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Abstract

Let G be a connected graph. We reformulate Stark and Terras’ Galois Theory for a quotient H of a
regular covering K of a graph G by using voltage assignments. As applications, we show that the weighted
Bartholdi L-function of H associated to the representation of the covering transformation group of H is
equal to that of G associated to its induced representation in the covering transformation group of K .
Furthermore, we express the weighted Bartholdi zeta function of H as a product of weighted Bartholdi
L-functions of G associated to irreducible representations of the covering transformation group of K . We
generalize Stark and Terras’ Galois Theory to digraphs, and apply to weighted Bartholdi L-functions of
digraphs.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Graphs and digraphs treated here are finite and simple. Let G = (V (G),E(G)) be a connected
graph with the set V (G) of vertices and the set E(G) of unoriented edges uv joining two vertices
u and v. For uv ∈ E(G), an arc (u, v) is the oriented edge from u to v. Let D be the symmetric
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digraph corresponding to G, i.e., the digraph obtained by replacing each edge of G by a pair
of oppositely directed edges (arcs). Set D(G) = A(D) = {(u, v), (v,u) | uv ∈ E(G)}. For e =
(u, v) ∈ D(G), set u = o(e) and v = t (e). Furthermore, let e−1 = (v,u) be the inverse of e =
(u, v).

A path P of length n in G is a sequence P = (e1, . . . , en) of n arcs such that ei ∈ D(G),
t (ei) = o(ei+1) (1 � i � n − 1), where indices are treated mod n. Set |P | = n, o(P ) = o(e1)

and t (P ) = t (en). Also, P is called an (o(P ), t (P ))-path. If ei = (vi−1, vi) (1 � i � n), then we
set P = (v0, v1, . . . , vn). We say that a path P = (e1, . . . , en) has a backtracking if e−1

i+1 = ei for
some i (1 � i � n−1). A (v,w)-path is called a v-cycle (or v-closed path) if v = w. The inverse
cycle of a cycle C = (e1, . . . , en) is the cycle C−1 = (e−1

n , . . . , e−1
1 ).

We introduce an equivalence relation between cycles. Two cycles C1 = (e1, . . . , em) and C2 =
(f1, . . . , fm) are called equivalent if there exists k such that fj = ej+k for all j . The inverse cycle
of C is in general not equivalent to C. Let [C] be the equivalence class which contains a cycle C.
Let Br be the cycle obtained by going r times around a cycle B . Such a cycle is called a power
of B . A cycle C is reduced if C has no backtracking. Furthermore, a cycle C is prime if it is not
a power of a strictly smaller cycle. Note that each equivalence class of prime, reduced cycles of
a graph G corresponds to a unique conjugacy class of the fundamental group π1(G,v) of G at a
vertex v of G.

Let G be a connected graph, and let N(v) = {w ∈ V (G) | vw ∈ E(G)} for any vertex v

in G. A graph H is called a covering of G with projection π :H → G if there is a surjection
π :V (H) → V (G) such that π |N(v′) :N(v′) → N(v) is a bijection for all vertices v ∈ V (G) and
v′ ∈ π−1(v). When a finite group Π acts on a graph (digraph) G, the quotient graph (digraph)
G/Π is a simple graph (digraph) whose vertices are the Π -orbits on V (G), with two vertices
adjacent in G/Π if and only if some two of their representatives are adjacent in G. A covering
π :H → G is said to be a regular covering of G if there is a subgroup B of the automorphism
group Aut H of H acting freely on H such that the quotient graph H/B is isomorphic to G.

Let G be a graph and Sn the symmetric group on the set {1,2, . . . , n}. Then a mapping
α :D(G) → Sn is called a permutation voltage assignment if α(v,u) = α(u, v)−1 for each
(u, v) ∈ D(G). The pair (G,α) is called a permutation voltage graph. The derived graph Gα

of the permutation voltage graph (G,α) is defined as follows:

V (Gα) = V (G) × Γ and ((u,h), (v, k)) ∈ D(Gα) if and only if (u, v) ∈ D(G) and k =
α(u, v)(h).

The natural projection πα :Gα → G is defined by πα(u,h) = u. The graph Gα is called a derived
graph covering of G with voltages in Sn or an n-covering of G. Note that the n-covering Gα is
an n-fold covering of G. Furthermore, every n-fold covering of a graph G is an n-covering Gα

of G for some permutation voltage assignment α :D(G) → Sn (see [7,8]).
Let G be a connected graph and Γ a finite group. Then the mapping α :D(G) → Γ is called

an ordinary voltage assignment if α(v,u) = α(u, v)−1 for each (u, v) ∈ D(G). The pair (G,α)

is called an ordinary voltage graph. The derived graph Gα of the ordinary voltage graph (G,α)

is defined as follows:

V (Gα) = V (G) × Γ and ((u,h), (v, k)) ∈ D(Gα) if and only if (u, v) ∈ D(G) and k =
hα(u, v).
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The natural projection πα :Gα → G is defined by πα(v,h) = v for all (v,h) ∈ V (G) × Γ . The
graph Gα is called a Γ -covering of G.

For each c ∈ Γ , let φc :Gα → Gα denote the graph automorphism defined by the rules
φc(u, a) = (u, ca) for each (u, a) ∈ V (Gα) and φc((u, a), (v, b)) = ((u, ca), (v, cb)) for each
((u, a), (v, b)) ∈ D(Gα). Then Γ acts freely on the left of the Γ -covering Gα . Thus, the cov-
ering transformation group of the Γ -covering Gα is isomorphic to Γ . The Γ -covering Gα is
a |Γ |-fold regular covering of G. Every regular covering of G is a Γ -covering of G for some
group Γ (see [7,8]).

Let G be a connected graph and α :D(G) → Γ (or Sn) be an ordinary (or permutation) voltage
assignment. For each path P = (e1, . . . , er ) of G, set α(P ) = α(e1) · · ·α(er ). This is called the
net voltage of P .

Sunada [21,22] stated the Galois Theory for quotients of regular coverings of Riemannian
manifolds, and presented a formula for the L-function of a quotient of a regular covering of a
Riemannian manifold. Stark and Terras [20] developed the Galois Theory for quotients of regular
coverings of graphs, and gave a formula for the (Artin) L-function of a quotient of a regular
covering of a graph by using it.

Computation of zeta functions of graphs can be in general excessively difficult; one is greatly
helped the presence of symmetry in the graph, especially if the graph is a covering of a simpler
graph, from which one would like to “induce” the zeta function.

Another kind of “symmetry” may appear if one allows the zeta function to be weighted by
the number of “backtrackings” that a path follows. In some case, paths without backtrackings are
simpler to count (e.g. in cycles), while in the other cases general paths are easier to count (e.g.
complete graphs).

Our main result is that the classical results for zeta functions of coverings (their expressions as
L-functions over a representation of the Galois group of the coverings) hold, /mutatis mutandis/,
for weighted zeta functions.

The main results of this paper are

Main Result 1. Let G be a connected graph, W(G) a weighted matrix of G, Γ a finite group
and α :D(G) → Γ an ordinary voltage assignment. Then the weighted Bartholdi zeta function
of the Γ -covering Gα of G is

ζ
(
Gα, w̃,u, t

) =
∏
ρ

ζG(w,u, t, ρ,α)degρ,

where ρ runs over all inequivalent irreducible representations of Γ , and w̃ = w̃Gα .

Main Result 2. Let G be a connected graph, T a spanning tree of G, W(G) a weighted matrix
of G, Γ a finite group and α :D(G) → Γ an ordinary voltage assignment. Furthermore, let
B � Γ be a subgroup of Γ and H = Gα/B . Assume that Gα is connected and α is T -reduced.
Then the weighted Bartholdi zeta function of the quotient H of the Γ -covering Gα of G is

ζ(H, w̃H ,u, t) = ζ(G,w,u, t)
∏
ρ �=1

ζG(w,u, t, ρ,α)mρ ,

where ρ runs over all inequivalent irreducible representations of Γ except the identity represen-
tation 1, and each mρ (ρ �= 1) is some nonnegative integer.
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Main Result 3. Let D be a connected digraph, W(D) a weighted matrix of D, Γ a finite group
and α :A(D) → Γ a symmetric ordinary voltage assignment. Then the weighted Bartholdi zeta
function of the Γ -covering Dα of D is

ζ
(
Dα, w̃Dα ,u, t

) =
∏
ρ

ζD(w,u, t, ρ,α)degρ,

where ρ runs over all inequivalent irreducible representations of Γ .

In Section 2, we reformulate Stark and Terras’ Galois Theory for a quotient H of a regular
covering K of a graph G by using voltage assignments. In Section 3, we show that the weighted
Bartholdi L-function of H associated to the representation of the covering transformation group
of H is equal to that of G associated to its induced representation in the covering transformation
group of K . In Section 4, we express the weighted Bartholdi zeta function of H as a product
of weighted Bartholdi L-functions of G associated to irreducible representations of the covering
transformation group of K . In Section 5, we extend the results in Section 2 to digraphs. In
Section 6, we extend the results in Section 3 to weighted Bartholdi L-functions of digraphs.

For a general theory of the representation of groups and graph coverings, the reader is referred
to [18] and [8], respectively.

2. Quotients of regular coverings of graphs

Let G be a connected graph, Γ a finite group and α :D(G) → Γ an ordinary voltage as-
signment. Furthermore, let B � Γ be a subgroup of Γ . Then we consider the quotient graph
H = Gα/B . We write an action of Γ on Gα as follows:

c(u, a) = (u, ca) for each (u, a) ∈ V
(
Gα

)

and

c
(
(u, a), (v, b)

) = (
(u, ca), (v, cb)

)
for each

(
(u, a), (v, b)

) ∈ D
(
Gα

)
,

where c ∈ Γ . Then the quotient graph H = Gα/B is given as follows:

V
(
Gα/B

) = {
(u,Bg)

∣∣ u ∈ V (G), g ∈ Γ
}

and

(
(u,Bg), (v,Bh)

) ∈ D
(
Gα/B

)
if and only if (u, v) ∈ D(G) and Bh = Bgα(u, v).

By the theory of covering space (see [24]), Gα is a regular covering of the quotient graph H =
Gα/B . Thus, there exists an ordinary voltage assignment β :D(H) → B such that Hβ = Gα .

Now, since V (Hβ) = V (Gα), we will identify the vertex (u,hg) of Gα with the vertex
((u,Bg), h) of Hβ . Suppose that

((
(v,Bg), h

)
,
((

w,Bg′), h′)) = (
(v,hg),

(
w,h′g′)) ∈ D

(
Gα

) = D
(
Hβ

)

for each g,g′ ∈ Γ,h,h′ ∈ B .
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Proposition 1. Let G be a connected graph, Γ a finite group and α :D(G) → Γ an ordinary
voltage assignment. Furthermore, let B � Γ be a subgroup of Γ and H = Gα/B . If β :D(H) →
B is an ordinary voltage assignment such that Hβ = Gα , then

β
(
(v,Bg),

(
w,Bg′)) = gα(v,w)g′−1

for each (v,w) ∈ D(G) and each g,g′ ∈ Γ .

Proof. Let (v,w) ∈ D(G). Then, (((v,Bg), h), ((w,Bg′), k)) ∈ D(Gα/B) if and only if k =
hβ((v,Bg), (w,Bg′)). Furthermore, ((v,hg), (w, kg′)) ∈ D(Gα) if and only if kg′ = hgα(v,w),
i.e., k = hgα(v,w)g′−1. Therefore it follows that

h−1k = β
(
(v,Bg),

(
w,Bg′)) = gα(v,w)g′−1. �

Next, let |Γ | = n and |B| = m. Furthermore, let D be any prime cycle of Gα and π =
πα :Gα → G the natural projection. Then we have

π(D) = Ck,

where C is a prime cycle of G, and k = ord(α(C)) be the order of α(C) in Γ .
Now, let x = α(C) and f = n/k. Furthermore, let

Γ = y1〈x〉 ∪ y2〈x〉 ∪ · · · ∪ yf 〈x〉,
where y1 = 1. Then we may have

π−1(C) = D ∪ y2D ∪ · · · ∪ yf D

and

Z(yiD) = yi〈x〉y−1
i (1 � i � f ),

where Z(yiD) is the stabilizer of yiD in Γ . Let C be a v-cycle and D a (v,1)-cycle. Then yiD

is a (v, yi)-cycle.
Next, let πB :Gα → H be the natural projection. Then we have

πB(yiD) = yiD/B = K
di

i (1 � i � f ),

where Ki is a prime cycle of H . Furthermore, Ki is a (v,Byi)-cycle and

|yiD| = k|C| = di |Ki |.
Let k = difi (1 � i � f ). By Proposition 1, we have

β(Ki) = yix
fi y−1

i and ord
(
β(Ki)

) = di.

Note that fi = min{e | yix
ey−1 ∈ B}.
i
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Now, let K1,K2, . . . ,Ks be all the distinct Ki ’s among K1, . . . ,Kf . Then K1,K2, . . . ,Ks

are lifts of C in H . Let πB(yjD) = K
dj

j . Then β(Kj ) = yjx
fj y−1

j and k = fjdj (1 � j � s).
Furthermore, let

∣∣π−1
B (Kj )

∣∣ = m/dj = lj (1 � j � s).

Then we have

l1 + l2 + · · · + ls = n/k = f.

Let n = mt . Then we have

f1 + f2 + · · · + fs = t.

Now, let Bj = 〈β(Kj )〉 (j = 1, . . . , s) and

B = zj1Bj ∪ zj2Bj ∪ · · · ∪ zjlj Bj , zj1 = 1.

Since zjl((v,Byj ),1) = zjl(v, yj ) = (v, zjlyj ), the lifts of Kj in Gα are

zj1yjD = yjD, zj2yjD, . . . , zjlj yjD,

and

Z(zjlyjD) = zjlBj z
−1
j l (1 � l � lj )

in H . Furthermore,

Z(zjlyjD) = zjlyj < α(C) > y−1
j z−1

j l (1 � l � lj )

in Γ . Thus,

Byj

〈
α(C)

〉 = zj1yj

〈
α(C)

〉 ∪ · · · ∪ zjlj yj

〈
α(C)

〉
(1 � j � s).

Therefore it follows that Γ = By1〈α(C)〉 ∪ · · · ∪ Bys〈α(C)〉 is the set of all the distinct double
cosets of B and 〈α(C)〉 in Γ . By [18,23], we have

lj = ∣∣B: B ∩ yj

〈
α(C)

〉
y−1
j

∣∣ (1 � j � s).

Proposition 2. Let G be a connected graph, Γ a finite group and α :D(G) → Γ an ordinary
voltage assignment. Furthermore, let B � Γ be a subgroup of Γ and H = Gα/B . For any prime
cycle C in G, the number of lifts of C in H is equal to the cardinality of the set B \ Γ/〈α(C)〉 of
distinct double cosets of B and 〈α(C)〉 in Γ , and the length of each lift of C in H is of form

|C| · k

m
· ∣∣B: B ∩ yj

〈
α(C)

〉
y−1
j

∣∣,
where y1 = 1, y2, . . . , ys are the representatives of distinct double cosets of B and 〈α(C)〉 in Γ .
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Since |Γ/B| = n/m = t , H is a t-covering of G, that is, there exists a permutation voltage
assignment φ :D(G) → St such that H = Gφ . For any arc (v,w) ∈ D(G), ((v,Bgi ), (w,Bgj )) ∈
D(H) if and only if (v,w) ∈ D(G) and Bgj = Bgiα(v,w), where Γ/B = {Bg1 = B,Bg2, . . . ,

Bgt }.
We identify i with Bgi (1 � i � t), and so let

φ(v,w)(i) = j if Bgj = Bgiα(v,w).

Then it is clear that

H = Gφ.

By [8, Theorem 2.4.3] implies that, for any prime cycle C in G, the number of lifts of C in H is
equal to that of cycles of φ(C), and the length of each lift of C in H is i|C| for some i such that
ci �= 0, where (c1, c2, . . . , ct ) is the cycle type of φ(C).

Corollary 1.

t∑
i=1

ci = ∣∣B \ Γ/
〈
α(C)

〉∣∣.

If ci �= 0, then

i = k

m
· ∣∣B: B ∩ yj

〈
α(C)

〉
y−1
j

∣∣ for some yj .

3. Weighted Bartholdi L-functions of quotients of regular coverings

Let G be a connected graph. We say that a path P = (e1, . . . , en) has a bump at t (ei) if
ei+1 = e−1

i (1 � i � n). The cyclic bump count cbc(π) of a cycle π = (π1, . . . , πn) is

cbc(π) = ∣∣{i = 1, . . . , n
∣∣ πi = π−1

i+1

}∣∣,
where πn+1 = π1.

Let V (G) = {v1, . . . , vn}. Then we consider an n × n matrix W = (wij )1�i,j�n with ij entry
the complex variable wij �= 0 if (vi, vj ) ∈ D(G), and wij = 0 otherwise. The matrix W = W(G)

is called the weighted matrix of G. For each path P = (vi1, . . . , vir ) of G, the norm w(P ) of
P is defined as follows: w(P ) = wi1i2wi2i3 · · ·wir−1ir . Furthermore, let w(vi, vj ) = wij , vi, vj ∈
V (G) and w(e) = wij , e = (vi, vj ) ∈ D(G).

A representation φ of a group Γ over C is a homomorphism into the group GL(r,C) of
invertible r × r matrices over C. We say that r is the degree of φ (see [18]). Furthermore, let
ρ be a unitary representation of Γ and d its degree. The weighted Bartholdi L-function of G

associated with ρ and α is defined by

ζG(w,u, t, ρ,α) =
∏

det
(
Id − w(C)ρ

(
α(C)

)
ucbc(C)t |C|)−1

,

[C]
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where [C] runs over all equivalence classes of prime cycles of G (see [17]). If ρ = 1 (the iden-
tity representation of Γ ), then the weighted Bartholdi L-function of G is called the weighted
Bartholdi zeta function of G, denoted by ζ(G,w,u, t) = ζG(w,u, t,1, α).

If u = 0, then the weighted Bartholdi L-function of G is the weighted L-function of G (see
[15]). If w(vi, vj ) = 1 for each (vi, vj ) ∈ D(G), then the weighted Bartholdi L-function of G is
the Bartholdi L-function of G (see [14]). Furthermore, in the case that u = 0 and w(vi, vj ) = 1
for each (vi, vj ) ∈ D(G), then the weighted Bartholdi L-function of G is the L-function of G

(see [13,20]).
In the case of ρ = 1, the weighted L-function, the Bartholdi L-function and the L-function of

G is the weighted, Bartholdi and Ihara zeta function of G, respectively (see [1,10,15]).
The (Ihara) zeta function of a graph G is defined to be a function of u ∈ C with |u| sufficiently

small, by

Z(G,u) = ZG(u) =
∏
[C]

(
1 − u|C|)−1

,

where [C] runs over all equivalence classes of prime, reduced cycles of G (see [10]).
Zeta functions of graphs started from zeta functions of regular graphs by Ihara [10]. In [10],

he showed that their reciprocals are explicit polynomials. A zeta function of a regular graph
G associated with a unitary representation of the fundamental group of G was developed by
Sunada [21,22]. Hashimoto [9] treated multivariable zeta functions of bipartite graphs. Bass [2]
generalized Ihara’s result on the zeta function of a regular graph to an irregular graph, and showed
that its reciprocal is again a polynomial:

Z(G,u)−1 = (
1 − u2)r−1 det

(
I − uA(G) + u2(D − I)

)
,

where r and A(G) are the Betti number and the adjacency matrix of G, respectively, and D =
(dij ) is the diagonal matrix with dii = degvi where V (G) = {v1, . . . , vn}.

Stark and Terras [19] gave an elementary proof of Bass’ Theorem, and discussed three dif-
ferent zeta functions of any graph. Furthermore, various proofs of Bass’ Theorem were given by
Foata and Zeilberger [6], Kotani and Sunada [12].

Sato [17] gave a determinant expression of the weighted Bartholdi L-function of G, and
showed that the weighted Bartholdi zeta function of a regular covering of G is a product of
weighted Bartholdi L-functions of G.

Let B be a subgroup of a finite group Γ and σ :B → GL(W) a representation of B . Then
the induced representation from B up to Γ , denoted σ ∗ = IndΓ

B σ is a group homomorphism
σ ∗ :Γ → GL(V ), where

V = {
f :Γ → W

∣∣ f (hg) = σ(h)f (g), h ∈ B, g ∈ Γ
}
.

The representation σ ∗(g) is then defined on f ∈ V by

(
σ ∗(g)f

)
(x) = f (xg), x, g ∈ Γ.

The character χπ of a representation π of Γ is defined by χπ(g) = Trπ(g) for all g ∈ Γ . We
use the following result (see [18]).
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Lemma 1. Let B be a subgroup of a finite group Γ and σ :B → GL(W) a representation of B .
Let σ ∗ = IndΓ

B σ . Then we have the following formula that relates the characters of the two
representations:

χσ ∗(g) = 1

|B|
∑
x∈Γ

χ̃σ

(
xgx−1),

where

χ̃σ (x) =
{

χσ (x) if x ∈ B,

0 otherwise.

Let G be a connected graph, Γ a finite group and α :D(G) → Γ an ordinary voltage assign-
ment. In the Γ -covering Gα , set vg = (v, g) and eg = (e, g), where v ∈ V (G), e ∈ D(G),g ∈ Γ .
For e = (u, v) ∈ D(G), the arc eg emanates from ug and terminates at vgα(e). Note that
e−1
g = (e−1)gα(e).

Let W = W(G) be a weighted matrix of G. Then we define the weighted matrix W̃ =
W(Gα) = (w̃(ug, vh)) of Gα derived from W as follows:

w̃(ug, vh) :=
{

w(u,v) if (u, v) ∈ D(G) and h = gα(u, v),

0 otherwise.

Set w̃Gα = w̃. Furthermore, for an n-covering Gφ of G by a permutation voltage assignment
φ :D(G) → Sn, the weighted matrix W̃ = W(Gφ) of Gφ derived from W is defined similarly.

By Propositions 1, 2 and Lemma 1, we give a formula for the weighted Bartholdi L-function
of a graph G associated to the representation of a finite group Γ induced from a representation
of a subgroup of Γ .

Theorem 1. Let G be a connected graph, W(G) a weighted matrix of G, Γ a finite group and
α :D(G) → Γ an ordinary voltage assignment. Furthermore, let B � Γ be a subgroup of Γ and
H = Gα/B . Assume that Gα is connected. Let σ be any representation of B and σ ∗ = IndΓ

B σ

the representation of Γ induced from σ . Let β :D(H) → B be an ordinary voltage assignment
such that Hβ = Gα . Then we have

ζH (w̃H ,u, t, σ,β) = ζG

(
w,u, t, σ ∗, α

)
.

Proof. The proof is an analogue of that of Theorem 8 in Stark and Terras [20].
At first, set w̃ = w̃H . Since log det(I − B) = Tr(log(I − B)),

log ζG

(
w,u, t, σ ∗, α

) = −
∑
[C]

log det
(
I − w(C)σ ∗(α(C)

)
ucbc(C)t |C|)

=
∑
[C]

∞∑
s=1

1

s
Tr

(
σ ∗(α(C)s

))
w(C)sucbc(C)s t |C|s

=
∑ ∞∑ 1

s
χσ ∗

(
α(C)s

)
w(C)sucbc(C)s t |C|s ,
[C] s=1
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where χσ ∗ = Trσ ∗.
By Lemma 1, we have

log ζG

(
w,u, t, σ ∗, α

) =
∑
[C]

∑
s�1

1

s|B|
∑
g∈Γ

χ̃σ

(
gα(C)sg−1)w(C)sucbc(C)s t |C|s .

Let C be a v-cycle of G and let D be the lift of C in Gα which is a (v,1)-cycle, where
v ∈ V (G). Furthermore, let x = α(C) and

Γ = y1〈x〉 ∪ y2〈x〉 ∪ · · · ∪ yf 〈x〉,

where y1 = 1 and f = |Γ |/|〈α(C)〉|. Then we have

log ζG

(
w,u, t, σ ∗, α

) =
∑
[C]

∑
s�1

1

s|B|
f∑

i=1,yix
sy−1

i ∈B

kχσ

(
yix

sy−1
i

)
w(C)sucbc(C)s t |C|s ,

where k = ord(x).
Now, let

B \ Γ/〈x〉 = {
By1〈x〉, . . . ,Byr 〈x〉},

and let lj = |B: B ∩ yj 〈x〉y−1
j | (1 � j � r). Note that lj is the number of right cosets of 〈x〉 of

Γ contained in Byj 〈x〉 (1 � j � r). By the fact that χσ (hxh−1) = χσ (x), h,x ∈ B , we have

log ζG

(
w,u, t, σ ∗, α

) =
∑
[C]

∑
s�1

1

s|B|
r∑

j=1,yj xsy−1
j ∈B

lj kχσ

(
yjx

sy−1
j

)
w(C)sucbc(C)s t |C|s .

Next, let β :D(H) → B be an ordinary voltage assignment such that Hβ = Gα . Let

πβ(yjD) = K
dj

j and fj = k/dj (1 � j � r), where Kj is a prime cycle of H . Since D is a
(v,1)-cycle in Gα , yjD is a (v, yj )-cycle in Gα , and so Kj is a (v,Byj )-cycle in H . Then we
have

β(Kj ) = yjx
fj y−1

j (1 � j � r).

But, yjx
sy−1

j ∈ B if and only if s = fj s
′ for some s′. Furthermore, note that cbc(Kj ) =

fj cbc(C) for each j = 1, . . . , r . Thus,

log ζG

(
w,u, t, σ ∗, α

) =
∑
[C]

∑
s′�1

r∑
j=1

lj k

fj s′|B|χσ

(
yjx

fj s′
y−1
j

)
w(C)fj s′

ucbc(C)fj s′
t |C|fj s′

=
∑
[C]

∑
[K ]

∑
′

klj

fj s′|B|χσ

(
β(Kj )

s′)
w̃(Kj )

s′
ucbc(Kj )s′

t |Kj |s′
.

j s �1
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Since klj = fj |B| for each j = 1, . . . , r , we have

log ζG

(
w,u, t, σ ∗, α

) =
∑
[C]

∑
[Kj ]

∑
s′�1

1

s′ χσ

(
β(Kj )

s′)
w̃(Kj )

s′
ucbc(Kj )s′

t |Kj |s′

=
∑
[C]

∑
[Kj ]

∑
s′�1

1

s′ Tr
(
σ
(
β(Kj )

s′))
w̃(Kj )

s′
ucbc(Kj )s′

t |Kj |s′

=
∑
[C]

∑
[Kj ]

log det
(
I − w̃(Kj )σ

(
β(Kj )

)
ucbc(Kj )t |Kj |)−1

.

Hence,

ζG

(
w,u, t, σ ∗, α

) =
∏
[C]

∏
[Kj ]

det
(
I − w̃(Kj )σ

(
β(Kj )

)
ucbc(Kj )t |Kj |)−1

=
∏
[K]

det
(
I − w̃(K)σ

(
β(K)

)
ucbc(K)t |K|)−1

= ζH (w̃, u, t, σ,β),

where [K] runs over all equivalence classes of prime cycles in H . �
In the case of σ = 1, we obtain a decomposition formula for the weighted Bartholdi zeta

function of a regular covering of G by a product of weighted Bartholdi L-functions of G (see
[17]). Let M1 ⊕ · · · ⊕ Ms be the block diagonal sum of square matrices M1, . . . ,Ms :

M1 ⊕ · · · ⊕ Ms =
⎡
⎣

M1 0
. . .

0 Ms

⎤
⎦ .

For a positive integer f , the matrix f ◦ B is the block diagonal sum of f copies of a square
matrix B.

Corollary 2. Let G be a connected graph, W(G) a weighted matrix of G, Γ a finite group and
α :D(G) → Γ an ordinary voltage assignment. Then we have

ζ
(
Gα, w̃,u, t

) =
∏
ρ

ζG(w,u, t, ρ,α)degρ,

where ρ runs over all inequivalent irreducible representations of Γ , and w̃ = w̃Gα .

Proof. Let B = {1} be the trivial subgroup of Γ and Γ = Γ/B . Furthermore, let 1 be the trivial
representation of B and ρ = IndΓ

B 1 the representation of Γ induced from 1. Then ρ is the right
regular representation of Γ . In Theorem 1, we let σ = 1, σ ∗ = ρ and β = 1. Therefore, it follows
that
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ζ
(
Gα, w̃,u, t

) = ζG(w,u, t, ρ,α) =
∏
[C]

det
(
I − w(C)ρ

(
α(C)

)
ucbc(C)t |C|)−1

.

Since ρ is the right regular representation of Γ , we have

ρ = (1) ⊕ f2 ◦ ρ2 ⊕ · · · ⊕ ft ◦ ρt ,

where ρ = 1, ρ2, . . . , ρt are all inequivalent irreducible representations of Γ and fi the degree
of ρi (f1 = 1). Hence,

ζ
(
Gα, w̃,u, t

) =
t∏

i=1

∏
[C]

det
(
I − w(C)ρi

(
α(C)

)
ucbc(C)t |C|)−fi

=
t∏

i=1

ζG(w,u, t, ρi, α)fi . �

4. Weighted Bartholdi zeta functions of quotients of regular coverings

Let G be a connected graph, and let πH :H → G and πK :K → G be two finite coverings
of G. Then H and K are called isomorphic, denoted H ∼= K , if there exists an isomorphism
Φ :H → K such that πKΦ = πH .

Let G be a connected graph, Sn the symmetric group on N = {1,2, . . . , n} and α :D(G) → Sn

a permutation voltage assignment. Furthermore, let T be a spanning tree of G rooted at a vertex
v ∈ V (G). Then the T -voltage αT of α is defined as follows: αT (x, y) = α(Px)α(x, y)α(Py)

−1

for each (x, y) ∈ D(G), where Px is the unique path from v to x in T , etc. Note that αT (e) = 1
for each e ∈ D(T ). By [8, Theorem 2.5.4], we have Gα ∼= GαT . Thus,

ζ
(
Gα, w̃Gα ,u, t

) = ζ
(
GαT , w̃GαT , u, t

)

for a weighted matrix W(G). A permutation voltage assignment β is called T -reduced if β(e) =
1 for each e ∈ D(T ). For an ordinary voltage assignment, we can treat similarly.

We present a decomposition formula for the weighted Bartholdi zeta function of a quotient of
a regular covering of a graph.

Theorem 2. Let G be a connected graph, T a spanning tree of G, W(G) a weighted matrix of G,
Γ a finite group and α :D(G) → Γ an ordinary voltage assignment. Furthermore, let B � Γ be
a subgroup of Γ and H = Gα/B . Assume that Gα is connected and α is T -reduced. Then we
have

ζ(H, w̃H ,u, t) = ζ(G,w,u, t)
∏
ρ �=1

ζG(w,u, t, ρ,α)mρ ,

where ρ runs over all inequivalent irreducible representations of Γ except the identity represen-
tation 1, and each mρ (ρ �= 1) is some nonnegative integer.
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Proof. Let k = |Γ/B|. Since H is a k-covering of G, that is, there exists a permutation voltage
assignment φ :D(G) → Sk such that H = Gφ . In fact, for any arc (v,w) ∈ D(G), φ is given as
follows:

φ(v,w)(i) = j if Bgj = Bgiα(v,w),

where i, j = 1, . . . , k and Γ/B = {Bg1 = B,Bg2, . . . ,Bgk}.
Let T be a spanning tree of G rooted at v ∈ V (G). Since α is T -reduced, φ is T -reduced. Let

Σ = 〈{φ(u, z) | (u, z) ∈ D(G) \ D(T )}〉 be the subgroup of Sk generated by {φ(u, z) | (u, z) ∈
D(G) \ D(T )}. Furthermore, let ρ1 = 1, ρ2, . . . , ρr be the irreducible representations of Σ , and
fi the degree of ρi for each i, where f1 = 1.

Let P :Σ → GL(k,C) be the permutation representation of Σ such that P(γ ) = Pγ , and
mi the multiplicity of ρi in P for each i = 1, . . . , r , that is, P is equivalent to a representation
m1 ◦ 1 ⊕m2 ◦ρ2 ⊕· · ·⊕mr ◦ρr . Since Gα is connected, H = Gφ is connected, i.e., m1 = 1 (see
[18]).

By [3, Theorem 7], we have

ζ
(
Gφ, w̃H ,u, t

) = ζ(G,w,u, t)

r∏
i=2

ζG(w,u, t, ρi, φ)mi .

But, we consider the following permutation representation of Γ :

Θ(g)(i) = j if Bgj = Bgig,

where g ∈ Γ and i, j = 1, . . . , k. By Lemma 4 of [20], Θ is a faithful representation of Γ , i.e.,

〈{
Θ(g)

∣∣ g ∈ Γ
}〉 ∼= Γ.

Since Gα is connected, the local subgroup 〈{α(C) | C: v-cycle}〉 of Γ generated by {α(C) |
C: v-cycle} = {α(e) | e ∈ D(G) \ D(T )} is equal to Γ by [8, Theorem 2.5.1]. Thus, we have

〈{
Θ(g)

∣∣ g ∈ Γ
}〉 = Σ,

i.e.,

Σ ∼= Γ.

Therefore the result follows. �
Next, we shall give the values of mρ by using Theorem 1.

Theorem 3. Let G be a connected graph, W(G) a weighted matrix of G, Γ a finite group and
α :D(G) → Γ an ordinary voltage assignment. Furthermore, let B � Γ be a subgroup of Γ and
H = Gα/B . Assume that Gα is connected.

Let σ1 = 1, σ2, . . . , σm be the irreducible representations of B , and hi the degree of σi for
each i, where h1 = 1. Furthermore, let ρ1 = 1, ρ2, . . . , ρn be the irreducible representations of
Γ , and fj the degree of ρj for each j , where f1 = 1. Let
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σ ∗
i = ki1 ◦ ρ1 ⊕ ki2 ◦ ρ2 ⊕ · · · ⊕ kin ◦ ρn (1 � i � m).

Then we have

mj = fj − k2j h2 − · · · − kmjhm (1 � j � n),

where m1 = 1.

Proof. Let φ :D(G) → Sd be a permutation voltage assignment such that H = Gφ . Further-
more, let β :D(H) → B be an ordinary voltage assignment such that Hβ = Gα . By Corollary 2,
we have

ζ
(
Gα, w̃Gα ,u, t

) = ζ(G,w,u, t)

n∏
j=2

ζG(w,u, t, ρj ,α)fj

and

ζ
(
Gα, w̃Gα ,u, t

) = ζ
(
Hβ, w̃Gα ,u, t

) = ζ(H, w̃H ,u, t)

m∏
i=2

ζH (w̃H ,u, t, σi, β)hi .

But, by Theorem 1, we have

ζH (w̃H ,u, t, σi, β) = ζG

(
w,u, t, σ ∗

i , α
)
.

Set

σ ∗
i = ki1 ◦ ρ1 ⊕ ki2 ◦ ρ2 ⊕ · · · ⊕ kin ◦ ρn (1 � i � m).

Then we have

ζ(G,w,u, t)

n∏
j=2

ζG(w,u, t, ρj ,α)fj = ζ(H, w̃H ,u, t)

m∏
i=2

n∏
j=1

ζG(w,u, t, ρj ,α)kij hi

= ζ(H, w̃H ,u, t)

n∏
j=1

m∏
i=2

ζG(w,u, t, ρj ,α)kij hi .

Thus,

ζ(H, w̃H ,u, t) = ζ(G,w,u, t)1−k21h2−···−km1hm

n∏
j=2

ζG(w,u, t, ρj ,α)fj −k2j h2−···−kmj hm.

Therefore it follows that

mj = fj − k2j h2 − · · · − kmjhm (1 � j � n).

But, since H is connected, m1 = 1. �
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Corollary 3. Let Γ be a finite group and B � Γ a subgroup of Γ . Let σ1 = 1, σ2, . . . , σm be the
irreducible representations of B , and hi the degree of σi for each i, where h1 = 1. Furthermore,
let ρ1 = 1, ρ2, . . . , ρn be the irreducible representations of Γ , and fj the degree of ρj for each j ,
where f1 = 1. Set

σ ∗
i = ki1 ◦ ρ1 ⊕ ki2 ◦ ρ2 ⊕ · · · ⊕ kin ◦ ρn (1 � i � m).

Then we have

ki1 = 0 (2 � i � m)

and

fj � k2j h2 + · · · + kmjhm (2 � j � n).

Proof. By the facts that m1 = 1 and mj � 0 (2 � j � n). �
5. Examples

We give an example.
Let G be a connected graph with V (G) = {v1, v2, v3, v4, v5} and E(G) = {v1v2, v2v3, v3v1,

v3v4, v4v5, v5v3}, and Γ = S3 the symmetric group on {1,2,3}. Furthermore, let α : D(G) → Γ

be the ordinary voltage assignment such that α(v1, v2) = (12), α(v3, v4) = (23) and α(v1, v3) =
α(v2, v3) = α(v3, v5) = α(v4, v5) = 1.

Let B = {1, (12)} ∼= Z2 and H = Gα/B . Then we have S3/B = B ∪ B(13) ∪ B(23).
Since B is not a normal subgroup of Γ , H is not regular covering of G. By Propo-
sition 1, the ordinary voltage assignment β :D(H) → B such that Hβ = Gα is given
as follows: β((v1,B), (v2,B)) = β((v1,B(23)), (v2,B(13))) = β((v1,B(13)), (v2,B(23))) =
β((v3,B(13)), (v4,B(13))) = (12) and β(e) = 1 for each e of H except the above four arcs and
their inverse arcs.

Next, let

D = (
(v3,1),

(
v4, (23)

)
,
(
v5, (23)

)
,
(
v3, (23)

)
, (v4,1), (v5,1), (v3,1)

)

and πα :Gα → G the natural projection. Then we have πα(D) = C2 and C = (v3, v4, v5, v3).
Furthermore, α(C) = (23) and ord(α(C)) = 2.

Let x = (23). Then we have

〈x〉 = {
1, (23)

}
, S3 = 〈x〉 ∪ (12)〈x〉 ∪ (13)〈x〉.

Thus, lifts of C in Gα are D, (12)D, (13)D.
For the πB :Gα → H , we have

πB(D) = K, πB

(
(12)D

) = K, πB

(
(23)D

) = L,

where K = ((v3,B), (v4,B(23)), (v5,B(23)), (v3,B(23)), (v4,B), (v5,B), (v3,B)) and L =
((v3,B(13)), (v4,B(13)), (v5,B(13)), (v3,B(13))). Furthermore, β(K) = 1, β(L) = (12).
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Now, let B1 = 〈β(K)〉 and B2 = 〈β(L)〉. Then B = B1 ∪ (12)B1 and B = B2. Thus, lifts of
K in Gα are D,(12)D; the lift of L in Gα is (13)D. Furthermore,

B〈x〉 = 〈x〉 ∪ (12)〈x〉 and B(13)〈x〉 = (13)〈x〉.

Therefore, the set of distinct double cosets of B and 〈α(C)〉 in Γ is given by

B \ Γ/
〈
α(C)

〉 = {
B〈x〉,B(13)〈x〉}.

Now, we construct a permutation voltage assignment φ :D(G) → S3 such that Gφ = H . Let
g1 = 1, g2 = (13), g3 = (23). Then we have Γ = Bg1 ∪ Bg2 ∪ Bg3. Furthermore, we have

Bgi · 1 = Bgi (i = 1,2,3);
Bg1 · (12) = Bg1, Bg2 · (12) = Bg3, Bg3 · (12) = Bg2;
Bg1 · (23) = Bg3, Bg2 · (23) = Bg2, Bg3 · (23) = Bg1.

Since φ(v,w)(i) = j if Bgj = Bgiα(v,w), φ(v1, v2) = (23), φ(v3, v4) = (13) and φ(e) = 1 for
any e �= (v1, v2), (v3, v4) ∈ D(G). It is clear that Gφ = H .

Next, the characters of B ∼= Z2 are given as follows: χ1 = 1, χ2((12)i) = (−1)i (i = 0,1).
Furthermore, S3 has three irreducible representations ρ1 = 1, ρ2 (the sign representation) and ρ3
with degrees f1 = f2 = 1 and f3 = 2, respectively. The representation ρ3 is given by

ρ3(1) = I2, ρ3
(
(123)

) =
[

η 0
0 η2

]
, ρ3

(
(132)

) =
[

η2 0
0 η

]
,

ρ3
(
(12)

) =
[

0 1
1 0

]
, ρ3

(
(23)

) =
[

0 η

η2 0

]
, ρ3

(
(13)

) =
[

0 η2

η 0

]
,

where η = exp 2π
√−1
3 = −1+√−3

2 (see [18]).
Let χ∗

i = IndΓ
B χi be the representation of Γ induced from χi . Then by Theorem 3.13 in [11],

we have

χ∗
1 = ρ1 + ρ3 and χ∗

2 = ρ2 + ρ3.

By Theorem 1, we have

ζH (w̃H ,u, t, χ1, β) = ζG

(
w,u, t,χ∗

1 , α
) = ζG(w,u, t, ρ1, α)ζG(w,u, t, ρ3, α) (1)

and

ζH (w̃H ,u, t, χ2, β) = ζG

(
w,u, t,χ∗

2 , α
) = ζG(w,u, t, ρ2, α)ζG(w,u, t, ρ3, α). (2)

Furthermore, by Corollary 2, we have
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ζ
(
Gα, w̃,u, t

) = ζH (w̃H ,u, t, χ1, β)ζH (w̃H ,u, t, χ2, β)

= ζG(w,u, t, ρ1, α)ζG(w,u, t, ρ2, α)ζG(w,u, t, ρ3, α)2. (3)

But, since ζH (w̃H ,u, t, χ1, β) = ζ(H, w̃H ,u, t), it follows that

ζ(H, w̃H ,u, t) = ζG(w,u, t, ρ1, α)ζG(w,u, t, ρ3, α) = ζ(G,w,u, t)ζG(w,u, t, ρ3, α). (4)

In the case that w(e−1) = w(e)−1 and |w(e)| = 1 for each e ∈ D(G), by Theorem 6 in [17],
we have

ζG(w,u, t, ρ,α)−1 = (
1 − (1 − u)2t2)(l−n)d det

(
Ind − t

∑
h∈Γ

ρ(h)
⊗

Wh

+ (1 − u)t2
(

Id

⊗
D − (1 − u)Ind

))
, (5)

where n = |V (G)|, l = |E(G)|, d = degρ, and Wh = (w
(h)
uv ) is given by

w(h)
uv :=

{
w(u,v) if (u, v) ∈ D(G) and α(u, v) = h,

0 otherwise.

Let

W(G) =

⎡
⎢⎢⎢⎣

0 a b 0 0
ā 0 c 0 0
b̄ c̄ 0 p q

0 0 p̄ 0 r

0 0 q̄ r̄ 0

⎤
⎥⎥⎥⎦ .

Then the matrices Wh (h ∈ S3) are given as follows:

W1 =

⎡
⎢⎢⎢⎣

0 0 b 0 0
0 0 c 0 0
b̄ c̄ 0 0 q

0 0 0 0 r

0 0 q̄ r̄ 0

⎤
⎥⎥⎥⎦ , W(12) =

⎡
⎢⎢⎢⎣

0 a 0 0 0
ā 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦ ,

W(23) =

⎡
⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 p 0
0 0 p̄ 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦ ,

and

W(13) = W(123) = W(132) = 03.

By (5), we have
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ζG(w,u, t, ρ1, α)−1 = ζ(G,w,u, t)−1

= (
1 − (1 − u)2t2)det

(
I5 − t

∑
h∈S3

Wh + (1 − u)t2(D − (1 − u)I5
))

= (
1 − (1 − u)2t2)det

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

x −at −bt 0 0
−āt x −ct 0 0
−b̄t −c̄t y −pt −qt

0 0 −p̄t x −rt

0 0 −q̄t −r̄ t x

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

= (
1 − (1 − u)2t2)(x2 − t2)
× (

x2y − 4t2x − t2y − (ab̄c + ābc̄ + pq̄r + p̄qr̄)t3),
where x = 1 + (1 − u2)t2 and y = 1 + (3 − 2u − u2)t2.

Next, we have

ζG(w,u, t, ρ2, α)−1 = (
1 − (1 − u)2t2)det

(
I5 − t

∑
h∈S3

ρ2(h)Wh + (1 − u)t2(D − (1 − u)I5
))

= (
1 − (1 − u)2t2)det

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

x at −bt 0 0
āt x −ct 0 0

−b̄t −c̄t y pt −qt

0 0 p̄t x −rt

0 0 −q̄t −r̄ t x

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

= (
1 − (1 − u)2t2)(x2 − t2)
× (

x2y − 4t2x − t2y + (ab̄c + ābc̄ + pq̄r + p̄qr̄)t3).
Furthermore,

ζG(w,u, t, ρ3, α)−1

= (
1 − (1 − u)2t2)2 det

(
I10 − t

∑
h∈S3

ρ3(h)
⊗

Wh + (1 − u)t2
(

I2

⊗
D − (1 − u)I10

))

= (
1 − (1 − u)2t2)2

× det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x 0 −bt 0 0 0 −at 0 0 0
0 x −ct 0 0 −āt 0 0 0 0

−b̄t −c̄t y 0 −qt 0 0 0 −ηpt 0
0 0 0 x −rt 0 0 −ηp̄t 0 0
0 0 −q̄t −r̄ t x 0 0 0 0 0
0 −at 0 0 0 x 0 −bt 0 0

−āt 0 0 0 0 0 x −ct 0 0
0 0 0 −η2pt 0 −b̄t −c̄t y 0 −qt

0 0 −η2p̄t 0 0 0 0 0 x −rt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
0 0 0 0 0 0 0 −q̄t −r̄ t x
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= (
1 − (1 − u)2t2)2(

x2 − t2)2{(
x2y − yt2 − 3xt2)(x2y − yt2 − 4xt2)

− (
1 + (pq̄r)2 + (p̄qr̄)2 − (ab̄c + ābc̄)(pq̄r + p̄qr̄) + (ab̄c + ābc̄)2)t6

− x3y + xyt2 + 4x2t2 − t4}.
Therefore, we can calculate ζ(H, w̃H ,u, t), ζH (w̃H ,u, t, χ2, β) and ζ(Gα, w̃, u, t) by (1),

(2), (3) and (4).

6. Generalization to digraphs

Deng, Sato and Wu [5] generalized the notion of a covering of a graph to general digraphs.
Let D be a connected simple digraph. A digraph H is called a covering of D with projection
π :H → D if there is a surjection π :V (H) → V (D) such that both π |N+

H (v′) :N+
H (v′) → N+

D(v)

and π |N−
H (v′) :N−

H (v′) → N−
D(v) are bijections for all vertices v ∈ V (D) and v′ ∈ π−1(v), where

N+
D(v) = {e ∈ A(D) | o(e) = v} and N−

D(v) = {e ∈ A(D) | t (e) = v}, etc. The projection π :
H → D is an n-fold covering of D if π is n-to-one.

Let D be a connected digraph and Sn the symmetric group on N = {1,2, . . . , n}. Let A(D) be
the set of arcs in D. Then a mapping α :A(D) → Sn is called a permutation voltage assignment.
The pair (D,α) is called a permutation voltage digraph. The derived digraph Dα of the permuta-
tion voltage digraph (D,α) is defined as follows: V (Dα) = V (D)×N = {ui | u ∈ V (D), i ∈ N},
A(Dα) = A(D) × N = {ei | e ∈ A(D), i ∈ N} and ei is an arc from uj to vk if and only if
e ∈ A(D) and k = α(e)(j). The digraph Dα is called an n-covering of D. The natural projection
πα :Dα → Sn is defined by πα(u,h) = u. The n-covering Dα is an n-fold covering of D. Note
that an n-covering of the symmetric digraph D corresponding to a graph G is an n-covering
of G. Furthermore, the following fact is shown by Deng, Sato and Wu [5].

Theorem 4 (Deng, Sato and Wu). Let π : D̃ → D be an n-fold covering of a connected di-
graph D. Then there exists a permutation voltage assignment α :A(D) → Sn such that the
n-covering Dα is isomorphic to D̃.

A permutation voltage assignment α :A(D) → Sn of D is called symmetric if α(w,v) =
α(v,w)−1 for each (v,w) ∈ A(D) such that (w,v) ∈ A(D). Similarly to the proof of Theorem 4,
we obtain the following result.

Corollary 4. Let π : D̃ → D be an n-fold covering of a connected digraph D such that the
preimage of each symmetric arcs in D consists of n symmetric arcs of D̃. Then there exists
a symmetric permutation voltage assignment α : A(D) → Sn such that the n-covering Dα is
isomorphic to D̃.

Dend and Wu [4] generalized the notion of a covering of a graph by an ordinary voltage
assignment to general digraphs. Let D be a digraph and let Γ be a group such that, for each
g ∈ Γ , there is a digraph isomorphism φg :D → D and the following three conditions hold:

1. If 1 is the unit of Γ , then φ1 :D → D is the identity isomorphism.
2. φgh = φg ◦ φh for all g,h ∈ Γ .
3. For any g �= 1 ∈ Γ , there is no vertex v of D such that φg(v) = v and no arc e of D such that

φg(e) = e.



1736 S. Negami, I. Sato / Zeta functions of quotients of coverings
Then we say that the group Γ acts freely on the left of the digraph D.
Let π :H → D be an n-fold digraph covering, and let Γ be a group of order n which acts

freely on H such that the following two conditions hold:

1. For any two vertices u and v of H such that π(u) = π(v), there is an element g ∈ Γ such
that φg(u) = v.

2. For any two arcs e and f of H such that π(e) = π(f ), there is an element g ∈ Γ such that
φg(e) = f .

Then π :H → D is called a regular covering, and Γ is called the covering transformation group
for π :H → D.

Let D be a connected digraph and Γ a finite group. Then a mapping α :A(D) → Γ is called an
ordinary voltage assignment. The pair (D,α) is called an ordinary voltage digraph. The derived
digraph Dα of the ordinary voltage digraph (D,α) is defined as follows: V (Dα) = V (D)×Γ =
{ug | u ∈ V (D), g ∈ Γ }, A(Dα) = A(D) × Γ = {eg | e ∈ A(D), g ∈ Γ } and eg is an arc from
ug to vh if and only if e ∈ A(D) and h = gα(e). The digraph Dα is called a Γ -covering of D.
The natural projection πα :Dα → D is defined by πα(u,h) = u. Note that the Γ -covering Dα

is a regular |Γ |-fold covering of D. Furthermore, every regular n-fold covering of a connected
digraph D is a Γ -covering Dα of D for some group Γ and some ordinary voltage assignment
α :A(D) → Γ (see [4]). Note that a Γ -covering of the symmetric digraph corresponding to a
graph G is a Γ -covering of G.

An ordinary voltage assignment α :A(D) → Sn of D is called symmetric if α(w,v) =
α(v,w)−1 for each (v,w) ∈ A(D) such that (w,v) ∈ A(D). Similarly to the proof of [4,
Lemma 2.2], we obtain the following corollary.

Corollary 5. Let π : D̃ → D be an n-fold regular covering of a connected digraph D such that
the preimage of each symmetric arcs in D consists of n symmetric arcs of D̃. Then there exist
a finite group Γ and a symmetric ordinary voltage assignment α :A(D) → Γ such that the Γ -
covering Dα is isomorphic to D̃.

For quotients of regular coverings of digraphs, we have analogue of the properties for quo-
tients of regular coverings of graphs stated in Section 2.

Proposition 3. Let D be a connected digraph, Γ a finite group and α :A(D) → Γ be a symmetric
ordinary voltage assignment. Furthermore, let B � Γ be a subgroup of Γ and H = Dα/B . If
β : A(H) → B is an ordinary voltage assignment such that Hβ = Dα , then

β
(
(v,Bg),

(
w,Bg′)) = gα(v,w)g′−1

for each (v,w) ∈ A(D) and each g,g′ ∈ Γ .

Proposition 4. Let D be a connected digraph, Γ a finite group and α :A(D) → Γ be a symmetric
ordinary voltage assignment. Furthermore, let B � Γ be a subgroup of Γ and H = Dα/B . For
any prime cycle C in D, the number of lifts of C in H is equal to the cardinality of the set
B \ Γ/〈α(C)〉 of distinct double cosets of B and 〈α(C)〉 in Γ , and the length of each lift of C in
H is of form
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|C| · ord(α(C))

|B| · ∣∣B: B ∩ yj

〈
α(C)

〉
y−1
j

∣∣,

where y1 = 1, y2, . . . , ys are the representatives of distinct double cosets of B and 〈α(C)〉 in Γ .

7. Weighted Bartholdi L-functions of digraphs

Let D be a connected graph with n vertices v1, . . . , vn and m arcs. Then we consider an n×n

matrix W = W(D) = (wij )1�i,j�n with ij entry the complex variable wij �= 0 if (vi, vj ) ∈
A(D), and wij = 0 otherwise. The matrix W = W(D) is called the weighted matrix of D. Fur-
thermore, let w(vi, vj ) = wij , vi, vj ∈ V (D) and w(e) = wij , e = (vi, vj ) ∈ A(D). For each
path P = (e1, . . . , er ) of G, the norm w(P ) of P is defined as follows: w(P ) = w(e1) · · ·w(er).

Let Γ be a finite group and α :A(D) → Γ a symmetric ordinary voltage assignment. For
each path P = (e1, . . . , er ) of D, set α(P ) = α(e1) · · ·α(er ). This is called the net voltage of P .
Furthermore, let ρ be a representation of Γ and d its degree.

The weighted Bartholdi L-function of D associated with ρ and α is defined by

ζD(w,u, t, ρ,α) =
∏
[C]

det
(
Id − w(C)ρ

(
α(C)

)
ucbc(C)t |C|)−1

,

where [C] runs over all equivalence classes of prime cycles of D (see [3,16]). If ρ = 1, then the
weighted Bartholdi L-function of D is called the weighted Bartholdi zeta function of D, denoted
by ζ(D,w,u, t) = ζD(w,u, t,1, α).

The following theorem holds similarly to the proof of Theorem 1.

Theorem 5. Let D be a connected digraph, W(D) a weighted matrix of D, Γ a finite group and
α :A(D) → Γ a symmetric ordinary voltage assignment. Furthermore, let B � Γ be a subgroup
of Γ and H = Dα/B . Assume that Dα is connected. Let σ be any representation of B and
σ ∗ = IndΓ

B σ the representation of Γ induced from σ . Let β :D(H) → B be an ordinary voltage
assignment such that Hβ = Dα . Then we have

ζH (w̃H ,u, t, σ,β) = ζD

(
w,u, t, σ ∗, α

)
.

Corollary 6. Let D be a connected digraph, W(D) a weighted matrix of D, Γ a finite group and
α :A(D) → Γ a symmetric ordinary voltage assignment. Then we have

ζ
(
Dα, w̃Dα ,u, t

) =
∏
ρ

ζD(w,u, t, ρ,α)degρ,

where ρ runs over all inequivalent irreducible representations of Γ .
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