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First we give some elementary properties of the core of a subset relative to a 
linear subspace. Then we prove a theorem on the frank separation of two 
convex sets. This theorem admits as particular cases the known theorems on 
the frank separation and introduces new cases. Finally, we provide a very general 
version of the Hahn-Banach theorem in an analytic form. 

Throughout this paper E denotes a nonzero vector space over the field R of 
real numbers. We use notations introduced elsewhere [2, 3, 6, 11, 121. If a, b 
are two points of E, (a: b) denotes the set of points {a + X(b - a): X E R>. 
Then if a, b are distinct, (a: b) is the straight line determined by these points. 
The subsets of (a: 7~) characterized by 0 < X < 1, 0 < h < 1, 0 < h < 1, 
0 < h < 1, 0 < h, and 0 < A are represented by [a: b], ]a: b], [u: b[, ]a: b[, 
[a: b), and ]a: b), respectively. 

If A is a subset of E, EA and “A are the afine and conaex hulls of A, respectively, 
that is, the smallest al&e variety and the smallest convex set containing A. 

A straight line (a: b) inserts a point x into a subset A when there exist two 
distinct points c and d of (u: b) such that x E ]c: d[ C A. The intrinsic core of A 
is the set of all points x such that all straight lines of zA through x insert x into A 
and is denoted by iA; it is also called the core of A when ‘A = E. 

If T is a nonvoid affine variety, TO represents the linear subspace of E parallel 
to T, in particular, if A is nonvoid, (“A)* is the linear subspace of E parallel 
to IA. 

Whatever the subsets A and B may be, z(A + B) = zA + IB [6, p. MO]. 
Then if A and B are nonvoid, (z(A + B)),, = (‘A), + (IB),,; moreover, if T, U 
are two nonvoid affine varieties and if 01, fl are two nonzero reals, (aT + ,3U), = 
To + Uo. 

Let A be a subset and V be a linear subspace of E. The core of A relative to V 
is the set of all points x satisfying the following property: For any w E V, there 
exists a number 7 > 0 such that x + MJ E A (a E lR and 1 (Y j < 7). This set is 
denoted by ifv)A. 
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When V = (‘A), , irV)A is the intrinsic core of A. If V = (0}, i(v)A = A. 
This notion is not new; it was introduced in a slightly more general manner by 
Klee [8, pp. 238-2391, but to date it does not seem to have been employed very 
often. 

LEMMA 1. Let V, W be two linear subspaces and A be a subset of E. 

(a) If V C W, then (cW)A C i(v 

(b) If A is convex, i( n iW’)A C iCV+WA. 

Proof. (a) is immediate. 

(b) follows from the convexity of A and the equality 

x + a(v + w) = fr(x + 24 + $(x + 2aw). 

LEMMA 2. For every linear subspace V and all subsets A, B of E, 

iCVt(A n B) = iCV)A n itUB. 

Proof. Obvious. 

LEMMA 3. Whatever the nonzero real X and the linear subspace V may be, 
iW)(~A) = )liCV)A. 

Proof. Obvious. 

LEMMA 4. Whatever the point x and the linear subspace V may be, 
W(, f A) = x + i(V 

Proof. Obvious. 

LEMMA 5. Let A be a convex subset and V be a linear subspace of E. 

(4 If a c i( and b E A, then [a: b[ C icv)A. 

(b) iCV,(iCV,A) = i(V 

Proof. (a) Let x = a + e(b - a), 0 < F < 1, be an arbitrary point of 
[a: b[ and any point z, of V. Since a E i(v there exists 1 > 0 such that 
a+mEAwhen)olj <~.Thenx~ icv)A results from the convexity of A and 
from the fact that x + 01v = a + (a/(1 - 6)) v + c(b - a - (a/( I - 6)) v). 

(b) is a direct consequence of (a) and of the definitions. 

LEMMA 6. Let V, W be two linear subspaces and A, B be two subsets of E. 

(a) i( + iW’)B C iCV+W,(A + B), 

(b) If A and B are convex, if V + W = (IA), + (iB), , and if icv)A # er 
and icw)B # O, then iU’)A + iO+‘)~ = W’+W(A + B). 
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Proof. If x E i(V y E i(W)B, v E V, and w E W, there exists 7 > 0 such that 
x + av~ A and b + aw E B when 1 a 1 < 7. Consequently, x + y + 
a(v + ru) E A when j a ( < 7 and the proof of (a) is complete. 

Concerning (b), there exist a E 1’(v)A, b E i(w)B and we just have to verify 
that an arbitrary point u of ((v+w)(A + B) belongs to i( + i(w)B. The simple 
case V + W = {0} may be omitted. 

Since V + W = (IA), + (“B)* = (z(A + B))O, we have i(y+w)(A + B) = 
i(A+B), u+bEi(A+B), and u E i(A + B). The straight line (a + b: u) 
(it can be supposed that u # a + b) inserts u into A + B. There exist m E A, 
n E B such that u E ]a + b: m + n[. Thus, it is possible to find a real 
~(O<~<l)suchthatu=m+~(u-m)+n+~(b-n)andbyLemma5 
the proof is complete. 

LEMMA 7. If A is a convex set and V is a Jinite-dimensional linear subspuce 
such that V C (IA), , then +cv)A # m. 

Proof. Let a be an arbitrary point of A (such a point exists since V C (44),). 
The linear subspace spanned by A - a coincides with (zA),, and every point of V 
can be written as a linear combination of finitely many points of A - u. In 
particular, a basis for V introduces only a finite subset F of A - a. The linear 
subspace W spanned by F includes V and admits as a basis a maximal linearly 
independent subset {b, , b, ,..., b,) of F. The polytope P determined by the 
K + 1 points a, a + 6, ,..., a + b, is then included in A and its intrinsic core is 
nonvoid (for instance, the barycenter of a polytope belongs to its intrinsic core). 
Now iPC i(w thus, Qw)A # @ and a fortiori i( # O. 

FRANK SEPARATION OF Two CONVEX SETS 

Recall that two nonvoid subsets A and B of E are frankly separated by a 
hyperplane H (respectively, by a nonnull linear form f) when H (respectively, 
a hyperplane parallel to the kernel off) separates A and B and does not include 
A u B. The subsets A and B are called frankly separated when there exists 
a hyperplane (or equivalently, a nonnull linear form) which frankly separates 
them [2, p. 23; 3, p. 4741. 

THEOREM 1. Let A, B be two convex sets and V, W be two linear subspaces 
of E such that V + W = (“A),, + (ZB),, , i( # @, and *cw)B # .@. Then 
A and B are frankly separated zf and only zf icv)A n icw)B = 0. 

Taking account of Lemmas 3 and 6 and of the fact that (‘(A - B)). = 
(“Al0 + (zB), = ($(A + B)),, , we have icv)A - dcw)B = ((V+w)(A - B) = 
i(A - B). Consequently, the nonemptiness of i( and icw)B implies that 
i(A - B) # O; hence, the condition i( n i(w)B = m is equivalent to 
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0 $ i(A - I?). Th en the result follows from the fact that the following three 
properties are equivalent: A and B are frankly separated, (0} and A - B are 
frankly separated, 0 does not belong to i(A - B) [3, 1.2 and 1.3, p. 4751. 

THEOREM 2. Let A, B be two convex sets and V, W be two linear subspaces of E 
such that V + W = (lA),, + (“B),, . If A and B are frankly separated by a 
hyperplane H and if a E icv)A and b E i(W)B, then a # b and the straight line 
(a: b) meets H in one and only one point necessarily lying in [a: b]. 

That a and b are distinct is a direct consequence of Theorem 1. 
It is not possible to have (a: b) C H and V U WC H,, since, under these 

conditions, A u B C EA u zB = [a + (zA),] u [b + (zB),] C (u + V + W) u 
(b + V + W) C H u H = H and the subsets A and B are not frankly separated. 
Thus, if a and b both belong to H, there exists o E VU W (let us suppose that 
z, E V) such that ~1 $ Ho. This situation is also impossible. Indeed, by virtue 
of the hypothesis a E icv)A, there exists a number 77 > 0 such that x + uv E 
A (1 (L / < 7); due to the fact that a E Hand v 4 H,,, these points lie on both sides 
of H. Thus A and B are not frankly separated by H. 

Consequently, (a: b) meets H in one and only one point and the rest of the 
theorem is a straightforward consequence of the frank separation of A and B. 

Remark. In these theorems, the hypothesis V + W = (IA), + (tB), could 
be replaced by V + WS, (‘A), + (tB), . Indeed, V C (2A), and WC (sB),, are 
direct consequence of icv)A # o and i(w)B + m. 

THEOREM 3. Let A, B be two convex sets and V, W be two linear subspaces of 
E. If A and B are frankly separated by a hyperplane H and if V (respectively W) 
is uot included in HO , then i( n H = @ (respectively i(w)B n H = .D). 

The last step in the proof of Theorem 2 yields this theorem. 

COROLLARY I. Let A, B be two convex sets and VI , V, , WI , W, be four 
linear subspaces of E such that V, + W, = V, + W, = (zA), + (tB), . If 
VI C V, , W, C W, , QVz)A # O, and i(wz)B # ~5, then the condition 
i(vdd4 n i(W,)B = M is equivalent to i( n icw,)B = 0. 

This corollary is a consequence of Lemma 1 and Theorem 1. 

COROLLARY 2. Let A and B be two convex sets of E such that B # ~3, iA # Q , 
and lA = E. Then A and B are frankly separated if and only zf iA n B = 63. 

We just need to take V = E and W = (0) in Theorem 1. 

COROLLARY 3. Two convex subsets A and B of E, whose intrinsic cores are 
nonvoid, are frankly separated if and only if iA n iB = o . 
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It suffices to take V = (gA)0 and W = (zB)O in Theorem 1. 

COROLLARY 4. Let us suppose that A and B are two nonvoid convex sets of E. 
If the codimension of IA isjGzite, if iA # 5;7, and if lA n B = O, then there exists 
a frank separation of A and B. 

Let WC (JB),, be an algebraic complement of V = (zA), in (“A)0 + (IB),, . 
Since the codimension of A is finite, W is a finite-dimensional linear subspace. 

Now, the corollary is a simple consequence of Lemma 7, Theorem 1, and the 
fact that iA n B = D implies iA n i(w)B = O. 

Remark. Corollary 2 is the oldest form of the frank separation. It is men- 
tioned, for instance, in [2, p. 23; 7, 8.10, p. 456; 8, 2.2, p. 2531. Corollary 3 is 
mentioned in [2, 2.2.1, p. 26; 3, 1.3, p. 4751 and admits as a particular case a 
theorem of [6, p. 5411. Corollary 4 is given in [2, 2.2.3(a), p. 28; 3, 1.4, p. 4751. 

Thus, Theorem I unifies different theorems on frank separation. Furthermore, 
it introduces a more immediate symmetry between the sets to separate. Finally, 
it leads to new cases. Here is an example of two sets A and B which satisfy the 
hypotheses of Theorem 1 but not those of Corollaries 2, 3, and 4. 

Let N = (1,2, 3,...} be the set of natural integers and N1 , N, be the subsets 
of N formed by the odd and even integers, respectively. Let us take as a vector 
space E the space RN endowed with the usual laws of composition and let us 
represent by e, (n E N) the point of E whose nth coordinate is 1 and the others 
are 0. If 

v = {(%>icN: xi = 0 when i E N2 , sup 1 Xi 1 exists}, 
iENl 

w = c&N: xi = 0 when i E Nr , sup ] xi ( exists}, 
iEN 

T1 is the linear subspace spanned by {e,: n E Nr} and T, this spanned by 
(e,: n E N,), then V, W are linear subspaces of E and Tl C V, T, C W. 

Let US consider A = {(Xi)ieN: xi > 0 when i E Nl , SUpioN, Xi exists, Xi > 0 
when i E N, and xi # 0 only for a finite number of i E N,). A is a convex 
cone with vertex at 0. Then (2A), = zA = A - A (general property of nonvoid 
convex cones). 

Let v = (QsN be an arbitrary point of V. If m = (mJiEN is such that mi = 20~ 
whenever vi > 0, mi = 1 whenever i E Nr and a, = 0, m, = -vi whenever 
vi < 0, mi = 0 whenever i E Ns , if m’ = (mi’)ioN is such that mi’ = Vi whenever 
vi > 0, mi’ = 1 whenever i E Nr and vi = 0, mi’ = -2Vi whenever vi < 0, 
m,’ = 0 whenever i E N, , then v = m - m’. Thus V C A - A. It is also easy 
to prove that T, C A - A and that (2A), = “A = V + T, . 

If a = (a&., is an arbitrary point of A, there exists k E N, such that ak = 0. 
The straight line through a and parallel to (0: ek) does not insert a into A. Thus 
iA # m. 
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In other respects, if u = (z&., is a point of A for which there exists a real 
T > 0 such that r < ui (i E NJ, then u E j(“)A. Indeed, for any point 
v = (QeN of V, it is possible to find a real p > 0 such that -p < vi < p 
(i E Nr), Under these conditions, u + olv E A whenever / iy I < T/P. 

Similarly, let us consider B = {(x&,: xi > 0 when i E N, , supiEN, xi exists, 
.xt 3 0 when i E N1 and xi # 0 only for a finite number of i E Nr}. B is a convex 
cone with its vertex at 0, (zB), = W + TI , “B = g, i(w)B f 0’. 

The hypotheses of Theorem 1 are satisfied since (zA), + (zB), = V + T2 + 
W + TI = 1. -C W and A n B (thus a fortiori i( n i(w)B) is void. The 
subsets ,4 and B are frankly separated although the hypotheses of Corollaries 
2, 3, and 4 are not satisfied. 

HAHN-BANACH THEOREM, EXTENSION OF THE ANALYTIC FORM 

Recall that a real-valued function f on D (where D is a subset of E) is 
a mapping of D into Iw. This function is called convex whenever D is convex 
and, whatever x, y E D and the real h of IO: 1[ may be, f [Ax + (1 - A) y] < 

xf(x) + (1 - h)f(y). A cowave function is a real-valued function whose 
opposrte is convex. 

A real-valued function f on D is called sublinear if D is a convex cone with its 
vertex at 0 (i.e., h, p > 0 and x, y E D imply h + py E D), if f is positively 
homogeneous ( f(hx) = Af (x) w en h h > 0 and x F D) and subadditive 
(f(x -+ y) < f(x) + f (y) whatever x, y E D may be). 

The sum of a constant and a linear form on a linear subspace D is called an 
a&e function on D. 

An extended function f' on D’ is a mapping of D’ into lf&! u {co>. 
Let D be a subset of D’ and f be a real-valued function on D. Then the 

mapping j of D’ into K! u {co) defined by f'(x) = f (x) whenever x E D and 
f'(x) = u3 whenever x E o’\D is an extended function on D’. Any extended 
function on D’ is of this form. In this paper, an extended convex function on a 
convex set D’ gives a finite convex function f on a convex subset D C D’ [9, 
p. lo] and a hypolinear function on a cone D’ gives a sublinear function on a 
subcone D of D’ [l, p. 1291. 

These two points of view are thus closely related. According to the problem 
under consideration, each of them is more or less advantageous. In the sequel, 
we essentially employ the real-valued functions. 

Note that a sublinear function can be defined here on an unpointed cone D 
(i.e., 0 6 D) and that, in this case, the associated hypolinear function is such that 
f (0) = 00 when D’ is pointed (i.e., 0 ED’). In other respects, for a sublinear 
function f defined on a pointed cone D, we always have f (0) = 0 (this is a conse- 
quence of the definitions). 

Let f he a real-valued function on D. The epigraph (respectively, the strict 
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epigraph) off is the subset epi( f) (respectively, stepi( f)) of E x R defined by 
{(x, A): x E D and f(x) < A} (respectively, f(x) < A). Similarly, the hypogruph 
(respectively, the strict hypograph) of f is the subset hyp( f) (respectively, 
sthyp( f)) of E x R defined by {(x, A): x ED and f(x) 3 A> (respectively 
f(x) > 9 

We say that a function f (defined on F) dominates a function g (defined on G) 
on a subset A C F CT G when, for all x E A, g(x) < f(x). 

LEMMA 8. If f is a real-valued function on D and if V is a hnear subspace of E, 
then : 

(a) ‘[epi(f)] = z[stepi(f)] = lD x R; 

(b) z[hyp(fll = ‘[sthyp(.f)l = ‘D x R 

(4 i(r’xa)[epi(f)] = “(“x”)[stepi(f)] C {(x, A): x E i(“)D and f (x) < A}; 

(d) “[epi(f)] = i[stepi(f)] C {(x, A): x E “D and f (x) < A}; 

(e) “(“xaJ[hyp(f)] = i(“xR)[sthyp(f)] C {(x, A): x E p’cV)D undf(x) > h}; 

(f) i[hyp(f)] = i[sthyp(f)] C ((x, A): x E “D a&f(x) > h}. 

It is possible to prove these properties by classical arguments. 

LEMMA 9. If f is a convex function on D (respectively, cotlcave on D) and if V 
is a linear subspace of E, then “(VxW)[epi(f)] = ((x, A): x E t’“JD and f (x) < A} 
(respectively, i’yxR)[hyp(f)] = {(x, A): x E f(“)D mdf (x) > A}). 

Let us give the proof for a convex function. 
Let (x0 , A,) be an arbitrary point of {(x, A): x E i(v)D and f (x) < A}. By virtue 

of Lemma 8, it is sufficient to prove that (x0 , A,,) E i(Vxw)[epi(f)]. Thus, for a 
point (v, Y) of V x R, we just have to find a real 7 > 0 such that (x0 , A,) + 
(Y(v, Y) E epi(f) whenever 1 01 j < 7. Since x,, E *(“ID, there exists vi > 0 
such that x,, +&YE D if ) /3 / <r), . So, if p is a real such that p > 
sup@,f(xo + w) -f&J - w,f(x, - w) -f(xJ + w-1, it is possible 
to take 77 = (Q/P) (A,, - f (x,,)). Indeed, when (II > 0, f(xo + CW) = 

f [(4h) (x0 + w) + (1 - wh)) %I < W%)f (xll + 71”) + (1 - (+?l))f (x0) G 
4, + m; when 01 < 0, f (x0 + av) =f [-(+J (x0 - w) + (1 + (4~)) x01 < 
-(+h) f (x0 - 171”) + (1 + (4h))f (x0) G 4 + CU. 

THEOREM 4. Let f be a convex function on F, g be a concave function on G, and 
V, W be two linear subspaces of E such that V + W = (“F),, + (zG), . W’hen 
i(vJF n i(w)G # O, f dominates g on i(v)F IT ifw)G if and only if there exists an 
afine function CJI on E such that f dominates q~ on F and q~ dominates g on G. 

It is trivial that the existence of q~ implies the domination of g by f on 
iCV)F n iCW)G. 
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Conversely, let P be the epigraph off and G the hypograph of g. The subset 
i(yXx)p n i(wxw)G is void. Indeed, if (x,, , A,) E ((YXW)E n (cWXa)G, then, by 
virtue of Lemma 9, x,, E Qv)F n i(W)G, f(x,,) < A, and g(x,,) > A, . This is not 
possible since f dominates g on f(v)P n icw)G. 

Moreover, the existence of a point us in i(“)F n i(w)G implies the nonemptiness 
of i(vXR)P and i(wXR)G (for instance, (ZQ, , A) E ((yXa)P when X >f(z+J). Taking 
account of Theorem 1, P and G can be frankly separated by a hyperplane A. 
There exist a nonnull linear form + on E x R and a real h such that 

I? = ((x, A) E E x R: $3(x, h) = h}, 

and 

PC r?l = {(x, A) E E x R: I&Y, A) > hj, 

e C i& = {(x, A) E E x II%: @(x, A) < h). 

Furthermore, by virtue of Theorem 2, the “vertical” through the point u,, of 
%lY)F n icw)G (i.e., {(u,, , CY): a E R)) meets H in one and only one point. Thus, 
when a > f(u,,) Z g(us), $(u,, , g(uO)) < $5(u0 , a). So $(O, 1) > 0. Then it is 
possible to deduce from I$ a linear form v’ on E such that $5(x, q’(x)) = 0 for 
all x E E [4, Lemma]. 

If K is the real defined by @(O, 1) = h, the affine function v’ f k on E satisfies 
the conditions of the function v of this theorem. Indeed, whatever y E F and 
6 2 0 may be, +(y, T’(Y)) = 0 and $(y, f(r) + c) >, h = k+(O, 1). Thus 
f(y) + E 3 p’(y) + k for ally E F and E > 0. This result proves thatfdominates 
v on F. It is also easy to verify that v dominates g on G. 

This theorem admits as particular cases different theorems, for instance, 
[4, Theorems 2 and 31 and [12, Theorem V.1.41. 

We also give the following consequences. 

COROLLARY 5. Let f be a convex function on F, r be a linear form on a linear 
subspace T of E, and V be a linear subspace of E such that V + T = (zF)O + T. 
WhenTnicV)F# m,fdominatesronTn i(v)F if and only ;f there exists a linear 
form Z/I on E such that f dominates $J on F and the restriction of yb to T is r. 

Since a linear form is concave and since i(T)T = iT = T, there exists, by 
virtue of Theorem 4, an affine function F on E such that T(X) < q(x) for all 
x E T and v(x) < f(x) for all x E F. But F = p’ + k, where K is a real and where 
v’ is a linear form on E. In these conditions, the restriction of v’ to T is 7. Indeed, 
if t is an arbitrary point of T, at E T for all 01 E R and 7(d) < p’(d) + K (or 
+(t) - #@)I d 4, w rc h’ h is only possible when T(t) = F’(t). 

Furthermore, 0 < k (0 E T and -r(O) < v’(O) + k) and f dominates v’ + k 
on F. Thus f dominates q’ on F and 9’ is the linear form I/J of this corollary. 

COROLLARY 6. Let f be a sublinear function on F (thus F is a convex, pointed, 
or unpointed cone with vertex at 0), g be a concave function on the convex G, and 
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V, W be two linear subspaces such that V + W = (JF,) + (zG)O . When 
i(v)F I-I c(w)G # 0, f dominates g on icv)F f~ i(w)G if and only if there exists a 
linear form 4 on E such that f dominates 4 on F and # dominates g on G. 

The necessary condition is evident. Concerning the sufficient condition, 
there exists an affine function # + k on E (4 and K being, respectively, a linear 
form on E and a real) such that g(x) < 4(x) + K for all x E G and 4(x) + K < 
f(x) for all x EF. 

Let u be an arbitrary point of F. For ail OL > 0, (YU EF (F is a cone) and 
d(u) + K < af(~). Consequently, #(u) <f(u) (letting 01-+ co) for all I( of F 
and K < 0 (letting (Y -+ 0). 

Thus, g(x) < Z/(X) + K < #(x) for all x E G, 9(x) <f(x) for all x E F and 
the proof is complete. 

COROLLARY 7. Let f be a convex function on F, g be a concave function on G, 
and V, W be two linear subspaces of E such that V + W = (“F),, + (IG), . If 
i(v)F n icw)G # o and if f dominates g on icv)F /T itW)G, then f dominates g on 
Fn G. 

This corollary is a direct consequence of Theorem 4. 

Remarks. 1. If, in Corollary 5, f is defined on the whole vector space 
(F = E), then we obtain [5, Theorem 2, of p. 3581. 

If, in Corollary 6, f is defined on the whole vector space (F = E) and if g 
is the opposite of a sublinear function, then we obtain [7, Theorem 12.2, 
p. 4621 and [lo, Corollary 6, p. 1161. Indeed, it is sufficient to take V = E and 
w = (0). 

2. Let E be a topologized vector space and let f be a convex function on 
an open convex set F. It is known that the following four conditions are equiva- 
lent: 

(a) f is upper semicontinuous at a point x0 of F; 

(b) f is upper semicontinuous onF, 

(c) f is continuous on F; 

(d) there exists a nonvoid open set (included in F) in which f is bounded 
above. 

A proof of this theorem (this proof is valid for the /3-topologies which are 
introduced by Klee in [7] and which are more general than the classical vectorial 
topologies) is given in [12, 111.3.1, p. 391. 

By virtue of this property, the continuity of the afline function of Theorem 4 
is ensured when the interior of F is nonvoid and f is upper semicontinuous at 
an interior point of F or when the interior of G is nonvoid and g is lower semi- 
continuous at an interior point of G (an affine function is also concave). 
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So [I, Corollary 1.9, p. 1331 is a particular case of Theorem 4. 
We give the following corollaries. 

COROLLARY 8. Let E be a locally convex vector space, f be a sublinear function 
on F (thus F is a convex cone of E with vertex at 0), and u be an arbitrary point 
of F. The function f is lower semicontinuous at u if and only if-f(u) = sup{y(u): 
y E a where Y denotes the set of all continuous linear forms on E which are 

dominated by f on F. 

The necessary condition is obvious. About the sufficient condition, let k be an 
arbitrary real such that k <f(u). S ince f is lower semicontinuous at u and since 
E is a locahy convex space, there exists a convex open neighbourhood U of II 
such that k <f(x) for all x E U n F. Let g be the concave function on U 
defined by g(x) = k for all x E U. 

ZU = (“U), = E and u E i(E)U (U is a neighbourhood of u). Thus the hypo- 
theses of Corollary 6 are satisfied (with W = E and V = (0)) and there exists 
a linear form y on E such that v(x) <f(x) for all x E F and k < y(x) for all 
XE u. 

It follows from the fact that v is bounded below in the open U that v is 
continuous on E. 

Thus for every real k such that k <f(u), there exists 9 E 2 such that k < p)(u). 
This proves the corollary. 

COROLLARY 9. Let E be a locally convex vector space, F be a convex function 
on F, and u be an arbitrary point of F. The function f is lower semicontinuous at u 
if and only if f (u) = sup{y(u): y E @‘}, where JZI denotes the set of all continuous 
afine functions on E which are dominated by f on F. 

The proof of Corollary 9 is similar to that of Corollary 8: It suffices to employ 
Theorem 4 instead of Corollary 6. 

Remark. Corollaries 8 and 9 correspond to [I, Theorem 3.4, p. 1411 and 
[l, 4.7, p. 1461, respectively. 
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