:

I , [0, k] × [a, b] |= Fgrid

if and only if k � 2, b− a � 2, and for all i ∈ �, i � k and arbitrary a′ � b′ ∈ [a, b] the following
holds.

�) I , [i, i + 1] × [a′, b′] |=
{ ��1
 if i is even
�¬�1
 otherwise

�) I , [a′, b′] × [i, i + 1] |=
{ ��2
 if i is even
�¬�2
 otherwise

�) I , [i, i + 1] × [j, j + 1] |=
{ ��
 if i, j are both even or both odd
�¬�
 otherwise

Proof

“only if” To prove �), we proceed by induction on i.
Case i = 0. This case is clear by (A.1a).
Case i�i + 1. Without loss of generality, assume i is even, the other case is similar.

{ By (IH)} I , [i − 1, i] × [a′, b′] |= �¬�1

⇒ I , [i − 1, i + 1] × [a′, b′] |= �¬�1
 〈�e1〉 ��e1 = 1

{FgridA.1d} ⇒ I , [i − 1, i + 1] × [a′, b′] |= �¬�1
 〈�e1〉 ��1

{�1 ∧ ¬�1 ≡ false} ⇒ I , [i, i + 1] × [a′, b′] |= ��1


Case �) is analogue to case �). For case �) assume without loss of generality i and j to
be even, the other cases are similar.
{ By �) and �)} I , [i − 1, i] × [j, j + 1] |= ��1
 ∧ ��2


{A.1b} ⇒ I , [i − 1, i] × [j, j + 1] |= ��
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“if” The Condition (A.1a) follows from the assumption on the interval and Conditions (A.1b),
(A.1e) and (A.1h) are direct consequences of �), �), and �). To prove (A.1c) assume

I , [a1, b1] × [a, b] |= ��1
 〈�e1〉 ��e1 = 1.

⇒ I , [a1, b1 − 1] × [a, b] |= ��1
{∃i ∈ � :
i � a1 � b1 − 1 � i + 1

}

⇒ I , [a1, i + 1] × [a, b] |= ��1

{�)} ⇒ I , [i + 1, i + 2] × [a, b] |= �¬�1


{b1 � i + 2} ⇒ I , [i + 1, b1] × [a, b] |= �¬�1

⇒ I , [a1, b1] × [a, b] |= ��1
 〈�e1〉 �¬�1


The other cases are proven similarly. �

Lemma 15. For an H-triple (IITLn , V , [b1, f1] × [b2, f2]), a state assertion �, and an SC-Interpretation
as defined in equation 1 there is a finite partition [m1

1,m
2
1 ] × [m1

2,m2
2], . . . , [mn−1

1 ,mn1 ] × [mo−1
2 ,mo2] of

the two-dimensional interval [b1, f1] × [b2, f2] such that for every point (x, y) ∈ [mi1,mi+1
1 )× [mj2,mj+1

2 )

holds

IITLn , V , [mi1,mi+1
1 )× [mj2,mj+1

2 ) |=ITLn �v[�]
 ∨ �v[¬�]
 (A.2)

and

ISC[[�]]
(
(x, y)

) =
{

1 if I , V , [mi1,mi+1
1 )× [mj2,mj+1

2 ) |=ITLn �v[�]

0 if I , V , [mi1,mi+1

1 )× [mj2,mj+1
2 ) |=ITLn �v[¬�]
.

(A.3)

Proof. We prove this lemma by induction on the structure of �.

Case 1 . Observable X .
This case is clear from the definition of ISC and Lemma 14.

Case 2 . ¬�.
By the induction hypothesis the lemma holds for � and we use the same partition. Let
(x, y) ∈ [mj1 ,mj+1

1 )× [mi2,mi+1
2 ). From the induction hypothesis we obtain

IITLn , V , [mi1,mi+1
1 )× [mj2,mj+1

2 ) |=ITLn �v[�]
 ∨ �v[¬�]
.

As � ≡ ¬¬�, we obtain v[�] = v[¬(¬�)] and therefore

IITLn , V , [mi1,mi+1
1 )× [mi2,mi+1

2 ) |=ITLn �v[¬¬�)]
 ∨ �v[¬�]
.

(1) If IITLn , V , [mi1,mi+1
1 )× [mi2,mi+1

2 ) |=ITLn �v[¬¬�]
 then by the hypothesis ISC[[�]](x, y) =
1 and by definition of negation we obtain ISC[[¬�]](x, y) = 1− ISC[[�]](x, y) = 0 as
required.
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(2) If IITLn , V , [mi1,mi+1
1 )× [mi2,mi+1

2 ) |=ITLn �v[¬�]
 then by the hypothesis ISC[[�]](x, y) = 0
and we obtain ISC[[¬�]](x, y) = 1− ISC[[�]](x, y) = 1 as required.

Case 3 . �1 ∨ �2.
Applying the induction hypothesis on �1 and �2, we obtain two partitions. Let [m1

1
′
,m2

1
′] ×

[m1
2
′
,m2

2
′], . . . [mn′−1

1
′
,mn

′
1
′] × [mo′−1

2
′
,mo

′
2
′] be a common refinement of both partitions. By

Lemma 13 (3) this is also a valid partition for �1 and �2. On every interval one of the following
cases holds.

Case 3 .1 . At least one disjunct �1 or �2 is true throughout the interval, i.e. �v[�1]
 or �v[�2]
.
Without loss of generality, we assume

IITLn , V , [mi1′,mi+1
1
′
)× [mj2

′
,mj+1

2
′
) |=ITLn �v[�1]
.

Applying the induction hypothesis yields for each
(x, y) ∈ [mi1′,mi+1

1
′
)× [mj2

′
,mj+1

2
′
)

ISC[[�1]](V , (x, y)) = 1

and by the definition of the semantics of state assertions in SC we obtain ISC[[�1 ∨
�2]](V , [mi1′,mi+1

1
′
)× [mj2

′
,mj+1

2
′
)) = 1. The ITLn evaluation is derived as

follows:
{ By Lemma 13(3)}
IITLn , V , [mi1′,mi+1

1
′
)× [mj2

′
,mj+1

2
′
) |=ITLn v[�1] � v[�1∨�2]

{ and by Lemma 13(2)}
IITLn , V , [mi1′,mi+1

1
′
)× [mj2

′
,mj+1

2
′
) |=ITLn v[�1∨�2] � �

{ By the assumption holds }
IITLn , V , [mi1′,mi+1

1
′
)× [mj2

′
,mj+1

2
′
) |=ITLn v[�1] = �.

{ Combining the equations we obtain}
IITLn , V , [mi1′,mi+1

1
′
)× [mj2

′
,mj+1

2
′
) |=ITLn v[�1∨�2] = �

{ By definition we conclude}
IITLn , V , [mi1′,mi+1

1
′
)× [mj2

′
,mj+1

2
′
) |=ITLn �v[�1∨�2]
.

Case 3 .2 . Both �1 and �2 are false throughout the interval, i.e.

IITLn , V , [mi1′,mi+1
1
′
)× [mj2

′
,mj+1

2
′
) |=ITLn �v[¬�1]
 ∧ �v[¬�2]


Applying the induction hypothesis yields

ISC[[�1]](V , [mi1′,mi+1
1
′
)× [mj2

′
,mj+1

2
′
)) = 0
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and

ISC[[�2]](V , [mi1′,mi+1
1
′
)× [mj2

′
,mj+1

2
′
)) = 0

and hence

ISC[[�1 ∨ �2]](V , [mi1′,mi+1
1
′
)× [mj2

′
,mj+1

2
′
)) = 0.

The derivation of the ITLn evaluation proceeds as follows:

{ By the assumptions}
IITLn , V , [mi1′,mi+1

1
′
)× [mj2

′
,mj+1

2
′
) |=ITLn v[�1] = 0 and

IITLn , V , [mi1′,mi+1
1
′
)× [mj2

′
,mj+1

2
′
) |=ITLn v[�2] = 0

{ and by Lemma 13 holds}
IITLn , V , [mi1′,mi+1

1
′
)× [mj2

′
,mj+1

2
′
) |=ITLn v[�1∨�2] � 0 and

IITLn , V , [mi1′,mi+1
1
′
)× [mj2

′
,mj+1

2
′
) |=ITLn v[�1∧�2] � 0

{ By H4}
IITLn , V , [mi1′,mi+1

1
′
)× [mj2

′
,mj+1

2
′
) |=ITLn v[�1∨�2] = 0

{ and by Lemma 13 (13) holds}
IITLn , V , [mi1′,mi+1

1
′
)× [mj2

′
,mj+1

2
′
) |=ITLn �v[¬(�1∨�2)]
 �

Lemma 22. Let F be an n-dimensional SCfin Formula, [0, t] a temporal interval and D = [b1, f1] ×
· · · × [bn−1, fn−1] a spatial interval. Then the following holds:

(�)Let I be an interpretation satisfying F on the interval D × [0, t], then the word 

df= c0 . . . ct−1 ∈

�F (D)
∗ representing I with

ck(�x) df={X ∈ Obs | I(X)(�x, k) = 1}
for k ∈ {0, . . . , t − 1} is in LD(F).

(�)Let 
 = c0 · · · ct−1 ∈ LD(F), then the corresponding interpretation I defined by

I(X)(�x, t) df=
{

1 if X ∈ ct(�x)
0 otherwise

satisfies I ,D × [0, t] |= F.

Proof. We proceed inductively on the structure of F .

Case ��
. (�) Let I be an interpretation such that I ,D × [0, t] |= ��
. Then—by definition—
I[[�]](�x, t′) = 1 and fk > bk holds for all �x ∈ D−, t′ ∈ [0, t) and k ∈ {1, . . . n}. By defi-
nition of� we obtain ck(�x)�� for all �x ∈ [b1, f1)× · · · × [bn−1, fn−1) and therefore

 ∈ LD(��
)
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(�) Let 
 = c0 . . . cn−1 ∈ LD(��
). The definition of LD(��
) and� immediately yields
I ,D × [0, t] |= ��
 as required.

Case F1 ∧ F2. (�) Suppose that I ,D × [0, t] |= F1 ∧ F2. By definition of ∧ we obtain I ,D × [0, t] |=
F1 and I ,D × [0, t] |= F2 and by the induction hypothesis and definition 21 
 ∈
LD(F1) ∩ LD(F2) = LD(F1 ∧ F2).

(�) Let 
 ∈ LD(F1 ∧ F2) = LD(F1) ∩ LD(F2), by the induction hypothesis we obtain
I ,D × [0, t] |= F1 ∧ F2.

Case ¬F1. (�) Suppose that I ,D × [0, t] |= ¬F1. By definition I ,D × [0, t] �|= F1. By the induction
hypothesis for (�) 
 �∈ LD(F1) and henceforth we obtain 
 ∈ �F (D)∗ \ LD(F1) =
LD(¬F1).

(�) Let 
 ∈ LD(¬F1) = �F (D)∗ \ LD(F1). By the induction hypothesis for (�) holds
I ,D × [0, t] �|= F1 and henceforth I ,D × [0, t] |= ¬F1.

Case F1 〈�et〉 F2(temporalchop). (�) Assume I ,D × [0, t] |= F1 〈�et〉 F2. By definition of chop, there
is an t′ ∈ [0, t] such that I ,D × [0, t′] |= F1 and I ,D × [t′, t] |=
F2. The interpretation I ′ which is obtained by left-shifting I
by t′ satisfies I ′,D × [0, t − t′] |= F2. The induction hypothe-
sis yields 
1 ∈ LD(F1) and 
2 ∈ LD(F2) and therefore 
1
2 ∈
LD(F1) ◦ LD(F2).

(�) Let 
 ∈ LD(F1 〈�et〉 F2). By definition 
 = 
1
2 for 
1 ∈ LD(F1)

and 
2 ∈ LD(F2). By the induction hypothesis the two corre-
sponding interpretationsI1 andI2 satisfyI1,D × [0, t1] |= F1 and
I2,D × [0, t2] |= F2. By definition of I holds

I(X)(�x, t) =
{I1(X)(�x, t) if t ≤ t1

I2(X)(�x, t − t1) otherwise .

and so I ,D × [0, t1 + t2] |= F1 〈�et〉 F2

Case F1 〈�ei〉 F2(spatialchop). (�)Assume I ,D × [0, t] |= F1 〈�ei〉 F2. By definition there is an r ∈
[bi, fi] such that I , (D ≺i r)× [0, t] |= F1 and I , (D �i r)× [0, t]
|= F2. By the induction hypothesis the words 
1 and 
2 obtained
from I on the spatial intervals D ≺i r and D �i r satisfy


1 ∈ LD≺ir(F1) and 
2 ∈ LD�ir(F2).

As
 is derived fromI for spaceD and
1 is derived from the same
interpretation for a space (D ≺i r) ⊆ D, they describe the same
spatial configurations for (D ≺i r) ⊆ D, i.e., hD→D≺ir(
) = 
1.
For 
2 we obtain hD→D�ir(
) = 
2, respectively.
Therefore 
 ∈ h−1

D→D≺ir(
1) ∩ h−1
D→D�ir(
2) as required.

(�)Let 
 ∈ LD(F1 〈�ei〉 Fi). There is an r ∈ [bi, fi] such that


 ∈ h−1
D→D≺ir(LD≺ir(F1)) and 
 ∈ h−1

D→D�ir(LD�ir(F2)).

Hence


1 = hD→D≺ir(
) ∈ LD≺ir(F1) and 
2hD→D�ir(
) ∈ LD�ir(F2).
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Applying the induction hypothesis, yields that the two in-
terpretations I1 and I2 obtained from 
1 and 
2 satisfy I1,
(D ≺i r)× [0, t] |= F1 and I2, (D �i r)× [0, t] |= F2. The
function I obtained from 
 coincides with I1 on (D ≺i r)×
[bn, fn] and with I2 on (D �i r)× [0, t] and therefore I ,D ×
[0, t] |= F1 〈�ei〉 F2. �

Lemma 27. Let F be an SCnAlt formula of type �(F) = n.

(�)Assume Ik for k � n to be a k-dimensional interpretation and D a k-dimensional interval such

thatIk ,D |= F . DefineIk→k+1 as a k + 1-dimensional interpretation byIk→k+1(X)(�x, y) df= Ik(�x).
Then any interval [b, f] satisfies Ik→k+1,D × [b, f] |= F.

(�)Conversely, assume Ik+1,D × [b, b + 1] |= F for b ∈ �, then for an interpretation Ik+1→k(X)(�x)
df= Ik+1(�x, b) we obtain Ik+1→k ,D |= F.

(�) Let I , I ′ be two n-dimensional interpretations, [0, f] a one-dimensional interval and D,D′ two
(n− 1)-dimensional intervals such that

I ,D × [j, j + 1] |= F n−1 ∧ ��en = 1 iff I ′,D′ × [j, j + 1] |= F n−1 ∧ ��en = 1

for all subformulae F n−1 of type (n− 1) occurring in F and all j ∈ [0, f). Then I ,D × [0, f] |=
F iff I ′,D′ × [0, f] |= F

Proof

(�) Proof by structural induction.

Case ��
. From the assumption we deduce I[[�]](�x) = 1 for all �x ∈ D. By con-
structionofIk→k+1 weobtain for all �x′ ∈ D × [b, f] thatIk→k+1[[�]](�x′)
= 1 and therefore Ik→k+1,D × [b, f] |= ��
 as required.

Case F1 ∧ F2,¬F1. These cases are clear from the definition.
Case F1 〈�ei〉 F2, i � k. By definition of chop there is an r such that

Ik ,D ≺i r |= F1 and Ik ,D �i r |= F2.

Applying the induction hypothesis, yields

Ik→k+1, (D ≺i r)× [b, f] |= F1 and Ik→k+1, (D �i r)× [b, f] |= F2.

Henceforth, Ik→k+1,D × [b, f] |= F1 〈�ei〉 F2.

(�) Similar to (�), note that I is assumed to be constant on [n, n+ 1) for all n ∈ �.
(�) Proof by structural induction.

Case F n−1 ∧ ��en = 1. This case is obvious from the assumptions.
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Case F n1 ∧ F n2 .
I ,D × [0, f] |= F n1 ∧ F n2

⇐⇒ I ,D × [0, f] |= F n1 and I ,D × [0, f] |= F n2
{ By (IH)} ⇐⇒ I ′,D′ × [0, f] |= F n1 and I ′,D′ × [0, f] |= F n2

⇐⇒ I ′,D′ × [0, f] |= F n1 ∧ F n2

Case ¬F n1 . Follows directly from the definition and induction hypothesis.
Case F n1 〈�en〉 F n2 .

“only if” Assuming I ,D × [0, f] |= F n1 〈�en〉 F n2 , there is an m ∈ [0, f] such that I ,D ×
[0,m] |= F n1 and I ,D × [m, f] |= F n2 . Let I←m and I ′←m be the functions ob-
tained from I , respectively I ′ by left-shifting bym in the nth dimension. Then
I←m,D × [0, f − m] |= F n2 and for all j ∈ [0, f − m) and all subformulae F n−1

I←m,D × [j, j + 1] |= F n−1 ∧ ��en = 1
iff
I ′←m,D′ × [j, j + 1] |= F n−1 ∧ ��en = 1
Applying the induction hypothesis on this yields
I ′←m,D′ × [0, f − m] |= F n2
and therefore I ′,D′ × [0, f] |= F n1 〈�en〉 F n2

“if” similar. �

Lemma 32. Let F be an n-dimensional SCnAlt formula.

(�) A subset� ⊆ �nnA(F) is consistent iff for every w = a0 . . . ak ∈ �∗ there is an n-dimensional in-
terpretation I, an (n− 1)-dimensional interval D such that I ,D × [j, j + 1) |= G ⇐⇒ G ∈ aj
holds for every j ∈ [0, k] and every G ∈ Subn−1(F).

(�) I ,D × [0, f] |= F implies wI ∈ LnnA(F).
(�) w ∈ LnnA(F) implies [w] /= ∅ and ∀ (I ,D) ∈ [w] : I ,D × [0, |w|] |= F

Proof. We simultaneously prove (�)-(�) by induction on the structure of F .

Case �(F) = 1

(�)“only if ” As all� ⊂ �1
nA are consistent, let� be be an arbitrary subset and

w = a0 . . . ak ∈ �∗. The interpretation I given by

I[[X ]](i) =
{

1 if X ∈ ai
0 otherwise

has the required property.
“if” As every subset of �1

nA is consistent there is nothing to show.
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(�, �)These cases are clear from the classical construction for duration calculus.

Case F n ∧ ��en+1 = 1

(�) The proof of (�) is essentially the same for all the other cases.

“only if” Let�n+1 ⊆ �n+1
nA (F

n ∧ ��en+1 = 1)beaconsistent alphabet andw = a0 . . . ak ∈
(�n+1)∗. By definition 30 there is a consistent alphabet�n and for each letter
ai, 0 � i � k there is a word ui = ui(0)...ui(l) ∈ L(ai) ∩ (�n)∗ such that all
words have the same length, i.e., |ui| = l. The concatenation of all u0 . . . uk
is still a word in (�n)∗ and therefore the induction hypothesis is applica-
ble yielding an n-dimensional interpretation I ′ and an (n− 1)-dimensional
interval D′ such that for all subformulae G occurring in u1 . . . uk the con-
dition I ′,D′ × [i · l+ j, i · l+ j + 1] |= G′ ⇐⇒ G′ ∈ ui(j) holds. The inter-
pretationI ′′ obtained from “folding”I ′ defined byI ′′(X)(�x, i, j) = I ′(X)(�x, i ·
l+ j) still satisfies

I ′′,D′ × [i, i + 1] × [j, j + 1] |= G′ ⇐⇒ G′ ∈ ui(j). (A.4)

We show that this interpretation I ′′ satisfies for all subformulae G of type n

I ′′,D′ × [i, i + 1] × [0, i] |= G ⇐⇒ G ∈ ai. (A.5)

Applying the induction hypothesis for (�) on each ui ∈ L(ai), we obtain in-
terpretations and intervals (Ii,Di) satisfying for all subformulae G′ of type
n− 1

Ii,Di × [j, j + 1] |= G′ ⇐⇒ G′ ∈ ui(j).

and additionally all formulae given in ai . Using Lemma 27 (�), we then ob-
tain that I ′′ satisfies all formulae given in ai, thus Eq. (A.5) and hence I ′′ is
the required interpretation.

“if” Let �n+1 be an alphabet, w = a0 . . . ak ∈ (�n+1)∗ be a word, I be the in-
terpretation and D the n-dimensional interval satisfying for all subformula
G that I ,D × [j, j + 1) |= G ⇐⇒ G ∈ aj . Then for every j the restrictions
given by In+1→n

j (X)(�x) = I(�x, j) satisfy In+1→n
j ,D |= G ⇐⇒ G ∈ aj due to

Lemma 27 (�). Then all words wIn+1→n
j have the same length by construc-

tion and are in L(aj) by the induction hypothesis (�). Defining �′ to be the
common alphabet of all words wIn+1→n(X)j and applying the induction hy-
pothesis for part (�) yields consistency of �′ from which we can conclude
the consistency of �.
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(�) Let I ,D × [0, f] |= F n ∧ ��en+1 = 1. From ��en+1 = 1 we obtain f = 1. Therefore wI = aI
0

and F n ∈ aI
0 and wI ∈ L′(F n ∧ ��en+1 = 1) due to definition 31. The consistency of � =

{aI
0 } is a consequence of (�).

(�) Let w ∈ Ln+1
nA (F

n ∧ ��en+1=1). By definition w = a and F n ∈ a holds. As Ln+1(F n ∧
��en+1 = 1) is non-empty, {a} is consistent and (�) yields an interpretation In and
interval D such that In,D |= F n. Therefore [w] /= ∅. Any interpretation In satisfy-
ing In,D |= F n can be extended by Lemma 27 (�) to In→n+1 such that In→n+1,D ×
[0, 1] |= F n ∧ ��en = 1.

Case F n+1
1 ∧ F n+1

2 . (�) Let I ,D × [0, f] |= F n+1
1 ∧ F n+1

2 . By definition of conjunction and
the induction hypothesis, we obtain wI ∈ Ln+1

nA (F
n+1
1 ) and wI ∈

Ln+1
nA (F

n+1
2 ) and consistency. Therefore holds wI ∈ Ln+1

nA (F
n+1
1 ∧ F n+1

1 )

as required.
(�) Let w ∈ Ln+1

nA (F
n+1
1 ∧ F n+1

2 ). By construction w ∈ Ln+1
nA (F

n+1
1 ) and w ∈

Ln+1
nA (F

n+1
2 ). Applying the induction hypothesis yields [w] /= ∅ and for

every interpretation I and interval D corresponding to w the relation
I ,D × [0, |w|] |= F n+1

1 ∧ F n+1
2 holds as required.

Case ¬F n+1
1 . (�) Let I ,D × [0, f] |= ¬F n+1

1 , so I ,D × [0, f] �|= F n+1
1 . Applying the induc-

tion hypothesis for (�), we obtain wI �∈ Ln+1
nA (F

n+1
1 ) and therefore wI ∈

L′(¬F n+1
1 ). By definition 31 the righthand side of (�) is satisfied yielding

consistency. Hence, wI ∈ Ln+1
nA (¬F n+1

1 ).
(�) Let w ∈ Ln+1

nA (¬F n+1
1 ). At first we show [w] /= ∅. Assume [w] = ∅.

Then for all (I ,D) with wI = wI ,D × [0, |w|] �|= ¬F1 and therefore
I ,D × [0, |w|] |= F1. But then, applying the induction hypothesis yields
w ∈ Ln+1

nA (F) contradicting w ∈ Ln+1
nA (¬F n+1

1 ). Therefore [w] /= ∅. The
second proposition is a direct consequence of the induction hypoth-
esis for (�).

Case F n+1
1 〈�en+1〉 F n+1

2 . (�)Let I ,D × [0, f] |= F n+1
1 〈�en+1〉 F n+1

2 . By definition there is an m ∈ [0, f]
such that I ,D × [0,m] |= F n+1

1 and I ,D × [m, f] |= F n+1
2 . The interpre-

tation I ′ defined by left-shifting I by m along dimension (n+ 1) satis-
fies I ′,D × [0, f − m] |= F n+1

2 . Applying the induction hypothesis twice
yields two wordswI

1 ∈ L(F n+1
1 ) andwI ′

2 ∈ L(F n+1
2 ) corresponding to I on

D × [0,m] and I ′ on D × [0, f − m], respectively. By construction wI =
wI

1 w
I ′
2 holds and henceforth wI ∈ L′(F n+1

1 〈�en+1〉 F n+1
2 ). Consistency is a

consequence of (�).
(�) Let w = a0 . . . a|w|−1 ∈ Ln+1

nA (F
n+1
1 〈�en+1〉 F n+1

2 ). By definition w = w1w2

such that w1 ∈ Ln+1
nA (F

n+1
1 ) and w2 ∈ Ln+1

nA (F
n+1
2 ). The induction hypoth-

esis yields two pairs (I1,D1) and (I2,D2) such that

I1,D1 × [0, |w1|] |= F n+1
1 and (A.6)
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I2,D1 × [0, |w2|] |= F n+1
2 (A.7)

From consistency of the alphabet and (�) we obtain an interpretation I ′
and n-dimensional interval D such that for all j ∈ [0, |w| − 1] and for all
subformulae F n of type n holds I ′,D × [j, j + 1] |= F n ⇐⇒ F n ∈ aj . By
Definition 31

I1,D1 × [j, j + 1] |= F n ⇐⇒ F n ∈ aj for j ∈ [0, |w1|) and (A.8)

I2,D2 × [j − |w1|, j − |w1| + 1] |= (A.9)

F n ⇐⇒ F n ∈ aj for j ∈ [|w1|, |w1| + |w2|).

Applying Lemma 27 (�) on equations (A.6), (A.7),(A.8) and (A.10), we
conclude I ′,D × [0, |w1|] |= F n+1

1 and I ′,D × [|w1|, |w1| + |w2|] |= F n+1
2 .

Therefore I ′,D × [0, |w|] |= F n+1
1 〈�en+1〉 F n+1

2 . The second part follows
from Lemma 27 (�). �
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