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H I G H L I G H T S
c We examined the possibility of cooperation when a player owns a trinary reputation.
c We identified cooperative and stable populations in a game of indirect reciprocity.
c Cooperation occurs in our model under a simple reputation assignment rule.
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Indirect reciprocity is a reputation-based mechanism for cooperation in social dilemma situations when

individuals do not repeatedly meet. The conditions under which cooperation based on indirect

reciprocity occurs have been examined in great details. Most previous theoretical analysis assumed

for mathematical tractability that an individual possesses a binary reputation value, i.e., good or bad,

which depends on their past actions and other factors. However, in real situations, reputations of

individuals may be multiple valued. Another puzzling discrepancy between the theory and experiments

is the status of the so-called image scoring, in which cooperation and defection are judged to be good

and bad, respectively, independent of other factors. Such an assessment rule is found in behavioral

experiments, whereas it is known to be unstable in theory. In the present study, we fill both gaps by

analyzing a trinary reputation model. By an exhaustive search, we identify all the cooperative and

stable equilibria composed of a homogeneous population or a heterogeneous population containing

two types of players. Some results derived for the trinary reputation model are direct extensions of

those for the binary model. However, we find that the trinary model allows cooperation under image

scoring under some mild conditions.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Humans and other animals often cooperate even when coop-
eration is more costly than defection. In such social dilemma
situations, direct reciprocity is among main reasons for coopera-
tion between pairs of individuals that repeatedly meet each other
(Trivers, 1971; Axelrod, 1984). However, individuals, in particular
humans, cooperate with others even when they seldom meet the
same partners more than once, as is the case for large popula-
tions. Reputation-based indirect reciprocity (also called down-
stream reciprocity; we simply call it indirect reciprocity in this
paper) seems to be a dominant mechanism that enables coopera-
tion in this situation. In indirect reciprocity, individuals cooperate
with others with good reputations and they in turn gain good
reputations if they appositely behave (e.g., cooperate) toward
ll rights reserved.

asuda).
somebody else. The conditions under which indirect reciprocity
realizes cooperation have been theoretically and numerically
clarified in great details (Nowak and Sigmund, 1998a,b; Leimar
and Hammerstein, 2001; Panchanathan and Boyd, 2003;
Mohtashemi and Mui, 2003; Fishman, 2003; Ohtsuki, 2004;
Ohtsuki and Iwasa, 2004, 2006, 2007; Nowak and Sigmund,
2005; Brandt and Sigmund, 2004, 2005, 2006; Pacheco et al.,
2006; Roberts, 2008; Uchida, 2010; Nakamura and Masuda, 2011;
Berger, 2011; Sigmnud, 2012).

Under the so-called image scoring, cooperation and defection
are regarded to be good and bad behavior, respectively (Nowak
and Sigmund, 1998a,b). Laboratory experiments suggest that
humans use image scoring to evaluate others’ behavior
(Wedekind and Milinski, 2000; Milinski et al., 2001; Seinen and
Schram, 2006). However, main theories attain that image scoring
does not stabilize cooperation (Leimar and Hammerstein, 2001;
Panchanathan and Boyd, 2003; Ohtsuki, 2004; Ohtsuki and Iwasa,
2004, 2007; Roberts, 2008). Although some studies have shown
the viability of cooperation under image scoring (Nowak and
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Sigmund, 1998a; Fishman, 2003; Brandt and Sigmund, 2004,
2005, 2006; Uchida, 2010), the situations in which cooperation
occurs are, in our view, quite restricted (but see Berger, 2011;
we discuss this reference in Section 5). Under image scoring,
cooperation occurs only when individuals always cooperate in the
first round (Nowak and Sigmund, 1998a), unconditional defectors
sometimes cooperate (Fishman, 2003), the number of interaction
obeys the binomial distribution (Brandt and Sigmund, 2004) or
Poisson distribution (Brandt and Sigmund, 2006), the probability
that individuals recognize others’ reputations increases in time
(Brandt and Sigmund, 2005), or the reputations of individuals are
revealed to others with a small probability (Uchida, 2010). There-
fore, the reason for the discrepancy between the experiments and
theory remains obscure.

For mathematical tractability and possible influences of the
first seminal theoretical papers on this subject (Nowak and
Sigmund, 1998a,b), most theoretical results of indirect reciprocity
are derived from the analysis of binary reputation models.
In other words, individuals are endowed with the binary reputa-
tion, i.e., good (þ) or bad (�), depending on the last action
toward others and other factors. However, the binary reputation
may not be realistic in that only the last behavior of an individual
in the social dilemma situation determines the reputation of the
individual. In fact, experimental (Wedekind and Milinski, 2000;
Milinski et al., 2001, 2002; Seinen and Schram, 2006; Wedekind
and Braithwaite, 2002; Keser, 2003; Bolton and Katok, 2004;
Bolton et al., 2005; Engelmann and Fischbacher, 2009) and
numerical (Diekmann and Przepiorka, 2005) studies of indirect
reciprocity in the context of online marketplaces often assume
that the reputations are many valued, which complies with the
reality of online marketplaces (Resnick and Zeckhauser, 2002;
Resnick et al., 2006). More than binary valued reputations have
also been employed in numerical studies of indirect reciprocity in
theoretical biology literature (Nowak and Sigmund, 1998b;
Leimar and Hammerstein, 2001; Mohtashemi and Mui, 2003;
Roberts, 2008). Nevertheless, these studies are not concerned
with relationships between the degree of cooperation and the
number of the possible reputation values.
Fig. 1. Rule of the donation game with trinary reputations. (A) Illustration of the inte

The rows represent the donor’s actions (i.e., C and D), the columns represent the recipien

assigns to the donor. (D) Representative social norms in the binary reputation model.
In this paper we analyze a trinary reputation model to identify
stable populations that realize cooperation. The difference
between the present results and those derived from the binary
reputation models is remarkable. In particular, we find that image
scoring can stabilize cooperation in the trinary reputation model.
2. Model

2.1. Donation game with reputations

We consider an infinitely large population. In each generation,
the so-called donation game is repeated for sufficiently many
rounds. Fig. 1(A) illustrates the interaction in each round. Two
players are randomly selected from the population, one as donor
and the other as recipient, with the equal probability. The donor
intends to cooperate (C) or defect (D) toward the recipient
according to the action rule s, which we define below. We assume
that the donor misimplements intended C such that the donor
actually defects with probability Ei40 and that the intended D is
always correctly implemented. We seek the possibility of coop-
eration in the population under this kind of implementation error,
which is adverse to cooperation (Panchanathan and Boyd, 2003;
Fishman, 2003; Ohtsuki, 2004; Ohtsuki and Iwasa, 2004, 2006,
2007; Nowak and Sigmund, 2005; Brandt and Sigmund, 2004,
2005, 2006; Uchida, 2010; Berger, 2011). If the donor implements
C, the donor pays cost c, and the recipient obtains benefit b. If the
donor implements D, the payoffs to the donor and recipient do
not change. We assume that 0ocob such that the donation
game is essentially the prisoner’s dilemma.

We assume that each player possesses a reputation that takes
one of the three values, i.e., G (Good), N (Neutral), or B (Bad).
The action rule s is a function from the recipient’s reputation to the
donor’s intended action (i.e., C or D). Therefore, there are 23

¼ 8
action rules, as shown in Fig. 1(B). For example, the AllC and AllD
intend C and D regardless of the recipient’s reputation, respectively.
The so-called generous discriminator (gDisc) intends C when
the recipient’s reputation is either G or N and D otherwise.
raction in a single game. (B) Eight action rules. (C) Representative social norms.

t’s reputations (G, N, and B), and þ and � represent the assessments that observer



Fig. 2. Two types of reputation dynamics. (A) Gradual reputation dynamics.

(B) Saltatory reputation dynamics. F represents the probability that the donor

receives þ .
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The so-called rigorous discriminator (rDisc) intends C when the
recipient’s reputation is G and D otherwise.

At the end of each round, the observer assesses the donor to be
þ or � depending on the donor’s implemented action (i.e., C or D)
and the recipient’s reputation (i.e., G, N, or B). Such an assessment
rule is a function from the donor’s implemented action and the
recipient’s reputation to the observer’s assessment and is called
the second-order social norm, which extends the concept in the
case of the binary reputation (Leimar and Hammerstein, 2001;
Nowak and Sigmund, 2005). There are 22�3

¼ 64 social norms. For
example, under the social norm called image scoring (Fig. 1(C)),
the observer assigns þ and � to the donor’s actions C and D,
respectively, regardless of the recipient’s reputation. Another
social norm named scoring–standing is also shown in Fig. 1(C).
Finally, we assume that the assessment (i.e., þ or �) that the
donor receives is opposite to the one assigned by the observer
with probability Ea40 (Ohtsuki and Iwasa, 2004, 2007;
Nakamura and Masuda, 2011). We assume that the donor’s
reputation is publicly shared in the population. In other words,
the donor’s new reputation is instantaneously known to all the
players in the population.

We repeat many rounds of the game and define the payoff to
each player as the sum of the payoff obtained in the games that
involve the player. Because the population is infinite, each pair of
players plays the game at most once such that direct reciprocity is
excluded.

For a later use, we mention four representative second-order
social norms in the binary reputation model (Fig. 1(D)). Image
scoring (‘‘scoring’’ in Fig. 1(D)) does not stabilize cooperation
(Panchanathan and Boyd, 2003; Ohtsuki, 2004; Ohtsuki and
Iwasa, 2004, 2007; Roberts, 2008) unless somewhat strong
conditions are met (Nowak and Sigmund, 1998a; Fishman,
2003; Brandt and Sigmund, 2004, 2005, 2006; Uchida, 2010)
(but see Berger, 2011). Simple standing (‘‘standing’’ in Fig. 1(D))
and stern judging (‘‘judging’’ in Fig. 1(D); also called Kandori,
1992) are known to stabilize cooperation (Ohtsuki and Iwasa,
2004). Shunning stabilizes cooperation under certain conditions
(Ohtsuki and Iwasa, 2007; Nakamura and Masuda, 2011).

2.2. Reputation dynamics

After each round, the donor’s reputation is updated on the
basis of the observer’s assessment. Basically, the donor’s reputa-
tion shifts upward and downward if the donor receives þ and � ,
respectively. When the reputation is binary (i.e., G and B), G and B
are equivalent to þ and � that the donor receives in the last
game, respectively (Nowak and Sigmund, 1998a, 2005). However,
the relationship between the reputation and assessment is not
straightforward in the trinary reputation model. We assume that
reputation dynamics obey a Markov chain. We consider the
reputation dynamics illustrated in Fig. 2.

In the reputation dynamics shown in Fig. 2(A), which we call
the gradual dynamics, the reputation is assumed to move by at
most one level in each round. The reputation is unchanged with
probability a (0rao1).

In the reputation dynamics shown in Fig. 2(B), which we call
the saltatory dynamics, the donor’s reputation can transit from
G to B or vice versa in one step. When a G donor receives � ,
the donor’s new reputation becomes B and N with probabilities bd

and 1�bd, respectively ð0rbdr1Þ. When a B donor receives þ ,
the donor’s new reputation becomes G and N with probabilities
bu and 1�bu, respectively ð0rbur1Þ. When ðbd,buÞ ¼ ð1,0Þ, the
reputation dynamics are similar to the so-called T-period punish-
ment with T¼2 (Kandori, 1992) in which players have either state
0 (innocent), 1 (guilty and no repent), y, or T (guilty and T�1
times of repentant behavior). Guilty players in state 1 regain the
innocent state by cooperating with innocent players successive T

times. Therefore, the states 0, 1, and 2 are similar to reputations
G, B, and N, respectively, in our model. When ðbd,buÞ ¼ ð0,1Þ,
the reputation dynamics are similar to the so-called tolerant scoring
(Berger, 2011) because the donor’s reputation becomes B if and only
if the donor receives � in the last two rounds, and the donor
obtains a G reputation if the donor cooperates just once.
3. Analysis methods

3.1. Homogeneous populations

We first examine the stability of a homogeneous population of
resident players with action rule s against mutants with different
action rules under a given social norm. Let pG, pN, and pB be the
probabilities that the reputation of a resident player is G, N, and B,
respectively. After a transient of the reputation dynamics, the
three probabilities converge to the equilibrium values denoted by
pn

G, pn
N, and pn

B. For expository purposes, we focus on the gradual
reputation dynamics (Fig. 2(A)) in this section. The following
calculations are similar for the saltatory reputation dynamics
(Fig. 2(B)); the corresponding results are shown in Appendix A.
For the gradual reputation dynamics, we obtain

pn

G ¼ pn

G½aþð1�aÞF
n
�þpn

Nð1�aÞF
n,

pn
N ¼ pn

Gð1�aÞð1�F
n
Þþpn

Naþpn
Bð1�aÞF

n,

pn
B ¼ pn

Nð1�aÞð1�F
n
Þþpn

B½aþð1�aÞð1�F
n
Þ�,

8><
>: ð1Þ

where Fn is the probability that the donor receives þ in the
equilibrium. Eq. (1) and the normalization pn

Gþpn
Nþpn

B ¼ 1 lead to

ðpn

G,pn

N,pn

BÞ ¼
Fn2

1�Fn
þFn2

,
Fn
ð1�Fn

Þ

1�Fn
þFn2

,
ð1�Fn

Þ
2

1�Fn
þFn2

 !
: ð2Þ

It should be noted that Eq. (2) and the following results are
independent of the value of a. Eq. (2) implies that the distribution
of the reputation is monotonous in the sense that pn

G4pn
N4pn

B

if Fn40:5 and pn

Gopn
Nopn

B if Fno0:5.
Fn is given by

Fn
¼

X
rA fG,N,Bg

pn

r ½zrFC,rþð1�zrÞFD,r�, ð3Þ

where zr represents the probability that the donor’s implemented
action is C when the recipient has reputation rAfG,N,Bg. zr has a
one-to-one correspondence with action rule s. For example, AllC,
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gDisc, rDisc, and AllD are equivalent to ðzG, zN, zBÞ ¼

ð1�Ei,1�Ei,1�EiÞ, ð1�Ei,1�Ei,0Þ, ð1�Ei, 0, 0Þ, and ð0,0,0Þ, respec-
tively. FC,r and FD,r in Eq. (3) are the probabilities that the donor
receives þ when the donor’s action is C and D, respectively, and
the recipient has reputation rAfG,N,Bg. For example, under image
scoring (Fig. 1(C)), FC,r ¼ 1�Ea and FD,r ¼ Ea for any r. Under the
so-called scoring–standing (see Section 4.1 for the notation of the
social norms) shown in Fig. 1(C), FC,r ¼ 1�Ea for any r,
FD,þ ¼FD,0 ¼ Ea, and FD,� ¼ 1�Ea. Each term on the right-hand
side of Eq. (3) is a multiplication of three probabilities, i.e.,
(i) probability pn

r that a recipient with reputation r is selected,
(ii) probability zr or 1�zr that a donor implements C or D,
respectively, and (iii) probability FC,r or FD,r that the observer
assigns þ to the donor.

We substitute pn

G, pn
N, and pn

B obtained from Eq. (2) in the right-
hand side of Eq. (3), which we denote by f ðFn

Þ. We obtain Fn by
solving x¼ f ðxÞ, 0rxr1. Because f(x) has a quadratic numerator
and denominator in terms of x, equation x¼ f ðxÞ has at most three
solutions. Under any pair of action rule and social norm, to which
we refer as action–norm pair in the following, 0oEar f ðxÞr
ð1�EiÞð1�EaÞo1 holds true for any 0rxr1. Therefore, the itera-
tion scheme, in which we start with an initial x value (0rxr1)
and repeatedly apply f, always converges. If the iteration starting
from x¼0 and that starting from x¼1 converge to the same value,
the solution specified by Fn and fpn

G, pn
N, pn

Bg is unique. We
confirmed that x¼ f ðxÞ has a unique solution for each of the 8�
64¼ 512 action–norm pairs.

Let Cðs,fpG,pN,pBgÞ be the probability that a donor with action
rule s cooperates with a recipient randomly chosen from
a population according to reputation distribution fpG, pN, pBg.
We obtain

Cðs,fpG, pN, pBgÞ ¼ pGzGþpNzNþpBzB: ð4Þ

The average payoff per round to a resident player in the homo-
geneous population is given by

p¼�cCðs,fpn

G, pn

N, pn

BgÞþbCðs,fpn

G, pn

N, pn

BgÞ: ð5Þ

To examine the stability of the homogeneous population, we
consider an infinitesimally small fraction of mutants with action
rule s0ðasÞ that invades the homogeneous resident population.
The equilibrium probability distribution of the mutant’s reputa-
tion, denoted by fp0nG , p0nN , p0nB g, the equilibrium probability that a
mutant receives þ , denoted by F0n, and payoff to a mutant player,
denoted by p0, are given by

ðp0nG ,p0nN ,p0nB Þ ¼
F0n2

1�F0nþF0n2
,
F0nð1�F0nÞ

1�F0nþF0n2
,
ð1�F0nÞ2

1�F0nþF0n2

 !
, ð6Þ

F0n ¼
X

rA fG,N,Bg

pn

r ½z
0
rFC,rþð1�z0rÞFD,r�, ð7Þ

and

p0 ¼ �cCðs0,fpn

G, pn

N, pn

BgÞþbCðs,fp0nG , p0nN , p0nB gÞ, ð8Þ

respectively. In Eq. (7), z0r represents the probability that a
mutant cooperates with a recipient with reputation r. It should
be noted that pn

r in Eq. (7) is the solution of Eqs. (2) and (3) and
that FC,r and FD,r also refer to the values for the resident
population.

Action rule s adopted by the resident players is strict Nash
equilibrium if the payoff to a resident player (i.e., p) is larger than
the payoff to any mutant player (i.e., p0). Using Eqs. (5) and (8), we
obtain this condition as follows:

b

c
½Cðs,fp0nG , p0nN , p0nB gÞ�Cðs,fpn

G, pn

N, pn

BgÞ�

oCðs0,fpn

G, pn

N, pn

BgÞ�Cðs,fpn

G, pn

N, pn

BgÞ for any s0as: ð9Þ
We also investigate the stability of action rule s against
invasion by a previously identified strong competitor (Leimar
and Hammerstein, 2001), which is so-called the Self strategy
(Ohtsuki and Iwasa, 2004). A Self donor plays a donation game as
selfishly as possible under the constraint that the donor’s reputa-
tion stays above a threshold. When determining the action, the
Self donor refers to its own reputation and does not refer to the
recipient’s reputation. We assume that the Self donor defects if its
reputation is G and cooperates otherwise. Under the gradual
reputation dynamics, the Self player maintains its reputation
value at G or N, not B, except in the case of error.

3.2. Heterogeneous populations composed of two action rules

We also examine the stability of heterogeneous populations in
which two action rules, denoted by s1 and s2, coexist with fractions
q1 and q2, respectively (q1þq2 ¼ 1). For each of ðq1,q2Þ ¼ ð0:01,0:99Þ,
ð0:02,0:98Þ, . . . ,ð0:99,0:01Þ), we first calculate the equilibrium prob-
abilities of þ for s1 and s2 by an iteration scheme similar to that
described in Section 3.1. Under the gradual reputation dynamics, the
distribution of the reputation values is given by

ðpn

G,i,p
n

N,i,p
n

B,iÞ ¼
Fn2

i

1�Fn

i þF
n2
i

,
Fn

i ð1�F
n

i Þ

1�Fn

i þF
n2
i

,
ð1�Fn

i Þ
2

1�Fn

i þF
n2
i

 !
, ð10Þ

where pn

r,i is the equilibrium probability that a player with action
rule i (i¼1,2) possesses reputation rAfG,N,Bg, and Fn

i represents
the equilibrium probability that a si player receives þ . The
equivalent of Eq. (10) and the following results can be obtained
similarly for the saltatory reputation dynamics. Fn

i is given by

Fn

i ¼
X2

j ¼ 1

X
rA fG,N,Bg

qjp
n

r,j½zr,iFC,rþð1�zr,iÞFD,r�, ð11Þ

where zr,i is the probability that a si donor implements C when the

recipient has reputation r. Substitution of Eq. (10) into Eq. (11) leads

to Fn
�!
¼ gðFn

�!
Þ, where Fn

�!
¼ ðFn

1,Fn

2Þ.

It should be noted that Fn
�!
¼ gðFn

�!
Þ may have multiple fixed

points. An example is given by the population composed of the equal

fraction of s1 ¼ gDisc and s2 ¼ rDisc, i.e., q1 ¼ q2 ¼ 0:5, under image

scoring. In this case, both a cooperative population (i.e., Fn

1,

Fn

2 � ð1�EiÞð1�EaÞ) and a defective population (i.e., Fn

1, Fn

2 � Ea)

satisfy Fn
�!
¼ gðFn

�!
Þ. Because of the multistability, we adopt

112
¼ 121 initial conditions, i.e., F

!
¼ ð0:1i, 0:1jÞ, 0r i, jr10, for

the iteration scheme to identify all the fixed points. In fact, we find
that the multistability does not cause a severe problem. We will show
in Results that five mixed populations composed of two action rules
are stable and realize a sufficiently large probability of cooperation.
Among them, only one population, which consists of gDisc and rDisc
and is stable under the so-called scoring–shunning social norm, yields
the bistable equilibria. One equilibrium yields a large cooperation
probability (40:93) and the other equilibrium yields a low coopera-
tion probability (o0:03). These results are qualitatively the same for
the gradual and saltatory reputation dynamics. For this social norm,
we only keep the more cooperative equilibrium.

Then, we obtain the trinary distribution of reputation for each
of the two action rules by substituting Fn

i in Eq. (11). The average
payoff per round to a si resident player (i¼1,2) is given by

pi ¼�c
X2

j ¼ 1

qjCðsi,fp
n

G,j,p
n

N,j,p
n

B,jgÞþb
X2

j ¼ 1

qjCðsj,fp
n

G,i,p
n

N,i,p
n

B,igÞ,

ð12Þ

where Cðsi,fp
n

G,j, pn

N,j, pn

B,jgÞ is the probability that a si donor
cooperates with a sj recipient. In the equilibrium, the payoffs to
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the players with the different action rules are the same. Therefore,
we calculate the value of b=c for which p1 ¼ p2. If
dðp1�p2Þ=dq140, the mixed population is unstable against an
infinitesimally small drift of the fraction of the two action rules.
We are concerned with the pairs of s1 and s2 that satisfy
dðp1�p2Þ=dq1o0 at the obtained b=c value.

The mixed population is strict Nash when the payoff to any of
the six mutants with a third action rule is smaller than that to a
resident player. By substituting Eq. (6) in

F0n ¼
X2

j ¼ 1

X
rA fG,N,Bg

qjp
n

r,j½z
0
rFC,rþð1�z0rÞFD,r�, ð13Þ

we obtain the equilibrium probability that a mutant receives þ
(i.e., F0n) and the equilibrium distribution of the mutant’s reputa-
tion (i.e., fp0nG ,p0nN ,p0nB g). The payoff to a mutant player is given by

p0 ¼ �c
X2

j ¼ 1

qjCðs0,fpn

G,j, pn

N,j, pn

B,jgÞþb
X2

j ¼ 1

qjCðsj,fp
0n
G , p0nN , p0nB gÞ:

ð14Þ

As in the analysis of the homogeneous population, we also
examine the stability of the heterogeneous population against
invasion by the Self mutant (Section 3.1).

We do not examine the mixed population composed of more
than two action rules.
4. Results

We refer to each action rule by concatenating three letters,
either C or D. The first, second, and the third letters represent the
intended action toward a recipient with reputation G, N, and B,
respectively. For example, gDisc¼ CCD and rDisc¼ CDD.

4.1. Gradual reputation dynamics

4.1.1. Enumeration of stable populations

We set Ei ¼ Ea ¼ 0:02 and consider the gradual reputation
dynamics (Fig. 2(A)). We found that the homogeneous population
is stable against invasion by mutants for some benefit-to-cost
values b=c for 108 out of 8� 64¼ 512 action–norm pairs. We
exclude 64 pairs with s¼ AllD from the 108 pairs because of the
lack of cooperation. The entire game is symmetric with respect to
the simultaneous flipping of G2B and þ2� (Ohtsuki and Iwasa,
2004). Therefore, there are ð108�64Þ=2¼ 22 essentially distinct
pairs. The 22 pairs are listed in Table 1. In addition, there are nine
essentially distinct mixtures of two action rules that are stable
Table 1

Stable action–norm pairs. We also show the range of b=c in which action rule s is stabl

dynamics. An asterisk represents either þ or � . We set Ei ¼ Ea ¼ 0:02.

s sG sN sB Rang

CCD þ� þ� n þ 8:480

�� 8:108

þ� 8:230

CDC þ� þ� þ� 52:63

CDD þ� n þ n þ 1:004

n þ �� 1:004

�� n þ 1:018

DCD n � þ� n þ 3:716

þ� n � 1:137

�� �� 1:120

�� þ� 1:120

CDD þ� �� �� 25:54
under a certain social norm. Among these stable populations,
there are 12 homogeneous populations composed of a single
action rule and five heterogeneous populations composed of two
action rules that realize a probability of cooperation larger than
0.5 for a b=c value smaller than 20. Our additional numerical
simulations suggest that the probability of cooperation tends to
unity if and only if this criterion is satisfied (Appendix B).

The cooperative equilibria, i.e., stable populations satisfying
this criterion under a given social norm, are summarized in
Fig. 3(A). In Fig. 3(A), a social norm is represented by a combina-
tion of sG, sN, and sB, each of which takes eitherþþ, �þ , �� , or
þ� . For example, sG ¼�þ indicates that donor’s implemented
action C and D toward a G recipient is assessed to be � and þ ,
respectively. In fact, all the cooperative equilibria require sG ¼ þ�

such that only sN and sB are indicated in Fig. 3(A).

4.1.2. sN ¼ þþ or �þ
Six action–norm pairs having s¼ rDisc, sG ¼ þ�,

sN ¼ þþ or �þ , and sB ¼ þþ , �þ , or �� realize a large prob-
ability of cooperation (� 0:94), a large probability of þ (� 0:98),
and a mild restriction on b=c (i.e., b=c41:004). In these equilibria,
most resident players have the G reputation because the prob-
ability of þ is large. A small fraction of players possesses the N
reputation owing to error (see Section 2.1 for the definition of two
types of error), and an even smaller fraction of players possesses
the B reputation. We verified that the population is stable against
invasion by Self players (Section 3.1) under each of the six
social norms.

We call the six social norms standing–standing, standing–
judging, standing–shunning, judging–standing, judging–judging,
and judging–shunning. The first (second) half of the name
represents the social norm represented by sG and sN (sG and sB)
in the case of the binary reputation model. For example, the
combination of sG ¼ þ� and sN ¼ þþ represents the standing
social norm in the binary model if N is identified with B in the
binary model (Fig. 1(D)). Similarly, the combination of sG ¼ þ�

and sB ¼�þ represents the judging social norm in the binary
model. Therefore, we call the social norm given by sG ¼ þ�,
sN ¼ þþ , and sB ¼�þ standing–judging.

The six norms realize nearly perfect cooperation because the
first half of the social norm (i.e., combination of sG and sN)
is either standing or judging and the rDisc donor cooperates with
G recipients, but not N recipients. It should be noted that standing
and judging are the only second-order social norms that stabilize
cooperation without special conditions in the binary reputation
model (Ohtsuki and Iwasa, 2004). Even if the donor’s reputation
transits from N to B owing to error, the donor regains the N
e, probability of C, and mean þ assessment (i.e., Fn) under the gradual reputation

e of b=c %C F*

ob=c 0.9784 0.9800

ob=c 0.9783 0.9783

ob=co12:53

ob=c 0.9424 0.9808

ob=c 0.9409 0.9808

ob=c 0.9392 0.9792

ob=c 0.6571 0.7445

ob=c 0.3191 0.5688

ob=co1:296 0.1833 0.1833

ob=c

ob=co11:66

ob=c 0.0004 0.0004
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Fig. 3. Results for the gradual reputation dynamics. We set Ei ¼ Ea ¼ 0:02. (A) Cooperative and stable action rules under different social norms. All the shown social norms

own sG ¼ þ�. (B) Average cooperation probability and the fraction of gDisc players under scoring–standing (i.e., sG ¼ sN ¼ þ� and sB ¼ þþ). It should be noted that the

fraction of gDisc and that of rDisc sum to unity. (C) Average cooperation probability and the fraction of gDisc players under scoring–scoring (also called image scoring;

sG ¼ sN ¼ sB ¼ þ�). The fraction of gDisc and that of CDC or AllC sum to unity.
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reputation by cooperating with a G recipient, which occupies the
majority of the population. Although donors meeting recipients
with the B reputation receive � under sB ¼��, cooperation at the
population level is maintained because few players have the B
reputation.

4.1.3. sN ¼��

Two cooperative action–norm pairs, i.e., s¼ rDisc, sG ¼ þ�,
sN ¼��, and sB ¼ þþ or �þ , are also stable under a mild condi-
tion on b=c, i.e., b=c41:018. The homogeneous population of
rDisc is not invaded by Self strategy under each of the two social
norms. However, the probability of þ (� 0:74) and that of
cooperation (� 0:66) are not as large as those for the previous
six action–norm pairs. This is intuitively because, under the
current social norms, i.e., shunning–standing and shunning–
judging, a donor whose recipient has an N reputation always
receives � except in the case of the assessment error. This
behavior of the model is similar to that under shunning in the
binary reputation model. Nevertheless, different from the case of
the binary model, the cooperation probability tends to unity in
the error-free limit (Appendix B) for the two norms in the trinary
reputation model. We discuss this point further in Section 5.

4.1.4. sN ¼ þ�

The other cooperative equilibria are four homogeneous popu-
lations and five heterogeneous populations, which are stable
under social norms satisfying sG ¼ sN ¼ þ� (Fig. 3(A)). For
sB ¼ þþ (scoring–standing) and �þ (scoring–judging), a homo-
geneous population composed of gDisc is stable for large b=c

(48:480), and a mixed population composed of gDisc and rDisc is
stable for small b=c (o8:480). For sB ¼�� (scoring–shunning), a
homogeneous population composed of gDisc is stable for large b=c
(48:108), and a mixed population composed of gDisc and rDisc is
stable for small b=c (o8:108). The fraction of gDisc increases with
b=c under scoring–standing and is unity when b=c48:480,
as shown in Fig. 3(B). The results shown in Fig. 3(B) are indis-
tinguishable from those for scoring–judging and similar to those for
scoring–shunning. For the three social norms, the fraction of gDisc
converges to 1�c=b in the limit Ei, Ea-0 (Appendix C), which
implies that only the mixed population of gDisc and rDisc is stable
in the error-free limit. Consistent with this, the threshold value of
b=c above which the homogeneous gDisc population is stable
diverges as the error probabilities become small (Appendix B).

If we hypothetically merge G and N, our result that coopera-
tion is stable under scoring–standing and scoring–judging corre-
sponds to the fact that the cooperation is stable under standing
and judging, respectively, in the binary model (Ohtsuki and Iwasa,
2004). Under scoring–shunning, cooperation is not undermined
by sB ¼�� for the same reason as that for standing–shunning and
judging–shunning (see Sections 4.1.2 and 5).

Under scoring–scoring (i.e., sG ¼ sN ¼ sB ¼ þ�), which we also
call the image scoring (Fig. 1(C)), there are three types of
stable populations depending on the b=c value. When
1:941ob=co8:230, the mixed population composed of gDisc
and CDC is stable (Fig. 3(C)). We regard CDC as a variant of rDisc
because there are few players having the B reputation in the
stable population; a CDC player obtains a slightly larger payoff
than an rDisc player. In fact, the mixed population of gDisc and
rDisc is stable against invasion by all but CDC mutants. When
8:230ob=co12:53, the homogeneous population of gDisc is
stable (Fig. 3(C)). When b=c412:53, the mixed population com-
posed of gDisc and AllC is stable (Fig. 3(C)). In all the three cases,
cooperation occurs with a large probability (40:94). This result is
in a stark contrast with that in the binary reputation model,
whereby image scoring does not usually support cooperation
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(Panchanathan and Boyd, 2003; Ohtsuki, 2004; Ohtsuki and
Iwasa, 2004, 2007; Roberts, 2008). We discuss this discrepancy
in Section 5.

Under image scoring, the values of b=c and the error prob-
abilities under the assumption Ei ¼ Ea, for which one of the three
populations is stable are shown in Fig. 4(A). For small error, the
homogeneous population of gDisc and the mixed population
composed of gDisc and AllC are invaded by rDisc mutants. Only
the heterogeneous population composed of gDisc and CDC sur-
vives the error-free limit. In this limit, the fraction of gDisc is
given by 1�c=b for the same reason as that for the heterogeneous
population composed of gDisc and rDisc under scoring–standing
(Section 4.1.4; also see Appendix C).

The nine populations stable under sG ¼ sN ¼ þ� are unstable
against invasion by Self mutants. When there are more than two
possible reputation values, Self is generally a strong competitor
under image scoring such that it undermines cooperation (Leimar
and Hammerstein, 2001). Our results are consistent with theirs.
In the next section, we propose a different reputation dynamics
that makes cooperation stable against invasion by Self under
image scoring.

4.2. Saltatory reputation dynamics

4.2.1. Downward saltation

We first investigate a saltatory reputation dynamics (Fig. 2(B))
given by bd ¼ 0:5 and bu ¼ 0. This dynamics implies that a G
reputation of a donor jumps down to a B reputation in one step
with a probability bd ¼ 0:5. We set Ei ¼ Ea ¼ 0:02 and identify
stable populations under each social norm. To select cooperative
equilibria, we imposed the same condition as that in the case of
the gradual reputation dynamics, i.e., a cooperation probability
larger than 0.5 for some b=co20.

We find that the set of cooperative equilibria (without con-
sideration of Self mutants) is the same as that for the gradual
reputation dynamics (Fig. 3(A)). The cooperation probability is
equal to 0.9237 for rDisc under standing–standing, 0.8614 for
rDisc under standing–shunning, 0.6804 for rDisc under shunning–
standing, 0.9340 for gDisc under scoring–standing, and 0.9340 for
gDisc under scoring–shunning or image scoring. The cooperation
probability is preserved if we replace standing by judging.
Because a G reputation can turn into a B reputation in one step,
the probability of cooperation is somewhat smaller than in the
case of the gradual reputation dynamics. The difference in the
cooperation probability between the two reputation dynamics is
relatively large when sB is �� or þ� . This is because players
with the B reputation, albeit occupying a small fraction, can make
other players with the G reputation to transit to the B reputation
in one step under these social norms.

Under image scoring, the stable population as a function of b=c

and the error probabilities under the assumption Ei ¼ Ea is shown
in Fig. 4(B). Fig. 4(B) is similar to the results for the gradual
reputation dynamics shown in Fig. 4(A). As a slight difference
between Fig. 4(A) and (B), less cooperative populations (e.g., a
homogeneous population of gDisc as compared to a heteroge-
neous population of gDisc and AllC) can be stable in the down-
ward saltatory reputation dynamics than in the gradual
reputation dynamics for the same values of b=c and the error
probability. This is intuitively because the downward saltatory
reputation dynamics yields worse reputations than the gradual
reputation dynamics.

We find that Self mutants cannot invade any of the stable
populations shown in Fig. 3(A).
4.2.2. Upward saltation

We next identified the stable populations under the saltatory
reputation dynamics (Fig. 2(B)) given by bd ¼ 0, and bu ¼ 0:5. This
dynamics implies that a B reputation of a donor jumps up to a G
reputation in one step with a probability bu ¼ 0:5. We set
Ei ¼ Ea ¼ 0:02 and identify stable populations under each social
norm. To select cooperative equilibria, we imposed the same
condition as that in the case of the gradual reputation dynamics,
i.e., a cooperation probability larger than 0.5 for some b=co20.

We find that the set of cooperative equilibria (without con-
sideration of Self mutants) is the same as that for the gradual
reputation dynamics. The cooperation probabilities in stable and
cooperative populations are equal to 0.9416 for rDisc under
standing–standing, 0.9401 for rDisc under standing–shunning,
0.7605 for rDisc under shunning–standing, 0.9785 for gDisc under
scoring–standing, and 0.9783 for gDisc under scoring–shunning
or image scoring. The cooperation probability is preserved if we
replace standing by judging. Because a B reputation can turn into
a G reputation in one step, the probability of cooperation is a little
larger than in the case of the gradual reputation dynamics.
The difference is relatively large when sN ¼��.

Under image scoring, the stable population as a function of b=c

and Ei ð ¼ EaÞ is shown in Fig. 4(C). Fig. 4(C) is quantitatively
different from the results for the gradual reputation dynamics
shown in Fig. 4(A). More cooperative action rules (e.g., a hetero-
geneous population of gDisc and AllC compared to a homoge-
neous population of gDisc) are stable in the upward saltatory
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reputation dynamics than in the gradual reputation dynamics for
the same values of b=c and the error probability. This is intuitively
because the upward saltatory reputation dynamics yields better
reputations than the gradual reputation dynamics.

We find that Self mutants cannot invade a homogeneous
population of rDisc under each of the eight social norms satisfying
sG ¼ þ� and sN ¼ þþ , �þ , �� . However, under social norms
satisfying sG ¼ sN ¼ þ�, with image scoring included, the nine
populations are not stable against invasion by Self mutants.
The result that Self undermines cooperation is the same as that
for the gradual reputation dynamics (Fig. 4(A)).
5. Discussion

We analyzed a trinary reputation model of indirect reciprocity
and identified cooperative Nash equilibria composed of a single
action rule or mixture of two action rules. Independent of details
of the reputation dynamics (i.e., gradual or saltatory), we found at
a small error level (i.e., Ei ¼ Ea ¼ 0:02) that 12 homogeneous
populations and five mixed populations are cooperative and
stable under different social norms (Fig. 3(A)). When the error
probabilities are even smaller, eight homogeneous populations
and four mixed populations remain stable (Appendix B).
In particular, under image scoring, the heterogeneous population
composed of gDisc and CDC (a variant of rDisc) is stable in the
error-free limit (Fig. 4(A); see Fig. 1(B) for the definition of gDisc,
CDC, and rDisc).

The results derived from the trinary reputation model and
those derived from the binary reputation model (Nowak and
Sigmund, 1998a) are similar in some aspects. For example, the
standing–standing social norm (i.e., sG ¼ þ�, sN ¼ sB ¼ þþ) in
the trinary model coincides with the standing social norm in the
binary model (Fig. 1(D)) if we merge the N and B reputations in
the trinary model. Therefore, the result that standing–standing
enables cooperation is not surprising. Similarly, scoring–judging
(i.e., sG ¼ sN ¼ þ�, sB ¼�þ), for example, is almost equivalent to
judging in the binary model if we merge G and N reputations in
the trinary model. However, the results for the trinary and binary
models are fundamentally different in the following two aspects.

First, shunning (see Fig. 1(D) in the case of the binary
reputation model) is more supportive of cooperation in the
trinary than binary model. In the binary model, shunning results
in a cooperation probability of � 1=2 in the error-free limit unless
a cooperation prone initial condition and a finite number of
rounds are combined (Ohtsuki and Iwasa, 2007) or reputations
of players are only partially visible to others (Nakamura and
Masuda, 2011). In the trinary model, shunning–standing and
shunning–judging stabilize full cooperation in the error-free limit
(Appendix B). Under these social norms, a donor meeting a
recipient with an N reputation receives � irrespective of the
action, which is common to the behavior of the binary model.
In the trinary model, however, even if a donor obtains a B
reputation, the donor easily receives þ either by cooperating
with a G recipient or justifiably defecting against a B recipient.
Owing to the contribution of the justified defection, a donor gains
þ more often than � on average. If players with the G reputation
increase in number owing to this mechanism, players more likely
receive þ than � . This positive feedback sustains cooperation
under shunning-related social norms in the trinary model.

Second, and the more important, image scoring is capable of
supporting cooperation in our model. Even if we consider Self
mutants, which avoid a B reputation and are as selfish as possible,
image scoring supports cooperation if the probability that a G
reputation transits to a B reputation in one step is positive.
In previous literature, the Self strategy is recognized as a strong
competitor that spoils cooperation in the indirect reciprocity
game with more than two possible reputation values (Leimar
and Hammerstein, 2001). Our conclusion that image scoring can
support cooperation is consistent with the results derived from
behavioral experiments (Wedekind and Milinski, 2000; Milinski
et al., 2001; Seinen and Schram, 2006) and those derived from
numerical simulations (Nowak and Sigmund, 1998b; Diekmann
and Przepiorka, 2005) but opposite to those derived from the
binary reputation model (Panchanathan and Boyd, 2003; Ohtsuki,
2004; Ohtsuki and Iwasa, 2004, 2007). We reached this conclu-
sion by simply introducing a third reputation to the standard
binary model of indirect reciprocity. The cooperation under image
scoring in our model does not require forced cooperation in the
first round (Nowak and Sigmund, 1998a), partial cooperation of
defective players (Fishman, 2003), binomially or Poisson distrib-
uted number of rounds (Brandt and Sigmund, 2004, 2006),
growth of social networks used for transmission of reputation
(Brandt and Sigmund, 2005), or a small probability with which
the donor’s reputation is revealed to other players (Uchida, 2010).

In our model, cooperation under image scoring occurs for the
following intuitive reason. Although the composition of the stable
population depends on the benefit-to-cost ratio and the error
probabilities, the main action rule present in the stable popula-
tion is gDisc, which cooperates with G and N recipients and
defects against B recipients. In the equilibrium, most gDisc
resident players possess the G reputation. If some AllD mutants
are present, a B player in the population is likely to be AllD and
not gDisc. With the trinary reputation, gDisc players justifiably
defect (i.e., D against a B recipient) but do not selfishly defect
(i.e., D against a G or N recipient). A donor that has justifiably
defected would receive an N reputation but not a B reputation
because few recipients have the B reputation in the population.
Therefore, gDisc players would not obtain the B reputation. gDisc
players that happen to obtain the N reputation, when selected as
donor, likely meet a recipient with a G reputation such that they
regain the G reputation. In contrast, AllD players would obtain the
B reputation such that they are not helped by others. This
contrasts with the case of the binary reputation model, in which
a discriminating donor that defects against whatever recipient
immediately receives the worst reputation (i.e., B) and then is
defected by others.

The presence of downward saltation (i.e., transition from the G
reputation to B reputation in one step) is a key to make a
cooperative population stable against invasion by Self mutants.
To explain this point intuitively, let us consider a homogeneous
population of gDisc and assume that the implementation and
assessment errors are absent. If downward saltation is absent in
the reputation dynamics, Self mutants flip between G and N
reputations by alternatingly cooperating and defecting. By doing
so, the Self mutants can elicit cooperation from gDisc residents
and cooperate with probability � 1=2. Because gDisc residents
cooperate with probability � 1, the gDisc population is invaded
by Self mutants. However, if downward saltation can occur in the
reputation dynamics, a nonnegligible fraction of Self mutants
possess the B reputation because they defect when they have the
G reputation. In contrast, gDisc players maintain the G reputation
because they cooperate even if they have the G reputation.
Therefore, in the presence of downward saltation, Self mutants
cannot invade the population of gDisc residents.

The mechanism of cooperation under image scoring in our
model is similar to that under the so-called tolerant scoring
proposed by Berger (2011). The population of tolerant discrimi-
nator, which defects against a recipient if the recipient has
defected in the last two rounds and cooperates otherwise, is
stable. Berger’s results and ours are different in the following
aspects. First, Berger assumed three action rules, i.e., tolerant
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discriminator, which is similar to gDisc, AllC, and AllD and
investigated the behavior of the model under tolerant scoring. We
carried out an exhaustive search of the space of the action rule and
social norms to find the viability of image scoring. Second, in our
model, cooperation is stable even if the reputation moves only one
step in a round, if the Self mutants are not considered. It should be
noted that Berger did not consider the Self mutants. Third, coopera-
tion is realized by a homogeneous population of one type of players
in the Berger’s model. In our model, cooperation is realized by
mixture of two types of discriminative players (i.e., gDisc and CDC).

The present study has following limitations. First, we assumed
that all the players in the population use the same social norm. This
oversimplification excludes a possible situation in which different
norms compete in a population (e.g., Pacheco et al., 2006; Uchida,
2010). Second, we only analyzed the stability of populations com-
posed of up to two action rules for simplicity. Third, we analyzed local
stability of the equilibria and disregarded dynamics. Even when a
cooperative equilibrium is locally stable, it may in fact attract a tiny
fraction of initial conditions. Fourth, we assumed that the reputation
sharing is public. In other words, the information about the donor’s
new reputation immediately spreads from the observer to the entire
population. In a large population, such immediate spreading is
impossible, and one has to assume, for example, that only a fraction
of players gains the information about a donor in one game (Nowak
and Sigmund, 1998b; Brandt and Sigmund, 2004; Uchida, 2010).
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Appendix A. Distribution of the reputation for the saltatory
reputation dynamics

Under the saltatory reputation dynamics (Fig. 2(B)), we obtain
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Appendix B. Justification of the criterion of equilibrium
selection

We defined cooperative equilibrium as stable population in which
the probability of cooperation is larger than 0.5 for some b=c such
that b=co20. To justify this criterion, we carry out additional
numerical simulations with various error probabilities satisfying
Ei ¼ Ea. The probability of cooperation in each stable homogeneous
population is shown for various error probability values in Fig. 5.
Fig. 5 shows that, under 13 out of the 22 stable action–norm pairs, the
probability of cooperation seems to converge to unity in the error-free
limit. It should be noted that we identified 12, not 13, cooperative
homogeneous populations in the main text. One of the 13 action–
norm pairs is excluded because it is stable only for large b=c values
(i.e., b=c452:63) at Ei ¼ Ea ¼ 0:02 (Table 1). The probability of
cooperation is larger than 0.5 for some b=c for five out of the nine
stable heterogeneous populations composed of two action rules. For
all the five heterogeneous populations, the probability of cooperation
is larger than 0.5 for a b=c value smaller than 20 at Ei ¼ Ea ¼ 0:02.

In the homogeneous populations, under eight out of the 13
social norms for which the probability of cooperation seems to
converge to unity in the error-free limit, i.e., standing–standing,
standing–judging, standing–shunning, judging–standing, judging–
judging, judging–shunning, shunning–standing, and shunning–
judging, the range of b=c in which the corresponding action rule
is stable tends to b=c41 as the error probabilities become small.
For example, under standing–standing, standing–judging, judging–
standing, and judging–judging, the homogeneous population of
rDisc is stable in the range b=c41:00006 when Ei ¼ Ea ¼ 0:0025;
the corresponding range is b=c41:004 when Ei ¼ Ea ¼ 0:02
(Table 1). Under the other five social norms, i.e., standing–scoring,
scoring–standing, scoring–judging, scoring–shunning, and scoring–
scoring, stable cooperation requires a large value of b=c when the
error probabilities are small. For example, under standing–scoring,
the homogeneous population of CDC is stable in the range
b=c4402:1 when Ei ¼ Ea ¼ 0:0025; the corresponding range is
b=c452:63 when Ei ¼ Ea ¼ 0:02 (Table 1). Under image scoring,
the homogeneous population of gDisc is stable in the range
b=c466:51 when Ei ¼ Ea ¼ 0:0025; the corresponding range is
8:230ob=co12:53 when Ei ¼ Ea ¼ 0:02 (Table 1, Fig. 4(A)).

In the heterogeneous populations, four out of five equilibria, i.e.,
mixture of gDisc and rDisc under scoring–standing, mixture of gDisc
and rDisc under scoring–judging, mixture of gDisc and rDisc under
scoring–shunning, and mixture of gDisc and CDC under image
scoring, realize a large probability of cooperation in a wide range of
b=c when Ei ¼ Ea ¼ 0:02 (Fig. 3(B) and (C)) and also do so when the
error probabilities are smaller. For example, the heterogeneous
population composed of gDisc and CDC is stable under image scoring
in the range 1:994ob=co66:51 when Ei ¼ Ea ¼ 0:0025; the corresp-
onding range is 1:941ob=co8:230 when Ei ¼ Ea ¼ 0:02 (Fig. 4(A)).
Appendix C. Fraction of two action rules in the error-free
limit

We consider a social norm given by sG ¼ sN ¼ þ� and sB ¼ þ þ ,
�þ , or ��. In the limit Ei, Ea-0, the fraction of gDisc, denoted by
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qgDisc, and that of rDisc converge to 1�c=b and c=b, respectively,
for the following reason. In the equilibrium, few players possess
the N or B reputation. The behavior of rDisc players and that of
gDisc players differ only toward recipients with reputation N. An
rDisc donor with a G reputation defects against a recipient with
an N reputation, receives � , and transits to the N reputation. If
this rDisc player is selected as recipient, an rDisc donor defects
and a gDisc donor cooperates. If selected as donor, this rDisc
player would cooperate because most recipients have the G
reputation, receive þ , and transit to G. Because the rDisc player
with an N reputation is selected as recipient once on average
before selected as donor, the expected payoff to the rDisc donor
during this period is equal to qgDiscb on average. During the same
period, a gDisc donor with a G reputation cooperates with a
recipient with an N reputation, pays c, receives þ , keeps a G
reputation, and gains benefit b when selected as recipient. By
equating the payoffs to rDisc and gDisc players, we obtain
qgDiscb¼�cþb, which leads to qgDisc ¼ 1�c=b.
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