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A logical calculus is developed with propositions taking their truth values in 
the set of fuzzy sets of [0, 1]. This fuzzy-valued logic is an extension of already 
known multivalent logics, and the associated set theory is shown to be that of 
fuzzy sets of type 2 on a given universe. Various interpretative functions are 
given for the usual connectives of propositional calculus, using extended "max" 
and "rain" operators. Examples of inference are provided and a compositional 
rule for fuzzy-valued fuzzy relations is suggested. Computations of truth values 
for composite propositions are shown to be very easy. It is hoped that such a 
logic will be helpful in the modelization of approximate reasoning, in natural 
language. 

INTRODUCTION 

I n  the framework of approximate reasoning,  t ru th  values of the proposi t ions 
are rarely precisely known;  b inary  logic is no t  well fitted to approximate  reasoning 
because proposi t ions  are no t  always of black or white type, and  even mul t iva len t  
logic seems insufficient because t ru th  values are l inguistic rather than  quanti tat ive,  
as Zadeh (1978a) has already po in ted  out. Fuzzy-se t  theory seems par t icular ly  
appropriate  for model ing  l inguist ic t ru th  values considered as fuzzy sets of 
[0, 1] with such names  as " t rue , "  "very  t rue , "  ..., "false."  T h e  aim of a fuzzy- 
valued logic can be a more  accurate representat ion of h u m a n  th ink ing  th rough  

natura l  language (Zadeh, 1978b). 
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The first problem with such a logic is to define adequate interpretativefunctions 
for the usual connectives of propositional calculus; of course, those will be fuzzy 
functions, i.e., mappings from fuzzy subsets of [0, 1]. The set theory associated 
with the fuzzy-valued logic considered will be shown to be the theory of fuzzy 
sets of type 2 (Mizumoto and Tanaka, 1976). 

The second problem is that of making easy inferences in such a logic; i.e., the 
computation of the values of interpretative functions must be practically tractable~ 

In the first section of this paper, we recall the two structures of the fuzzy 
subsets of [0, 1]. Section 2 provides a discussion of the different manipulations 
of fuzzy sets of type 2. Section 3 presents the interpretative functions in a 
fuzzy-valued logic and introduces a composition rule of inference. 

The concept of a fuzzy-valued logic was introduced in Bellman and Zadeh 
(1977). 

I. Fuzzy SUBSETS OF [0, 1]: P([0, 1]) 

1. Definitions 

A fuzzy subset A of [0, 1] is a mapping ffA from [0, 1] to [0, 1]; i.e., a fuzzy 
subset of the real line whose support is a part of [0, 1]. A convex normalized 
fuzzy subset of [0, 1] will be called a fuzzy number of [0, 1]. 

(convex: V(x, y, z) ~ [0, 1] 3, x ~ y  ~ z --> ffa(Y) ~> min(ffA(x), /zA(Z)); 
normal: 3x e [0, 11, t*A(X) = 1). 

2. First Structure of Lattice for the Fuzzy Subsets of [0, 1] 

[0, 1] is a pseudocomplemented distributive lattice for max and min operations; 
the pseudocomplementation is the complementation to 1. Thus, the mappings 
in [0, 1] have the same structure and in particular the fuzzy sets of [0, 1]. In 
this lattice "inf" = "intersection of fuzzy sets" and "sup" = "union of fuzzy 

A . ~ .  ~ : 1 : : ', : l :i union (max) 

. . . . .  intersection (rain) 

I-2 

FIGURE 1 
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sets." (See Fig. 1.) The greatest and smallest elements in this lattice are re- 
spectively ~ ----- [0, 1] and 0 ---- ~.  

3. Second Structure for the Fuzzy Subsets of [0, 1] 

(a) Definitions 

Max and rain operations in [0, 1] can be extended to act on fuzzy subsets of 

[0, 1] using the extension principle (Zadeb, 1975); we can define max(A, B) and 

rain(A, B) by their membership functions: 

z = sup min(/~A(X),/XB(y)), 
~max(A'B)( ) z=max(x,u) 

z = sup min(tLa(x),/~(y)), 

marx(A; B) 6 if[0, 1] and mien(A, B) ~ P[0, 1]. 

] - - -  

0 

FIGURE 2 

I l t l l l  ~dx 

. . . .  mln 

The practical rule for construction of max(A, B) and of min(A, B) is the 

following: For two convex fuzzy sets, take the leftmost part for the min and the 

rightmost part for the max of the pair of increasing parts of A and B and do the 
same for decreasing parts. For nonconvex fuzzy subsets, first decompose 
them into union of convex fuzzy subsets, use the above rule on each pair of 
convex fuzzy subsets, one from A and one from B, and last do the union of 
the elementary results (see Fig. 2. and Dubois and Prade, 1978, 1979). 

(b) The Structure of P([0, 1]) with max and min 

Mizumoto and Tanaka have recently shown the following results: 

1. P([0, 1]) is a quasi lattice (Plonka 1967) for max and rain. More specifically: 
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--max and min are commutative and associative; 

--max(A, A) = A; min(A, A) = A (idempotence). 

But max (A, min(A, B)) va A; min(A, max(A, B)) ¢= d (absorption laws do 
not hold). 

Moreover: 1 @ max(A, B) = min(1 @ A, 1 @ B); 1 @ min(d, B) = max 
(1 @ A, 1 @ B) (De Morgan laws), where @ denotes the extended subtraction 
(Dubois and Prade, 1978), 1 @ A is the fuzzy subset of [0, 1] whose membership 
function is/Zl®A(x ) = /*A(1 -- x), and 1 @ A is the antonym of A, 1 @ A --- 
ant(A) (Zadeh, 1978b). 1 @ d is only a pseudocomplement for A, because, 

r ~ d  

generally, min(A, 1 @ A) ¢= 0 and max(A, 1 @ A) =/= 1. 

2. The set of fuzzy numbers of [0, 1], denoted 2V([0, 1]), is a pseudo- 
complemented distributive lattice; absorption laws hold in P(([0, 1]). Moreover: 

0 = 0 and ~ = 1 ; 

i.e., the lattice is complete. 
The preceding results were proved by Mizumoto and Tanaka (1976). However, 

a property satisfied by max and min on [0, l] no longer holds: 

max[min(A, B), min(1 @ A, 1 @ B)] ¢= minimax(A, 1 @ B), max(1 @ A, B)] 

and 

min[max(A, B), max(1 @ A, 1 @ B)] ¢= max[min(A, 1 @ B), min(1 @ A, B)]. 

Using the distributivity, associativity, and commutativity properties on the left 
term of the first expression, we obtain 

minimax(A, 1 @ B), max(1 @ A, B), max(1 @ A, A), max(1 @ B, B)], 

which is generally different from the right term of the first expression; however, 
the equality holds as soon as max(A, 1 @ B) is equal to either 1 @ B or A, 1 
using absorption. The second equality holds for the same conditions where 

max is replaced by min. 
N.B. We can think of extending the max and min operations on [0, 1] to fi 

([0, 1]) using a "inf-max" composition. The membership function of what can 
be denoted max(A, B), the extended max by "inf-max" composition, is 

/tmax(A,B)(Z ) = inf max(l~A(X), t*B(Y)) 
z=max(x,y) 

=- min[ x~<zinf max(ttA(x), ttB(Z)), iy~f max(/xA(z),/xB(y))] 

1 and, of course, the same condition by changing A into B. 

643/43/2-9 
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as soon as Sx ~ z, IZA(X) <~ IZB(Z) and By ~< z,/*B(Y) ~< beA(z) (which is realized 
for fuzzy subsets of [0, 1] such that beA(0) ~/*8(0) = 0) we obtain max(A, B) = 
A n B .  

It is easy to check that rain(A, B) = A ch B, where min is the extended min 
by "inf-max composition," as soon as/*A(1) = /~B(1) = 0. 

Since max(A, B) = min(A, B) = A n B in most cases, it is impossible to 
obtain a lattice structure with these two operators; "inf-max" composition 
can be given up. 

II. FROM USUAL FUZZY SETS TO Fuzzy SETS OF TYPE 2 

Let U be a universe. 

1. Extensions of Classical Set Theory 

A classical set A is usually understood as a mapping from U--+ {0, 1}. This 
mapping is called the characteristic function of A. The set of subsets of U, 
P(U) has a structure of Boolean lattice, as {0, 1}. Fuzzy set theory can be built 
by extending the values of the characteristic function to [0, 1]. Then, union 
and intersection of A and B are defined as {(max(/,A(X), /x~(x)), x)} and {(rain 
(IZA(X), IX~(X)), X)}, respectively, and denoted A t3 B and A ~ B. The comple- 
mentation {(1 -- Iza(x), x)} is denoted A. 

Another extension of classical set theory can be obtained by replacing {0, 1} 
by P({0, 1}); thus t~A(X) is a classical set of {0, 1}. A is said to be a classical set 
of type 2. The union, the intersection, and the complementation of such sets 
can be defined using the union and the intersection in P({0, 1}), denoted by 
V~ and A ,  respectively. 

I~Av~(x)(x) ~ IXA(x) V txB(X), where " V" denotes the union in P({0, 1}). 
IZA/x,B(x) -=- IZA(x) A b~(x), where " A" denotes the intersection in P({O, 1}). 
tZnln(X) = -]/*A(x) = {0, 1}\/za(x), where "--l" denotes the complementation 

in P({0, 1}). 
Since P({0, 1}) has a structure of Boolean lattice with V and A, the set 

P~(U) of classical subsets of type 2 of U is also a Boolean lattice with ~/  and 
whereas the set fi(U) of fuzzy subsets of U has a structure of pseudo- 

complemented distributive lattice (with w and n)  owing to that of [0, 1]. 
Note that in P(U), ~/ ,  A ,  and ~ coincide with u,  n and -- ;  i.e., these operators 
coincide when applied to classical subsets of U, and yield back the usual union, 
intersection, and complementation of classical subsets. Last, P2(U) and P(U) 
both include P(U), but P~(U)IP(U ) and fi(U)IP(U ) are disjoint sets. 
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2. Fuzzy Subsets of Type 2 

Fuzzy subsets of type 2 can be obtained as an extension of fuzzy subsets or 

of classical subsets of type 2. First, we extend [0, 1] in [0, 1] [°'~], max in max, 

min in min, " t  - - "  i n " l  @," in the sense of Zadeh's principle (Section I, 3a). The  
operators of union, intersection, and complementation of fuzzy sets of type 2 
can then be defined as 

~A riB(x) = min(/~A(X), t~B(x)), 

/ ~ (x )  = 1 @/~A(X). 

Here, membership values are fuzzy subsets of [0, 1], which is why we place 
" ~ "  above them. 

Second, we can extend P({0, 1}) ~ {0, 1} {°,1} in [0, 1][ °.11 = P([0, 1]). " V",  
" A", " ~ "  in P({0, 1}) become the fuzzy union td, intersection (7, complemen- 
tation " - - "  in P([0, !]). The  latter operators can be used to define a union, 
an intersection and complementation on fi2(U), the set of fuzzy subsets of type 
two of u .  

fi~(U) with ~ / ,  ~ ,  ~ is a pseudocomplemented distributive lattice because 
fi([0, 1]) with u ,  r~, -- ,  is such. /~2(U) with ld, [7, ~-~ is only a quasilattice 

because fi([0, 1]) with max, min, 1@, is such (see Section I, 2b). However, since 

the set of fuzzy numbers 3?([0, 1]) with max, rain, 1 @, is a pseudocomplemented 
distributive lattice, such is the subset of fi2(U) made of fuzzy subsets of type 2 
of U whose characteristic functions map in 29([0, 1]). Note that the latter fuzzy 
subsets are the most interesting from an interpretative point of view since the 
fuzzy membership value of x means "approximately I~A(X)." From now on, 
they will be called FNVS (fuzzy number-valued subset). The  combination 
of FNVS's  using k], [7, ~-, yields FNVS's.  This not true for ~ / ,  ~ ,  7-7. Hence 
in the manipulation of FNVS's,  the operators U, •, ~ are more convenient; 
they canonically extend the fuzzy union, intersection, and complementation. 
V~, ~ ,  ~ have no evident interpretation; neither has P~(U) from which they 
derive. 
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3. Subset Inclusion 

Set inclusion in the sense of U, f] can be defined as 

A r - ' B e + I A k l B = B '  
[1B = A, 

which gives for the membership values: 

Vx ~ U, min[fA(x), fB(X)] = fA(X) 
and 

max[fA(x), fB(X)] = fB(X), 

and subset equality is defined as Vx fA(X) = f~(x). 
However, this definition may seem too rigid and we can relax it using ap- 

proximate inequality and equality between/2A(x ) and/2B(x) (Dubois and Prade, 
1980). 

The  possibility of having ~A(X) greater than fB(x) is 

v ( ~ . ( x )  > / ~ ( x ) )  = max 
u ~ w  

(u,w)e[0,1] z 

min[/~¢A(~)(u),/xgB(~)(w)], 

where/x~A(~ ) is the membership function of fA(x). When d and B are FNVSs, 
call mean value of fA(X) the real number/zA(x ) such that/~flx)(/zA(x)) ~ 1, then 

V(flZA(X) /> /~B(X)) = 1 if /*A(X) /> /@(X) 

= height (fA(X) m FIB(X)) if /@(X) > la.A(X), 

also called consistency by Zadeh (1978). We can decide that fA(x) is greater 
than fiB(x) as soon as the consistency is under a given threshold. I f  it is true for 
any x, then B is approximately included in A. 

Note that we could have defined the inclusion consistent with V~/ and /~  as 
A~B++f ia (x  ) CfB(x  ) Vx~ U. However, when A and B are FNVSs and if 
we consider only the fuzzy subsets of U : X = {(/~A(x), x)} a n d / )  = {0@(x), x)} 
where/,A(x) and/@(x) are the mean values of fA(x) and/~B(x), then if mean 
values are unique, 

and 

A r-- B reduces to A C / )  

A © B reduces to A = / ~ ,  

so that ~ is even more rigid than E.  
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III. FUZZY-VALUED LOGIC 

1. Truth Values of a Proposition 

In a fuzzy-valued logic, the truth value of a proposition P will be a fuzzy set 
of [0, 1]; here only fuzzy numbers will be considered. Predicates are related to 
fuzzy sets of type 2, since the proposition "x is F "  is valued by a fuzzy number. 

01 

0 r 012 

,U'~rue 

014 ' 0.6 0.8 

Fmupa~ 3 

Figure 3 shows the truth value "true," considered by Zadeh (1978a). 

/*true = S(0.6, 0.8, 1.0), 

where 

8(% ~, 7; u) = o; 

[u- ~]2; 
= 2 t y _ _ c ~  j 

= l _ _ 2 [ u - - Y ] 2 ;  
L 7 - -  aJ 

= 1 ;  

We write v(P) = "true" and more generally v(P) = r. 

u ~ c ~ ,  

u>~7.  

2i ' 

2. Interpretative Functions for Connectives 

To define the interpretative functions of a fuzzy valued logic, we extend, 
according to Zadeh's principle, the interpretative functions of two multivalent 
logics, which mainly differ by the connectives related to the implication. 

In Dubois and Prade (1977), these logical calculi are presented; they can 
be called Zadeh's multivalent logic which underlies fuzzy-set theory, and 
Dienes Rescher logic, which is the fuzzification of binary propositional calculus, 
according to Zadeh's extension principle (see Gaines, 1976). The first one is 
nothing but Luckaziewicz's (1930)Lel. 
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(a) Interpretative Functions Belonging to Both Logics 

• Negat ion:  

v(P) = 1 @ v(P) = ant[v(P)].  

• And:  

• O r :  

N 
v(P ['I Q) ~- min(v(P),  v(Q)). 

v(P U Q) = max(v(P),  v(Q)). 

" 1 "  (Shaffer): 

v(P I Q) = max(1 (~ v(P), 1 ~ v(Q)) = ant[v(P [7 Q)]. 

" ~ " (Pierce): 

v(P ~ Q) = min(1 @ v(P), 1 @ v(Q)) = ant[v(P H Q)]. 

EXAMPLES. Consider the linguistic t ru th  values: " t rue"  with /*true ~--- 
S(a, (a @ 1)/2, 1), ~ e [0, 1], "false" = ant(" t rue") ,  "dub ious"  with/~aubious = 
S(fi, (fi + 0.5)/2, 0.5), on [0, 0.5] and/~aubtous = ant(S(/3, (/3 + 0.5)/2, 0.5)) in 
[0.5, 1],/3 ~ [0, 0.5], see Fig. 4. 

0 ,8 0.2 c~ 0.4 0.6 0.8 i 

FlCUR~ 4 

Using modifiers such as "ve ry"  or "more  or less," we can define "very  t rue"  

(/Zverytrue = N2(cz, (or-J- 1)/2, 1)), "more  or less t rue"  (/*more or less true = 
$1/2(o~, (o~ + 1)/2, 1)), and so on. 

• P is " t rue ,"  Q is "dub ious" :  " P  and Q" is min (true, dubious) 
"dub ious . "  

• P is "more  or less dubious ,"  Q is "very  t rue" :  " P  or Q "  is max (more or 
less dubious, very true) ~-~ "very  t rue ."  
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These equalities hold strictly when ~ ~< ~. 

• P is dubious: P is ant(dubious) = dubious• 
r---a 

Note that " P  is dubious" does not have the same meaning as " P  is not dubious" 
- -which means " P  is either true or false." 

N.B. The meaning of "not  true and not false" is approximately that of 

"dubious." Indeed /Znottrueandnotfalse = min(1--/Xtrue , 1--/Zfalse) has a 
maximum (:/: 1) for u ~ 0.5 as/~aubious " ~ ,  (3, - - ,  can be used in/5([0, 1]) to 
build new linguistic values (provided some normalization); on the contrary, 

max, min, 1@ must be used to evaluate composite fuzzy propositions• 

(b) Dienes-Reseher Connectives 

• Implication: 

v(P ~ Q) = max(1 @ v(P), v(Q)). 

• Equivalence: 

v(P ~ Q) = min(max(1 @ v(P), v(Q)), max(1 @ v(Q), v(P))). 

• Exclusive or: 

v(P ex Q) = max(min(1 @ v(P), v(Q)), min(1 @ v(Q), v(P))). 

N.B. Note that the properties stated in Section I, 3, b, which no longer 
hold in fi([0, 1]), produce alternative definitions for <:~ and "ex". However, 
these expressions are generally approximately equal• 

• Tautology: 

• Contradiction: 

v(P) = ma~x(v(P), 1 @ v(P)). 

v(P) = mi~n(v(P), 1 @ v(P)). 

Those two definitions are consistent with 

v(P ~ t 5) = P~', v(P ~ P) = v(P). 

EXAMPLE 

P is dubious, Q is true: " P  ~ Q" is marx(ant(dubious), true) ~ true 

"Q ~ P " :  max(ant(true), dubious) ~ dubious 

" P  ~ Q" is dubious 
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(c) Zadeh' s Connectives 

• Implication: 

v(P-+ 9)  = min(1, 1 @ v(P) @ v(Q)) , 

where @, @ denote respectively extended subtraction and extended addition 
(Dubois and Prade, 1978) 2. This expression is the extension of min(1, 1 - -  p + q) 
(p, q) ~ [0, 1] 2 (Luckaziewicz, 1930) to fuzzy arguments. 

• Equivalence: 

v(P .-~ 9)  = rain(rain(I, 1 @ v(P) @ v(9)) , min(1, 1 @ v(9) @ v(P))) 

= 1 @ max(O, v(Q) @ v(P), v(P) @ v(Q)) 

= 1 @ ] v(P) @ v(9)[. 

• Exclusive or: 

v(P ex 9) = v(P ,-, Q) = I v(P) @ v(9)[. 

• Tautology--contradict ion:  

v(P) = 1; v(P) = 0. 

The  following formulas still hold: 

v(P) = v(P--~ P), 

v(P) = v(P-*  P). 

All the preceding expressions yield elements of ~([0,  1]), whenever (v(P), 
v(Q)) ~P~([0, 1]). The  absolute value of a fuzzy number  _d is defined as 

/ * l A i ( x )  = m a x ( / ~ A ( x ) ,  t.,A(--x)), x >/O, 
= 0 ,  x < 0 .  

EXAMPLE 

P is dubious, Q is true: 

v(P-~ 9) = rain(l, ant(dubious) @ true) 

= rain(l, dubious @ true). 

As soon as c¢ @ fi ~ 1 v(P--~ 9)  ~ 1; however, generally, v(P--~ 9)  C true, 
which is the result of Dienes-Rescher implication. 

2 A @ B and -// @ B are defined, for any  A,  B in P ( ~ ) ,  by t~A_LB(Z) = sup~,~ min(/xA(x), 
/xa(y)) under the constraintx + y  = z for _L ~ @ a n d x - - y  = z for _L = @. 
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3. Relation between Extended Zadeh' s Logic and Fuzzy Sets of Type 2 

Fuzzy subsets of type 2 with LI, H, ~" corresponds to both of the above 
extended logics. However, if we want equivalently to relate Zadeh's implication 
min(1, 1 @ v(P)@v(Q)) with inclusion " E , "  we must restrict this inclusion 
in the following way: 

A E B i f f I A A I A B =  ~ [7 B = A  

which means, respectively: 

l 
~ L n  ~ = o, 

min(/~A, /~) = ~ ,  

Then 

e q u i v a l e n t t ° I A  A / ~ B =  ; ~ "  U B B 

and 
max(/xA ,/zB) = FB. 

v(P ~ Q) = 1 is equivalent to A r- B, 

where P means " X i s  d , "  Q means " X  is B,"  and X ~  U. With the definition 
of Section II,  3 for ~ ,  we have only 

~'(P-+ Q) = 1 implies A r-- B. 

In  the example of Fig. 5 , / ~  ¢7/@ = 0 as soon as ~ + / 3  >~ 1. 

/ / \ 
i / /  if'dubious (~) 'true \.,,, 

' .  

\ \  
\ 

,8 a ~+B I -  B I 1.5 2 - B  

Fro. 5 . . . .  , v (P  --+Q). 

CONCLUSION: INFERENCES IN A FUZzY-VALUED LOGIC 

In  a multivalued logic, the problem of inference from "more or less true" 
premises can be stated as: 

Given v(P) = T and v(P-~-Q) 1 - •, where ~- and Z ~ [0, l], find v(Q) ~ [0, 1]. 
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Using the logic underlying fuzzy-set theory we may define 

v(P--~ 9)  = min(1, ] - -  v(P) -1- v((Q)). 

This is Luckasiewicz's implication, which ensures 

v ( P - +  Q) = 1 is equivalent to v(9)  >~ v(P). 

In  the inference problem, v(Q) is the solution of 

min(1, 1 - -  r @ v(Q)) = 1 - Z. 

That  is to say, 

For Z = 0: v(Q ) a [r, 1], 

For X > 0 and ~- >~ Z: v(Q) = 4 -  Z. 

T > / Z  is a necessary condition for the problem to make sense. I t  means that 
" P  cannot be more false than P --+ 9 . "  When ~ < Z', v(Q) cannot be calculated. 

In  a fuzzy-valued logic, the problem of inferring fuzzy-valued propositions 
from fuzzy premises can be stated as: 

Given v ( P ) =  r and v(P~O)= I @ Z ,  where (r, Z)  a-~r~([0, 1]), the 
problem is to find v(Q ) a ~r([0, 1]). As is done in the nonfuzzy case, we could 
think of finding v(Q) as a solution of the equation 

1 @ Z = min(1, 1 @ ~- @ v(Q)), (1) 

which implicitly defines v(Q). 
However, in fuzzy equations implicit definitions of variables are not equivalent 

to the corresponding explicit definitions, which are usually the only valid ones. 
As a matter of fact, f rom the above equation, for Z =/= 0, we see that the more 
precise r is, the more vague v(Q) is, and conversely, which contradicts Zadeh's  
inference rule (1978a) according to which from a fuzzy proposition P we can 
infer P'  if the possibility distribution induced by P is contained in the possibility 
distribution induced by P ' .  For example, let ~- = "very t rue";  assume we find 
v(Q) = " t rue"  for an appropriate value of 1 @ Z; now let 7 = " t rue" :  by 
using Eq. (1), v(Q) can no longer be " t rue ,"  but is "very true,"  which contradicts 
Zadeh 's  inference rule. To  be consistent with it, we must directly fuzzify the 
nonfuzzy result of the above equation. 

In  order to justify this result, we must consider Eq. (1) as an extended equation 
in the sense of Zadeh 's  extension principle, i.e., Equation (1) implicitly defines 
v(Q) by 

i~(o)(Z) = sup min(/~(t),/z~(x)) Vz E [0, 1] 
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under  the constraint:  1 - -  x = min(1, 1 - -  t + z). This  constraint is equivalent 
to 

z = t - - x  f o r x > O  (t /> x because z >~ O) 

and 

Hence  

t ~ z  f o r x  = 0 .  

t,~(o)(Z) = max( sup min(/**(t), ixz(x)),  sup min(/z,(t),/*z(0))). 
t-oa=z t<~z 

x>0 

Denot ing  by f the most  possible value of r(/x~(f) = 1) and by t* ~< f the value 
of  r such that 

we infer that  

/*~(t*) = / zz (0 ) ,  

t~.(o)(Z) = max(/~.®z(z),/.~(z)) for z e [0, t*] 

= max(/~.ez(z),/*z(0)) for z c [t*, 1] 

= 0 otherwise 

(see Fig. 6). 

- -  2 - L  " ~ " 

** i ! 0 t* [ 

FIG. 6. - - - , * @ Z ;  

I f  Z = 0, then 

t* = t, and tZv(o)(Z) = i,~(z) 

= 1  

i.e., v(Q) is the fuzzy interval (r, 1]. 
If /*z(0) = 0, i.e., tzv(e->o)(1) = 0, then 

t%(o) = I ~ e z ( z )  for 

in other words, 

v(Q) = max(0, r @ 27). 

- - - ~ O *  

- -  v ( Q )  

, v ( Q ) .  

for z ~ < i  

for z ~ f ,  

z e [0, 1]; 
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The  possibility of calculating v(Q) is evaluated by 

p = sup /x~z(z) .  
z~[0,1] 

I f  p = 0, the inference problem is impossible. 
Actually, owing to Zadeh 's  extension principle, the results of the multivalued 

logic case have been generalized. 
Another statement of this problem can be: 

v( P ) = -r. 

I f  
v ( P )  = o~ then v(Q) = t3; (~-, ~, 13) ~ ~3([0, 1]). 

Is it possible to deduce v(~)  ? 
I f  we assume that P - - ~ Q  is a "fuzzy theorem," i.e., its truth value is con- 

stant, we can deduce v(Q) by solving the equation 

min(1, 1 @ ~ @ v(Q))  = v (P- -~  Q) = min(1, 1 @ ~ @ fi) 

in the sense of the extension principle. 
Note that this inference works similarly as a rule of three. I f  P ~ Q is not a 

theorem, we can deduce v(Q) on the condition that it is possible to infer v ( P )  = o~ 

from v ( P )  ~ % that is, min(1, 1 @ ~- @ ~) ~ 1 (example: r = very c~); then 
v(Q) = fi can be asserted. 

Last, Zadeh's  compositional rule of inference (Zadeh, 1978a) can also be 
extended to 

I f  (X, Y) is F and (Y, Z)  is G, 

where F and G are now fuzzy-valued relations (i.e., fuzzy subsets of type 2 
of U × V and V X W,  respectively), then we can infer if V is finite. 

(X, Z) is F o G, 

where F ~ G is defined as 

t ~ d  

/~F~a(u, w) = max min(fir(u, v),  fza(v, w)). 

Generalized modus ponens for fuzzy-valued propositions will then be 

X is F, 

I f  X is G then Y is H. 

We deduce 
Yi s  K ,  
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where, generalizing the formula of Bellman and Zadeh (1977), K is defined as 

/~K(v) = max min(/~r(u), min(1, 1 @/~a(u) @/~H(V)). 
U 

In  such a fuzzy-valued logic, the degree of truth is expressed roughly by the 
mean value of the linguistic truth value r while the vagueness of ~- is expressed 

by its "spread." In  particular, max, rain, 1@, and U, n - -  do not play the same 
role in that context; for instance, given two predicates P and Q, whose truth 
values are a, ~-, respectively: 

P ~ Q ,  i.e., a C r means the truth value of P is more precise than that 
of Q, and the degrees of truth are practically the same. 

p E  Q,i.e. ,  ( a g 3 r - ~  

means that Q is truer than P. Note that "very true" in Zadeh's sense is not truer 

than " t rue"  but only more precise. But, in natural language, "very"  usually does 
not relate only to precision. 

In  conclusion, we can note that in a chain of approximate inferences, truth 
and precision progress in the same sense; conclusions are always less precise 
and less true than premises; ~" @ 27 is smaller than ~- and also more fuzzy. 

In  other respects, practical computation of truth values can be made easier 
using results in fuzzy real algebra (Dubois and Prade, 1979). 
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