
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 8, 3 8 7 - 4 0 8 (1974)

Translatability of Schemas over Restricted Interpretations*

A. J. KFOURY

Project MAC, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received February 8, 1973

We study a notion of translatability between classes of schemas when restrictions
a r e placed on interpretations. Unlike the usual notion of translatability, our trans-
latability lets the translation depend on the interpretation.

We consider five classes of schemas. Three of these have been extensively studied in
the literature: flow-chart, flow-chart with counters, and recursive. The two others are
defined herein; the first of which is a class of "maximal power" and is equivalent to
similarly motivated classes of other investigators; while the second is, in some sense,
a nontrivial class of "minimal power."

Our main results specify restrictions on interpretations that will allow the trans-
latability of a class Y'I into a class Y'~, ~1 not being translatable into Y'~ over all (or
unrestricted) interpretations. Additional results specify restrictions on interpretations
under which ~x is not translatable into ~o'~ ; the proofs of these clarify the mechanisms
in the main results. Last, we consider the notion of effective computability in algebraic
structures in the light of the main results.

1. INTRODUCTION

Schemas are abstract representations of computer programs. Given a set of variables

(denoted by x0, x l , x 2 ,...), a set of basic operations (denoted by f0 ,..., fro) which may
be used to assign new values to the variables, and a set of basic relations (denoted by
r 0 r~), a schema specifies the order in which the computations involving the basic
operations are to be performed according to t ruth values taken on by the basic relations.
We shall call the finite sequence (r 0 ,..., r~ ; f0 ,...,fro) the similarity type of the schema.
The arity of a basic operation will be ~ 0, while that of a basic relation will be ~ 1.
A 0-ary operation is also called a constant.

Different classes of schemas have different expressive powers. Among the several
ones that have been defined and studied in the literature, the two most familiar are

the class of flow-chart schemas and the class of recursive schemas, which we shall

respectively denote by ~te and ~ r e e . We shall need other classes of schemas in this

* Supported in part by Project MAC, an M.I.T. research program sponsored by the Advanced
Research Projects Agency, Department of Defense, under Office of Naval Research Contract
Number N0014-70-A-0362-0006 and National Science Foundation Contract Number GJ004327.

387
Copyright �9 1974 by Academic Press, Inc.
All rights of reproduction in any form reserved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81925759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

388 A.J. KFOURY

paper, which will allow us to set up a hierarchy on all these classes relative to their
expressive powers. One such class will represent, in some sense, an upper bound on
the expressive power of programming languages; this will be the class of effective
schemas, Seett, defined in Section 2. Another class will represent a lower bound on the
expressive power of programming languages, but which must also possess a nontrivial
computing power; this will be the class of quasi-loop-free schemas, ~ l t . We shall
consider also the class of flow-chart schemas with counters, ,~tee, which are representa-
tive for the kinds of schemas widely studied in the literature.

Schemas compute relative to interpretations which fix the meanings of the basic
operations and relations. Formally, a (total) interpretation 9.i for a schema S provides:

(i) a domain A,

(ii) for each k-ary basic relation symbol r in S, a total relation

r A : A k --* {true, false},

(iii) for each k-ary basic operation symbol f in S, a total operation

fA :Ak~A.

In the literature, it has been customary, in contrast to our definition, to have inter-
pretations also fix the meanings of the variables. By leaving the assignment of the
variables unspecified, as it is for us, an interpretation is none other than a (relational
or algebraic) structure. A schema S under interpretation 9.1, as given above, defines a
partial function which we shall denote by S~t; for every assignment from the domain A
to the variables of S ~, there corresponds a unique execution path (or computation)
in S 9I, which may either converge or diverge. For two partial functions U and V, we
write U ~ V if, for all x, either both U(x) and V(x) are undefined or both are defined
and U(x) = V(x).

To compare the expressive powers of different classes of schemas, we have the
concept of translatability (see for example [2, 5, 12, 16]): a class ~ of schemas is
translatable into a class ~ of schemas, in symbols 5:1 C 5:2, if

(VS i e S:1)(3S ~ ~ 5#~)(V interpretation ~)[$19~ ~ $291]. [,]

For example, the main result relating flow-chart to recursive schemas says that
~ e C ~ree hut ~ree r ~ e [12, 16].

In this paper, we consider a notion of translatability relative to a subfamily of the
family of all interpretations. That is, in the previous definition [,], we consider
restricting the third quantifier to interpretations which satisfy certain structural
conditions (to distinguish them from other kinds of conditions). If F is a set of structural
conditions, we shall say that class 5#1 is 1-translatable into class 5P~, in symbols

-*r 5#2, if

(V interpretation 9~ satisfying F)(VS t ~ ~)(3S~ ~ 5#~)[$1 ~ ~ $2~]. [**]

TRANSLATABILITY OF SCHEMAS 389

Note that, in contrast to [.], we have put the quantification over interpretations in
first position; so that, unlike the usual notion of translatability, F-translatability lets
the translation depend on the interpretation. As a consequence, F-translatability does
not reduce to the usual notion of translatability when F is the empty set; but, if
S: t is translatable into S:~ then, for any F, S: t is F-translatable into S: 2 . (Of course, we
could also keep the quantification over interpretations in third position in [**], which
would give rise to a stronger notion of translatability over restricted interpretations.
But this notion will not concern us here.)

The study of schemas over restricted interpretations has already been undertaken in
the literature, although usually not in relation to the problem of translatability. Thus,
in [11], Paterson considers equivalence of schemas over finite and recursive inter-
pretations; and, in [3], Chandra and Manna consider decidability questions when
interpretations have equality among their underlying relations. Sometimes, known
results that are motivated by considerations different from ours can be restated to fit
the setting of this paper; for example, Theorem 3.13 in [5] implies that, if F restricts
operations of interpretations to be monadic, 6:tee is F-translatable into SPree �9

Given two classes of schemas 6: t and S: 2 (among those mentioned earlier in this
introduction) such that S:~ is not translatable into 62, the main results of this paper
say how to restrict interpretations (via some F) so that 6:1 becomes F-translatable into
6e~. This is done in Section 3, where we define four structural conditions precisely,
then state two theorems accordingly. Several easy consequences of these theorems are
left to the reader's care; for example, on the basis of Theorem II, one can choose F so
that oqaree-+1" SPree (even without F restricting interpretations to have monadic
operations only).

In Section 4, we give conditions F under which it is not possible to F-translate a
class SP t into a class ~ (again, S: 1 and Sa~ are drawn from the classes mentioned earlier).
The proofs of this section are constructions that clarify the mechanisms in the results
of Section 3.

In Section 5, we relate the results of Section 3 to the notion of effective computability
in algebraic structures. In particular, we specify the control structure required by a
programming language to program any effective function over distributive lattices,
of the rings, and fields.

All the proofs of our results, along with the required lemmas, are in the Appendix
of the paper.

The author would like to express his gratitude to the referee who pointed out that
Theorem II in this paper is a rewording of Theorem 1.6 in Ref. [4], and the proof is
essentially the same in both. He also pointed out that the reformulation of condition
(8) at the end of Section 3 corresponds to Definition 1.23 of [4].

390 A . J . KFOURY

2. EFFECTIVE SCHEMAS

Our objective in this section is to give a tentative definition of a class of schemas
which has as much expressive power as, or more than, any other class.

Given any flow-chart schema, we can "unwind" its loops to produce an equivalent
countable binary tree. In fact, given any schema in one of the classes existing in the
literature, we can write an equivalent countable binary tree. (To be correct, the binary
tree describes only the "control structure" of the equivalent schema; to complete
this equivalent schema, we also need to specify an instruction for each of the tree's
nodes.) In the countable tree equivalent to a given schema, we can always enumerate
effectively the set of finite paths (for the moment, we consider all finite paths, whether
or not they are consistent). For a flow-chart schema, this set is regular; in a sense
which can be made precise. (For this, observe that a flow-chart can be looked at as a
finite automaton.) For a recursive schema, this set is not always regular; it is generally
context-free. For other schemas, with more expressive power, this set becomes more
complex; but it can always be enumerated effectively.

The above observations suggest our definition of the class of effective schemas, a
candidate class for "universality," i.e., one with universal expressive power. First,
we need some preliminary definitions.

An (uninterpreted) instruction is one of the following two:

(i) a test instruction, which is an expression of the form

r(x~ 1 ,..., xjk),

where r is a k-ary relation symbol, k /> 1.

(ii) an assignment instruction, which is an expression of the form

Xit : = Xj~,

or

xj :=f(x, 1 xj),

where f is a k-ary operation symbol, k /> 0.

A schema is a countable binary tree, "growing downwards," where:

(1) the root node has one successor and is labeled by finitely many variables,
called input variables;

(2) a node which is not the root and has one successor is labeled by an assignment
instruction;

(3) a node which is not the root and has two successors is labeled by a test
instruction; the two outgoing branches from a test node are labeled by
+ and -- ;

TRANSLATABILITY OF SCHEMAS 391

(4) a terminal node, one with no successor, is labeled either by YES or by NO;

(5) along any path, a variable which appears in a test instruction or on the right
of " : ~ " in an assignment instruction must have been mentioned at a
preceding node on the left of " :~-" in an assignment instruction, or else at
the root node (and thus it is an input variable);

(6) the number of distinct symbols (other than variables) appearing in all the
instructions of a schema is finite, i.e. the similarity type of a schema is
finite; however, the number of distinct variables, which includes the input
variables, is not necessarily finite.

The last point, (6), is compatible with our experience in computer programming,
where any program is written in terms of finitely many relations and operations. This
is not crucial. Under certain restrictions, we can extend the results we have to the
case when the similarity type of a schema is countably infinite.

A schema as defined above may be called a p-schema ("p" for "predicate"). To
define a f-schema (" f " for "function"), point (4) must be changed to (4'):

(4') A terminal node, one with no successor, is labeled by an output variable,
which is one of the variables appearing on the left of " : = " in one of the
nodes preceding that terminal node or else must be one of the input variables.

In most of our results, we shall not need to make the distinction between the two
kinds of schemas. We make the following convention. A statement where "schema" is
mentioned without a prefix, p - - or f - - , is one which is true of all schemas of both
kinds. Observe that the study of f-schemas is not a trivial variation on that of p-
schemas, if we are not allowed to test equality between the assignments of two variables;
i.e., if the equality relation is not in the similarity type, then the characteristic relation
of a function definable by a f-schema need not be definable by a p-schema.

DEFINITION. An effective schema is a schema which can be effectively written down.
A formal definition requires the arithmetization of the syntax: if the nodes of a schema
are numbered with the nonnegative integers, from top donwnwards and from left to
right (the root is at the top), then the node labels of an effective schema are generated
as the recursively enumerable range of a total recursive function.

It is clear that the set of finite paths in an effective schema is recursively enumerable.
The important point here is to observe that, under this paper's restriction to total
interpretations, the other schemas in the literature can be expressed as effective schemas
by unwinding loops.

Other investigators have also considered increasing the expressive power of program-
ming languages up to a universal level. They have reached equivalent definitions via
different motivations and different arguments. In [15], Strong has defined a program-

392 A.j. KFOURY

ming language of "maximum power"; a simple proof shows that his definition is
equivalent to ours (that of effective schemas). This is also the case for the definition of
"generalized Turing algorithms" by Friedman in [4]. Finally, in the lattice of flow-
diagrams defined by Scott in [13], what we might call the "computable elements"
(i.e., flow-diagrams defined as limits of recursively enumerable sequences of finite
approximations) are precisely the effective schemas. These facts give further evidence
to the claim that the class of effective schemas has maximal power.

Chandra and Manna [3] state that "I t turns out that the class of program schemas
with equality is more powerful than the maximal classes suggested by other investiga-
tors." This seems to conflict with our claim as to the universality of effective schemas;
and, indeed, there are effective procedures which are definable by flow-chart schemas
with equality but not by effective schemas without equality. However, the differences
between effective procedures (i.e., interpreted schemas) that schemas aim to reflect
are differences at the level of the control structure, but not at the level of the initial
computing capability (i.e., the basic relations and operations). We object therefore to
Chandra and Manna's statement, because a proper comparison between classes of
schemas can be made only if they have the same initial computing capability (the
same similarity type with the same restrictions on it, if any). Thus, flow-charts with
equality are incomparable with, not more powerful than, recursive schemas without
equality.

We conclude this section by making a few remarks on notation and terminology.
Schemas will be denoted by capital S's (subscripted, if need be). Interpretations (i.e.,
algebraic structures) will be denoted by German script letters, 92, ~B, ~ and their
domains by the corresponding Latin letters, A, B, C, If a schema S has k input
variables x 1 ,..., xk, we shall sometimes exhibit them explicitly by writing: S(x 1 , xk).
Let the similarity type of S be (r 0 ,..., r~ ;f0 ,...,fro) and

92 = (A; ro A, rlA,...; foA, f ~ , . . .)

be an interpretation for S. To display the fact that the symbols r 0 ,...,fro in schema S
have been interpreted as the relations and operations roA,...,fm A on the domain A,
we shall write: S~t(Xl ,..., xk). By assigning input values a 1 ,..., a~ ~ A to x t ,..., xk, a
computation on S is thus specified, which will be denoted by S~t(al ,..., ak).

S~t(Xl ,..., xk) without input values from A assigned to x I ,..., xk (and we shall refer
to this situation by saying: S interpreted in the structure 92) can be viewed as a procedure
over the domain A, written in terms of the underlying relations and operations of the
algebraic structure 92. If S is a - . . p-schema (f-schema), we shall call S~ta ""
p-procedure (f-procedure) of 92, where the three dots may be replaced by any of the
following: flow-chart, flow-chart with counters, recursive, etc. (Whenever a schema S
is interpreted in a structure 92, it is assumed that the similarity type of S is contained
in that of 92.)

TRANSLATABILITY OF SCHEMAS 393

In one given context, all schemas will be in the same similarity type. For example,
if we speak of the class of all flow-chart schemas, we only mean those with a similarity
type equal to, or contained in, some fixed similarity type made clear by the context.

3. THE MAIN PROBLEM AND SOME SOLUTIONS TO IT

We consider the following classes of schemas

5Pelt = {effective schemas},

SPree = {recursive schemas},

5~tee = {flow-chart schemas with counters},

~te = {flow-chart schemas},

~9~ = {quasi-loop-free schemas}.

oq'ree, 5~tee, and 5gte have been defined elsewhere (see for example [12, 16]). A quasi-
loop-free schema is a flow-chart schema where, from any test instruction t, the two
outgoing branches do not go back to instructions preceding t (although they may go
back to t itself, as self-loops). A quasi-loop-free schema may thus be called "a truth-
table schema which may diverge," as opposed to a loop-free schema which may be
viewed as "a truth-table schema which always converges."

Note that in a flow-chart schema S with counters, because there is no "communica-
tion" between the counters and the other variables of S, the arithmetical operations and
relations which are applied to the assignments of counters do not appear in the similarity
type of S. The point is that counters increase the power of the "control structure"
of S, but not the power of the "initial computing capability" present in S (the basic
relations and operations in S).

Let 27 denote the collection of all the forementioned classes,

Z = {~qlf , ~ f c , ~ fcc , ~ rec , ~eff}.

Between these classes, we have the following translatabilities

fcc

and no other (unrestricted) translatability is possible (~ c (~ ~qlf is a consequence of
Proposition III in Section 4, the other negated translatabilities follow from the work in
[5, 12, 16], or can also be easily deduced from our other results in Section 4).

394 A.J. KFOURY

PROBLEM. Let 5al and 5a2 ~ ,F,, such that 5a 1 ~ 5a~ (otherwise the problem is trivial).
Determine a set 1" of structural conditions such that Sg 1 is 1"-translatable into SP~ .

In determining 1", we try to make it "as weak as possible"; for interpretations can
be so restricted as to make 5e 1 --~r 5a2 always true, independently of Se 1 and SP z (for
example, let P restrict interpretations to be finite). Further, since /'-translatability
between classes of schemas is a transitive relation, several answers to the above
problem, that are not stated here, easily follow from the results given below.

Corresponding to the collection 27, the solution to the problem stated above will
depend on four structural conditions (called ~,/3, 7, and 8), which are stated in terms
of the concepts defined next.

Let {f0 ,...,fro} be a finite set of operation symbols (all appearing in some fixed
similarity type). We define the (xq ,..., xt)- terms, for arbitrary nonnegative integers
/1 ,..., ik, inductively as follows (when there is no fear of confusion, we shall also call
them x-terms, abbreviating (xq ,..., xq) by x):

(i) xq ,..., x~. k are all x-terms;

(ii) i f f ~ {f0 ,..-,f~} is a j -ary operation symbol, j ~ 0, and t 1 ,..., tj are x-terms,
t h e n f (t 1 tj) is a x-term.

Given a (xq ,..., xik)-term t, we shall sometimes exhibit explicitly the variables by
writing: t (xq ,..., xq); and, if the similarity type of structure 9.1 contains {f0 ,fro},
the interpretation of t in 9.I, denoted by t A o r tA(xix , . . . , Xik), is defined in the obvious
sense (f0 , . . . ,f~ are interpreted as the underlying operations foA,...,fm A of 9.I, and
t A becomes "a polynomial on the domain A in the free variables xq ,..., x%").

Let 9.I be the structure (~/; ro A rzA;fo A fmA). We say that an element b ~ J/
is reachable from elements a 1 ,..., ak ~ -4 if there is a (x 1 ,..., xk)-term t(x 1 ,..., xk) such
that b = tA(al ,..., ak).

We say that structure 9~ is n-generated if there are n elements from the domain .4,
al ,..., an ~ A , such that every b ~ A is reachable from a 1 ,..., an.

The structural conditions satisfiable by a structure (or interpretation) 9.[which we
shall consider are:

(~) For every integer n >~ 1, there is a finite cardinal w such that any n-generated
substructure of ~ is of cardinality ~< w. (A substructure ~ of ~ is determined
by a subset B of A which is closed under the underlying operations of 9.L)

(/3) One of the underlying operations of 9.I, say f0 A, is a constant. In addition,
there is a 1-ary function F on the domain A, not necessarily total (i.e., F may
be undefined for some a ~ A), which is definable by a flow-chart f-procedure
of 9.[and which generates from f0 A the following chain

fo A F (f ~) F2(fo A) F~(fo A)
�9 , . , . , ' " , . , ' " , i > / 1 .

TRANSLATABILITY OF SCHEMAS 395

(y) The equality relation on the entire domain A is definable by a total flow-
chart p-procedure of 9.I.

(3) (V integer k / > l) (~ integer n / > k) (Va 1 , a k , b E A) [b is reachable
from a t ,..., ak =~ there is a flow-chart f-procedure of 92, with k input
variables and using at most n variables, which outputs value b when given
input values at , ak].

We shall have use for the negations of the above conditions, the negation being
appended to the name of a condition in its abbreviated form "-~"; for example,
the expression -~, refers to: the equality relation on the entire domain A is not definable
by a total flow-chart p-procedure of 92.

Let Sf be any class of schemas in the collection ~. 5~ is {~}-translatable

TrI~.OREM II. Sfett is (/3, ~, 3}-translatable into ~ e .

There are other solutions to the Main Problem. An easy variation of Theorem II
gives: Seen is {~,, 8}-translatable into Saree (verification is left to the reader). The
universality of recursive schemas with counters, proved in [2 and 15], gives: ,gaett is
{/3, y}-translatable into Sfree (we can in fact weaken/3 and 7, by substituting "recursive"
for every occurrence of "flow-chart" and by not requiring that the p-procedure in
condition ~ be defined on elements of A outside the oJ-chain described in condition/3).
Finally, one can readily see that S~ee is {/3, ~,)-translatable into SPte (here, also, we can
weaken condition ~ by not requiring that the p-procedure be defined on elements not
in the co-chain described in condition/3).

We end this section by giving an alternative formulation for structural condition 3,
which will be useful in the applications. We first need to define the n-x-terms. To
motivate this definition, we refer the reader to the proof of Theorem 1 in [12], where
it is shown that a flow-chart schema with input variables xil x~ cannot "compute"
all the (xq ,..., xi~)-terms (following the terminology of [16], we shall say that the un-
interpreted x-terms are syntactic values; this allows us to say that what schemas compute
are syntactic values, as opposed to semantic values, or interpreted syntactic values,
which are computed by procedures, or interpreted schemas). For arbitrary xq xi~
and n ~ k, consider the following finite sequence: Y0 ,..., Y~, where

(i) each y~, 0 < v < u, is an ordered sequence of length n;

(ii) Y0 is (xit ,..., xi~ , xi, ,..., xil);

n--k

(iii) Y,+x is identical to y~, 0 ~< v < u, except for one entry which is either
f (t 1 ,..., ti), where t 1 ,..., t s are entries in y , andf i s aj-ary operation symbol
in the similarity type under consideration, or else is some other entry of y , .

THEOREM I.

into Sfqn.

396 A.J. KFOURY

We define a n-(xil , xik)-term to be one of the entries in Yu, for some sequence
Y0 ,..., Y~, as described above. For every n, one can verify that the n-x-terms form a
proper subset of the x-terms; the n-x-terms are exactly the x-terms which are computed
by flow-chart schemas with input variables x and using at most n variables. We are
now in a position to reformulate structural condition 3:

(3) For every k /> 1, there is a n ~> k such that, given any x - t e r m t (x I , . . . , xtc)

and any elements a 1 ,..., ak from the domain .4, there is a n-x-term ~(x 1 ,..., xk) such
that:

tA(al ,..., ak) ~ - tA(a l , . . . , ak).

4. ADDITIONAL RESULTS

The results in this section are of the following form: Given two classes 5e~ and
5:2 in the collection 27, we determine a se t / " of structural conditions for which 5:a
is not/ ' - translatable into 5:2 ; that is, we determine a se t /" for which:

(q interpretation 9~ satisfying F) (3S 1 ~ S:I) (VS 2 c S#2) [S1 a ~ Sz~].

The proofs are constructions that clarify the mechanisms in the results of the previous
section.

PROPOSITION III. Let S : be a class of schemas in z~ and 5P ~ S#ql f . 5g is not {~a)-
translatable into 5aqlf .

PROPOSITION IV. 2Tree is not { ~) - t rans la tab le into S#f e .

PROPOSITION V. 5:elf is not {/3, --ay, 3}-translatable into S#fe .

There are other results that, being easy variations of the last two propositions,
will not be proved here: (I) ~tee is not { ~}-translatable into Saree (the technique of
Lemma 3 in the Appendix still works when applied to a recursive, rather than flow-
chart, schema (to see this, view a recursive schema as a flow-chart schema with a
pushdown store) and the proof of Proposition IV, based on Lemma 3, can be used
again with hardly any changes); (2) 5Peff is not {/3, -Ty, 3}-translatable into 5:fee (the
proof of Proposition V still works when we allow flow-charts to have counters);
(3) Seree is not {/3, ~y, 3}-translatable into 5#fee and 5#re (replace the effective schema
defined in the proof of Proposition V by the recursive schema used in the second proof
of Theorem 1 of [12]).

TRANSLATABILITY OF SCHEMAS 397

6. EFFECTIVE COMPUTABILITY IN ALGEBRAIC STRUCTURES

Logicians and computer scientists have recently studied the problem of what
operations in an arbitrary algebraic structure can reasonably be considered "effective"
in terms of the underlying operations and relations of the structure. Several approaches
to this problem have been proposed; most notable among them are Kreisel's [8],
Moschovakis' [9], and Abramson's [1]. Our contention is that schematology, via its
various definitions of classes of schemas with universal expressive power, provides
another approach. We propose the following thesis (also stated in [1 5]).

THESIS. Given an algebraic structure (interpretation) 92(, a procedure on the domain
A of 9.I, effective relative to the underlying relations and operations of 9~, is an effective
schema interpreted in 9.I.

We have investigated elsewhere some aspects of the notion of effectiveness in
arbitrary algebraic structures (see [7]). One important aspect, which still remains
unexplored, is to see how our schematology approach compares with the other fore-
mentioned approaches.

In this section we consider one specific problem, which we show can be handled
with the theoretical tools developed earlier. We look at a given algebraic structure 9.I
and attempt to find a class of schemas which will capture the notion of effectiveness
in ~ . According to our Thesis, in any algebraic structure, the class of all effective
schemas is adequate for this purpose. This is however a radical answer to the problem,
which is indifferent to the "computing capability already present in 9.I" (we do not
make more precise this intuitive expression). For example, we would like to answer
questions of the following nature: Is any effective procedure of ~ equivalent to some
flow-chart procedure of 9.1 ? or to some recursive procedure of 92[? Let 6 e be a class of
schemas. We shall say that SP is sufficient in algebraic structure 92(if:

(VSat e ~efr)(3S 2 E ~) [S t 91 ~ $2~];

that is, the expressive power of ;T is all we need to program any effective procedure
on the domain A relative to the underlying operations and relations of 9.I. The problem
is then to find the "weakest" class of schemas which is sufficient in 9.I. We can reverse
our point of view and ask instead, for a given class of schemas 5 a, to characterize the
algebraic structures 9.I where Sg is sufficient; i.e. to determine a se t / " of structural
conditions such that

satisfies/" ~ 6 a is sufficient in ~ .

We now describe a few algebraic structures where Sgqu or R e suffices. (Observe
that i f /" is a set of structural conditions satisfied by algebraic structure 92[and 6eetr is
/'-translatable into class of schemas 5 e, then S~ ~ is sufficient in 9.I.)

57x/8/3-9

398 A. J. KFOURY

A distributive lattice ~ is an algebraic structure of the form

9~ = (A; ~<; n , u) ,

where 4 , n , and W are given their usual meanings (all lattice-theoretic definitions
can be found in [17]). An expansion ~ of ~I is of the form

~3 = (A ; ~<; n , w, Co c .) ,

where c o ,..., c~ are arbitrary elements of A, considered as 0-ary operations on the
domain A. (In a procedure of 9.I, we can only use the relation ~< and operations n , t.);
while in one of ~3, we can also use the constant operations c 0 , c~. In other words,
we have a larger "initial computing capability" in ~3 than we have in 9.[.)

COROLLARY VI. Sfql f is sufficient in a distributive lattice ~I, and in any expansion

ofga.

An example of a distributive lattice is the following structure.

~+ • (N+;]; hcf, lcm),

where N + = {1, 2, 3,...}, x l y ~ . x divides y, hcf(x, y) = highest common factor of x
and y, and lcm(x, y) = least common multiple of x and y.

It is already well known that Safe suffices in the algebraic structure contemplated
by recursive function theory, namely in (N; = ; • + , ()', 0~ (see [14]). ~ e also
suffices in other commonly encountered algebraic structures.

COROLLARY VII. Sfte is sufficient in rings and fields of characteristic zero which are
respectively taken in the form

9.1 = (A; -----; • + , -- , 0, 1)

and

oA = (A; = ; • + , -- , ()-1, 0, 1).

The usual way to translate recursive schemas (or, for that matter, any more powerful
programming formalism) into flow-charts involves constructing flow-charts for a
pairing function (a one-one function from A 2 to A) and its inverses in order to simulate
a push-down store. According to Corollary VII, there are interpretations for which this
is not necessary: It is sometimes possible to simulate recursive procedures by flow-
charts without a coding and decoding capability (as it is, for example, over the field of
algebraic numbers or over the real field).

TRANSLATABILITY OF SCHEMAS 399

7. APPENDIX

In this Appendix, we give the proofs of the results of the preceding sections.

LEMMA 1. Let 9.I be an arbitrary algebraic structure; and $1, S 2 be arbitrary
schemas with input variables drawn from {x 1 , xk} and in similarity types (possibly
different) both contained in the similarity type of ~[. Then, $1~ ~ $2 ~ .~ for every
k-generated substructure ~ of 9.I we also have $1 ~3 ~ $2 ~3.

Proof. The implication from left to right is immediate. To prove it from right to
left, suppose that $19a ~ S~ ~t. There is therefore an input sequence a ~ A ~ from the
domain of 9~ such that St~(a) @ Sza(a). If ~8 is the substructure of ~I k-generated
by the k components of a, it is not difficult to verify that we also have Sx '~ :te $2 ~.

Proof of Theorem I. It suffices to consider the case 6e = 6Pc,. We omit the easy
proof of the following fact [.]: Given a family Jd of algebraic structures and an
effective schema S, if all the interpretations for S from ~ use only finitely many
terminating paths in S, then there exists a quasi-loop-free schema S o (with the same
input variables as S) such that, for all interpretations ~[~ oY', S 9x ~ So ~. Let S be an
arbitrary effective schema with n input variables. Let @I be an interpretation which
satisfies structural condition a, and w be the finite cardinal which limits the size of all
n-generated substructures of 9.I. Notice that, given a finite similarity type (that of ~IE
which contains that of S), there are finitely many nonisomorphic algebraic structures
(say ~B 1 ,..., ~ j) which are of cardinality ~< w. Let ~ be the family of all interpretations
which are isomorphic to ~Bi, 1 ~ i ~ j. Since ~3~ is finite, it is easy to see that all the
interpretations from ~ for S can only use finitely many terminating paths in S.
Hence, the same is also true of the family 3g" = ~ t u ".. u ~r By [*] above, there
is a quasi-loop-free schema S o such that, for all L8 ~_.J{', S~q _,~_ So ~. Noting that
any n-generated substructure of ~ belongs to ..,~, we also have that S ~ ~ So ~, by
Lemma 1.

LEMMA 2. (i) Let ~[be an interpretation which satisfies structural conditions [3 and V,
and identify the subset {F~(f0A)l i ~ N} of its domain A with the set N of natural numbers.
I f ~o is a partial recursive function (on N) , there exists a partial function 0 (on A), which
is definable by a flow-chart f-procedure of ~[such that go ~ 0 p N.

(ii) A function on N is partial recursive if and only i f it is definable by some flow-chart
f-procedure of the algebraic structure

(N; T ; ()', ' () , 0),

where T(x) .*~ x is assigned value O, and ()' and '() are the successor and predecessor
operations.

400 A.J. KFOURY

Proof. (i) This follows from the fact that we can define the partial recursive
functions with flow-charts in the similarity type (= ; ()', 0). Details are omitted.

(ii) The proof here is similar to that of (i). In fact, this is an old result established
by Shepherdson and Sturgis [14].

Proof of Theorem II. We consider a particular case of an algebraic structure
which satisfies structural conditions/3, 7, and 3; namely, in

9~ = (A; roA,..., r~A; foA,..., fmA),

r0 A is the equality relation = , and f l A is a 1-ary operation which generates from the
constant f0 A the chain drawn in the definition of structural condition/~. It will be
obvious how to generalize the proof to an arbitrary algebraic structure 9.I which
satisfies the forementioned structural conditions. For convenience, we identify f0 A
with 0 and f l A with the successor operation ()' when restricted to the set

N ~_ {fo a, f~(fo~), f~f~(foA),...} C_ A.

Without loss of generality, we restrict our attention to p-schemas. We show, given
any effective p-schema S, how to construct (noneffectively in general, because of the
noneffectiveness of structural condition 3) a flow-chart p-schema S o such that
S ~ ~ So ~t. Let x = (x I ,..., xk) be the input variables of S. For every terminating
path ~r through the tree corresponding to S, it is easy to write a finite conjunction
R(x) of atomic and negative atomic formulas, in the similarity type of S, such that:

S ~t on input a c A k follows path ~r -r 9.1 satisfies R(a)

(we assume the reader to be familiar with the concept of "satisfiability of a sentence
in a structure," sentence R(a) is obtained from formula R(x) by substituting a for x).
S being effective, we can recursively enumerate its terminating paths, some of them
possibly inconsistent, as (~r~] i e N) . Corresponding to these paths, there is a recur-
sively enumerable sequence of formulas (R~(x)] i ~ N) . Rather than draw its binary
tree, it should be clear that we can designate S by a recursively enumerable sequence
of the form

Ro(x) A A o ,..., Ri(x) A Ai ,..., i~ N,

where Ai ~ {YES, NO} is the label of the last node of terminating path rr i . For later
reference, we call the above designation of an effective schema a R-sequence. It is
clear that we can also write a R-sequence for any other kind of schema, in particular
for a flow-chart schema (whose R-sequence can be generated as a regular set, in
a sense which can be made rigorous).

TRANSLATABILITY OF SCHEMAS 401

Given the R-sequence of an effective p-schema S, we arithmetize the syntax (starting
with the "alphabet" (r o , r t , fo ,...,fro} u {YES, NO) t3 {(,), -~, A} t3 (x t , x~};
then going to the x-terms, and the well-formed atomic and negative atomic formulas;
and finally to the finite conjunctions of the form R(x) a ~). We next generate the
R-sequence of S as a recursively enumerable set of G6del-numbers (ei l i e N),
where e+ e N is the GSdel-number of "Ri(x) A h/ ' . More specifically, using Lemma 2,
(ei I i e N) will be the consecutive output values of a flow-chart f-procedure Fs of 9.I
when we feed in succession the input values 0, 1,..., i,..., i e N _C A (from Recursion
Theory: an r.e. set is the range of a total recursive function).

The flow-chart p-procedure So ~ which defines the same predicate as S ~ over the
domain A is shown in Fig. 1. Yo, Yz, Y~ ,... are variables which do not appear among

Input variables: x I ,o.. ,x k

yo:O

]
y+ : output value of F s

e e

"

YZ " Godel-number i
of ~ - term t ('~)!

q
(Value of t (Y)

y3=,~ when "~ is
I assigned SEA k

mber ob~inedI
Yl -,~ by chopping off I

I. u j t " r j (t) ^ " ~

I o

Yes No
YO = (YO)'

FIO. 1 (the x and a with arrows are equivalent to the bold face x and a in the text).

402 A.J . KFOURY

{xl ,..., xk}. All the boxes are flow-charts. We explain what each one of them does in
the simulation of S~;

F s generates the G6del-numbers of the R-sequence of S;
Frj (respec. F_~r), 0 ~ j ~< l, checks whether a G6del-number is that of an

expression which begins with rr 1 ,.. . , tw) (respectively, ~ r r 1 tw)), where
w is the arity of re and t 1 ,..., tw are arbitrary x-terms;

DlJ computes the GSdel-numbers of the w x-terms appearing as arguments of
rj(respectively, -~rj), from the latter's G6del-number;

D2 j computes the values of t t ,..., tw at any assignment of input values a 1 ,..., a~
from A to x 1 ,..., x k ;

D3 j computes the G6del-number of the expression obtained by chopping off an
initial segment of the form "rj(t 1 tw)A" (respectively, "~r~(t 1 ,... , tw)^");

E checks whether a GSdel-number is that of YES or that of NO, and outputs an
answer accordingly.

In view of Lemma 2, it is not difficult to see that all the forementioned boxes,
except possibly for D2~ , are flow-chartable. We verify next that D2o also can be written
as a flow-chart. (So far, without D2~ , equality = is only needed over N _C A. Equality
is needed, however, over the entire domain A for the definition of D2J , as shown next,
thus explaining why totality in structural condition ~, has been required.) Before
describing the action of Dz~, observe the following fact [*] (we shall use condition 8
in the form given at the end of Section 3): The evaluation of any n-x- term i(x) at
al ,..., ak can be done by some f i x e d flow-chart f -procedure of 9.I, say H, with k + 1
input variables and using n + a few more other variables; if the input values to H are
a I ,..., ak , and e, where e is the G6del-number of n-x- term i(x), then the output
value of H is iA(ax ,..., ak). We omit the details of [*]. Note, in passing, that H too
needs the equality relation over N C A only.

With no loss of generality, assume that r~ has just one argument t (x 1 ,.. . , xk) , i.e., rj
is a 1-ary relation symbol. D2J is to find the value of x- te rm t(x) at input values
at ,..., ak 6 A. I t proceeds as follows. From the G6del-number of t(x), it finds the
G6del-number of a sequence of x-terms: tt(x), t2(x) tu(x) = t(x), where each
ti(x), 1 ~ i ~ u, is either a variable from {x 1 ,..., xk} or f (t i l ,..., ti~) for some

f ~ { f o , . . . , fro} and t~ t~, all appear before t~ in the sequence. Next, D2J begins
enumerating G6del-numbers of sequences of n-x-terms of length u, of the form:
il(x), i~(x),..., iu(x). Suppose D2J stops this enumeration when it finds such a sequence
of n-x-terms satisfying:

t l A (a) = /1A(a),..., t~A(a) = i~A(a). [**]

Observe that, since 9~ satisfies structural condition 8, there exists a sequence i 1 ,..., iu
of n-x-terms satisfying [**]. Then, to find the value of x- te rm t(x) at a ~ A k, D2 j has
only to compute the value of n-x- term ~(x) at a. The latter computation is feasible
on a fixed flow-chart H, by fact [.] above.

TRANSLATABILITY OF SCHEMAS 403

To complete the proof, it remains to show that D2~ (a flow-chart) can indeed check
whether condition [**] hold, for arbitrary a ~ A k and arbitrary u ~ N. Suppose that all
the operation symbols f0 ,...,fro are of arity ~< q. D~ will have (q + 1) copies of
flow-chart H as subroutines. To check whether tiA(a) = iiA(a), 1 ~< i ~< u, D2~
performs the following steps

(a) Find which operation symbol is used in going from t 1 , t i - i to ti , say it is
f ~ { f o ,f,,}; that is, t i is of the f o r m f (t q ,..., t i) where v ~< q and it ,..., iv
are all in {1, . , i -- 1};

(b) Evaluate i~(a),..., id(a), as well as iiA(a) on (v + 1) copies of H (out of
(q + 1) >/(v + 1) available copies of H);

(c) Check whether fA(l~(a),..., i~ (a))= i,A(a), which is possible because 9.1[
satisfies 9'; in case of a positive answer, tiA(a) is indeed the same as iiA(a)
(but note that at no time does D~ have to evaluate tiA(a) itselfl) and D2 a goes
on to check whether t~+t(a) = i/a+l(a) in a similar way; in case of a negative
answer, D2~ computes the G6del-number of a new sequence of n-x-terms
of length u.

Proof of Proposition III. Define for each integer i ~ N a finite structure ~ i of
cardinality (i + 1) such that

= (. 4 , ; = ; () ') ,
A~ = {aio a . } ,

(aij)' = t ai(j+l) ' if j < i,
taio, if j = i.

Let the structure 9~ be the union u{9.Ii [i ~ N}. It is clear that 9.I satisfies structural
condition --he. Define now S x to be the following flow-chart schema

lnpul variable: x 0

=Xo.~

Yes

~Xo?
No "

For all inputs b ~ A , Slg(b) = YES ~*- substructure of 9.I generated by b has an odd
cardinality; and Sle(b) = NO-r substructure of 92[generated by b has an even
cardinality. It is not difficult to verify that there is no quasi-loop-free p-procedure of ~ ,
S~ ~t, such that $1 ~t ~ $2 ~.

404 A.J. KFOURY

LEMMA 3. Let 9~ be a finite interpretation, and S a flow-chart schema with k input
variables. Given any input value a ~ A k, it is decidable whether S~t(a) terminates.

Proof. This is extracted from the second proof of Theorem 1 in [12]. Let the
finite cardinality of the domain A be n. Suppose S has t instructions and uses u /> k
variables, where t and u are positive integers. Define a state of S ~t to be an instruction
of S a together with an entry from the set A u {.} for each of the u variables, where
the symbol * abbreviates the expression "not yet assigned a value from A." Thus,
S ~t has at most t �9 (n + 1)" states. If, during the computation of S ~ on input a ~ A k,
a state is repeated then Sa(a) is doomed to loop; i.e., if S91(a) is converging, then it
must be in ~< t . (n + 1)" steps.

Proof of Proposition IV. We define a flow-chart schema ,q with counters and an
interpretation 9.I for S which satisfies structural condition --as, such that for no
flow-chart schema S (without counters) is it the ease that S~ ~ S a. The desired
interpretation 9.1 will be the one defined in the proof of Proposition III; it is clear
that it satisfies the forementioned structural condition.

As for the definition of ,q, note first that there is an effective enumeration of the
class of flow-chart schemas (without counters) in the similarity type (= ; () ') (that
of 9.I). Choose such an enumeration: S O ,..., Si ,..., i ~ N, and each S i e 5'~e �9 Using
Lemma 3, we can define a total recursive function F such that, for each i E N:

0, if S~ ~ is total,
F(i) = 1, otherwise,

where 9.I~ is the substructure of 9~ of size (i + 1). Schema ,if' is:

I
lnput var iable: x 0

I X t : : X 0

I
C o : = 0

/.,/.1~-1 X, : = (x I) '

/ , I , CO: = (Co)' ~ 1 = Xo .P

Input to subroutine F is in
~ n t er c o

~ l s c Output bf subroutine F is stored in counter c I
:OP

Stop"

TRANSLATABILITY OF SCHEMAS 405

The counters of ~q are denoted by Co, c t ,.... By Lemma 2 (ii), we can programF on the
counters of ~q, with c o and c 1 as the input and output counters of (the subroutine
defining) F. To complete the proof, we have to show that: For all Si ~ 5~te, there is an
input b ~ A (in fact, for all b ~ A t C_ A), such that ~qg(b) converges ~=~ Sig(b) diverges.
We omit the easy proof of this last fact.

Proof of Proposition V. We first define an effective schema S with one input
variable x and in the similarity type <P; L, R, C), where P is a 1-ary relation symbol,
L and R are 1-ary operation symbols, and C is a constant symbol (which in fact does
not appear in S, but will appear in the interpretations for S). For the sake of clarity,
we omit the assignment instructions in the binary tree of schema S. The arguments of
the test instructions, which are not strictly speaking in their legal form, show which
assignment instructions have been omitted; for example, the following test

stands for the following sequence of instructions

I X : ~ Lx

We abbreviate the nonterminating paths in S, which are taken to be infinite sequences
of the same assignment instruction, by the following

Schema S is shown in Fig. 2. Its finite paths cannot be described by a context-free
language (we shall not make this assertion more precise) so that S is not a recursive
schema. The important point is that S is drawn effectively, and the set of its finite

4 0 6 A, J. KFOURY

paths can therefore be described by a type 0 language. It is not difficult to see that the
binary tree of S corresponds to no flow-chart schema which has been "unwound".
(But note that, by Theorem II, there are interpretations over which S is equivalent
to some flow-chart.)

~Input variable: x

r +

P(Lx)_

P(.LZx) ~ P(LRx)
P{RLx)

" ~ P(L-RX) ('-') J,.. ~ Yes
P~LRLx)

(~ " ~ (,LRzX)

PtR~x)

FIGUPa~ 2

We now choose an algebraic structure

: (A; pA; L A, R A, C A)

which satisfies structural conditions ~, --n7, and 8, such that the procedure S ~ is
equivalent to no flow-chart procedure of 9g. The domain A is the set

A u1u bi, ,l
i~N O~j~2 t

where {air, bit}* : (hit, air, bit, (ait) 2, aitbit, bitait, (bij)2,...}, i.e., the set of finite
words over {air, bij} (note that the empty word hit is also indexed by i and j). Let
I w [denote the number of symbols in the word w ~ A, and]] w II denote the natural
number obtained by replacing air and bit in w by 0 and 1, respectively (l[w [] is in

TRANSLATABILITY OF SCHEMAS 407

binary notation). We also agree that]l ?tiC [] = 0. Given w E A, i.e., w ~ {air bij}* for
some fixed i and j, relation pA and operations L A and R a are defined as follows:

(true, if]w[= i and [] w [[~ j ,
PA(w) = I false, if [w I = i and II w II = J,

(false, otherwise,

LA(w) = ai~w,

RA(w) = bi~w.

We choose arbitrarily C A to be h00 (this is simply to satisfy structural condition fl).
To complete the proof, we use the method of the second proof of Theorem 1 in

Ref. [12]. We have to show that S 9I is not equivalent to any flow-chart procedure of 9.L
Given a flow-chart ~q, with t instructions and r variables, a state of procedure ~q~t

is specified by an instruction of S~ together with an entry from the set A U {*} for
each of the r variables, where the symbol �9 stands for the statement "not yet assigned
a value from A." Two states of S~, r and r are equivalent if the sequences of in-
structions for the computations continuing from Ct, 42 are the same. A moment of
thought will show that, if we restrict the inputs to S~ to be from {ai~, bi~}*, S~ has
at most t �9 (i + 3) ~ equivalence classes, for any i ~ N. While, if we restrict the inputs
to (ai~, bt~}* with j < 2 ~, S~ has at most t �9 (2i + 2)" equivalence classes. (To see this,
draw the complete binary tree corresponding to {aij, bij)*. ?tiJ is at the root, every left-
going arc corresponds to an application of L A, and every right-going arc corresponds to
an application of R A. Single out every w ~ (alj, bi~)* for which pA(W) is true; such w
is on the ith level of the binary tree. Consider how two values w 1 and w 2 must be
located on the binary tree so that changing the assignment of a variable from w 1 to w2,
or vice versa, does not affect the outcome of the computation by S~.)

Let flow-chart S have one input variable. If, during a computation by S ~, an
equivalence class is repeated then the computation is doomed to loop. Hence, if
~.q~t(?ti~-) is supposed to converge, it must be in less than t �9 (2i + 3) ~ steps, and at most
that many values are tested during the computation. Now, for i such that
2 i > t �9 (2i + 3) r, it is possible to choose k < 2 i such that the flow-chart procedure
~q~ cannot distinguish between ?ti2 i and ?tie , even though S~(?tt~,) is YES but S~t(?tik)
diverges (the choice of k is determined by the values tested by ~q~ in computing on
input ?t~2~). Hence, S ~ is not equivalent to ~q~t.

Proof of Corollary VI. We consider only the case of 9.1, from which will immediately
follow the case of an expansion ~ of 9.L We have the following facts: (i) a sublattice
of a distributive lattice is distributive; (ii) the free distributive lattice generated by n
elements is finite. The proof of (i) is easy. As for that of (ii), it foUows from [17,
Theorem 7, Chapter III]. (In [17], Birkhoff proves (ii) for the case when top I and
bottom 0 are adjoined, but the proof there can be easily amended for the case without

408 A.J. KFOURY

I and 0.) From (i) and (ii), we readily get: Given any n e N, the n-generated sublattices
of a distributive lattice 9~ are all of cardinality ~< w, for some finite w. Hence, using
Theorem I, any effective procedure of a distributive lattice 9d[(effective relative to
~<, t3, and t.)) can in fact be written as a quasi-loop-free procedure.

Proof ofCoroUary VII. Rings and fields of characteristic zero are algebraic
structures which satisfy structural conditions: fl (their domains contain an infinite
chain of order type ~o), 7 (one of their underlying relations is equality =) , 8 (because
their operations are either constant or unary or binary which are associative, use
condition 8 in the form given at the end of Section 3). The desired results are now
immediate consequences of Theorem II .

REFERENCES

1. ABRAMSON, Effective computation over the real numbers, in "Proc. of 12th SWAT Sympo-
sium," IEEE, 1971.

2. BROWN, GRINS, AND SZYMANSm, Program schemes with pushdown stores, SIAM J. Comput.
1 (1972), 242-268.

3. CHANDRA AND MANNA, Program schemas with equality, in "Proc. of 4th ACM Symposium
on Theory of Computing", 1972.

4. FRIEDMAN, Algorithmic procedures, generalized Turing algorithms, and elementary recur-
sion theory, in "Logic '69," North-Holland, Amsterdam, 1970.

5. GARLAND AND LUCKHAM, Program schemes, recursion schemes, and formal languages,
J. Comput. Sys. Sci. 7 (1973).

6. GARLAND AND LUCKHAM, On the equivalence of schemes, in "Proc. of 4th ACM Symposium
on Theory of Computing," 1972.

7. KFOURY, Comparing algebraic structures up to algorithmic equivalence, in "Proc. of IRIA
Symposium on Automata, Languages, and Programming, July '72," North-Holland,
Amsterdam, 1973.

8. KamSEL, Model-theoretic invariants, in "Theory of Models" (Addison, Henkin, and Tarski,
Eds.), North-Holland, Amsterdam, 1965.

9. MOSCHOVAmS, Abstract computability, Trans. Am. Math. Society 138 (1969), 427-504.
I0. PATERSON, Program schemata, in "Machine Intelligence 3," (Michie, Ed.), Edinburgh

University, 1968.
11. PATERSON, Equivalence problems in a model of computation, Ph.D. thesis, Cambridge Univ.

1967 or MIT A.I. Laboratory Technical Memo. no. 1, 1970.
12. PATERSON AND HF.WITT, Comparative schematology, in "Project MAC Conf. on Concurrent

Systems and Parallel Computation," 1970 or MIT A.I. Laboratory Technical Memo. No. 201.
13. SCOTT, The lattice of flow-diagrams, in "Symposium on Semantics of Algorithmic Languages"

(Engeler, Ed.), Springer, Berlin, 1971.
14. SHEPHERDSON AND STURGIS, The computability of partial recursive functions, J. Assoc.

Comp. Mach. 10 (1963), 217-255.
15. STRONG, High level languages of maximum power, in "Proc. of 12th SWAT Symposium,"

IEEE, 1971.
16. STRONG, Translating recursion equations into flow-charts, J. Comput. Sys. Sci. 5 (1971),

254-285.
17. BIRKHOFF, "Lattice Theory," 3rd ed., Vol. 25, Amer. Math. Soc. Colloquium Pub., 1967.

