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Abstract Episodic ataxia type-1 (EA1) is a human neurological
syndrome characterized by attacks of generalized ataxia and by
continuous myokymia that has been associated with point
mutations in the voltage-gated potassium channel gene KCNA1.
Although important advancement has been made in understand-
ing the molecular pathophysiology of EA1, several disease-
causing mechanisms remain poorly understood. F184C is an EA1
mutation that is located within the S1 segment of the human
Kv1.1 subunit. Here, we show that the F184C mutation increases
�4.5-fold the sensitivity of the channel to extracellular Zn2þ.
Both Zn2þ and Cd2þ markedly alter the activation kinetics of
F184C channel. In addition, the mutated channel reacts with
several methane thiosulfonate reagents which specifically af-
fected channel function. The results provide structural implica-
tions and indicate that sensitisation of hKv1.1 to Zn2þ is likely to
contribute to the EA1 symptoms in patients harboring the F184C
mutation.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Episodic ataxia type-1 (EA1) is a rare, autosomal dominant

neurological disorder clearly described in 1975 by Van Dyke

and co-workers. Affected patients present constant muscle

rippling movements (myokymia) and episodic attacks of

ataxia. Attacks are characterized by imbalance with jerking

movements of the head, arms, legs and can be triggered by

emotional stress, fatigue, sudden movements, loud noises, etc.

[1–4]. The first symptoms manifest during childhood, persist

through the whole life and can vary from severe to no de-

tectable neurological abnormalities. Linkage studies from

several EA1 families led to the discovery of a number of point
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mutations in the voltage-dependent potassium channel gene

KCNA1 (Kv1.1), on chromosome 12p13 [5–8]. The amino acid

residues that are mutated in EA1 patients reside at positions

highly conserved amongst the delayed-rectifier potassium

channel genes [5]. The functional characterization of the mu-

tated channels in Xenopus oocytes or mammalian cell lines has

demonstrated that EA1 mutations markedly alter the bio-

chemical and biophysical properties of hKv1.1, which result in

channels with impaired delayed rectifier function [for reviews

see: 9-11].

In their original report, Van Dyke and co-workers provided

the detailed clinical description of some kindred that showed

generalized motor seizures, in addition to typical EA1 symp-

toms [1]. The subsequent genetic analysis revealed that these

individuals carried the F184C mutation in their KCNA1 gene

[6]. The functional characterization of F184C channels in

Xenopus oocytes and mammalian cells showed that this mu-

tation right shifted the mid-point of channel activation and

slowed �2-fold the time constants of activation [12–14]. This

phenylalanine to cysteine substitution at position 184 is located

in the carboxy-terminal portion of the first transmembrane

domain (S1). Recent reports suggested that the S1 segment

plays a critical role in Kv1.1 channel function. It has been

proposed that helix–helix interactions may take place between

the S1 and the nearby segments and affect the activation–de-

activation kinetics and voltage-dependence of this channel type

[15,16].

Kv1.1 or Shaker-like potassium channels are modulated by

several intracellular and extracellular factors, including Zn2þ

ions [17–19]. This inorganic ion is relatively abundant in the

brain (approximately 100–350 lM) and widely distributed

through the CNS [20,21]. Zn2þ can be stored in vesicles and

released from presynaptic terminals by means of exocytosis.

The presynaptic vesicles of glutamatergic terminals contain

millimolar concentrations of Zn2þ [20], which could reach

transiently 100–300 lM or higher in the local microenviron-

ment during release [22,23]. In particular, Zn2þ is released

from mossy fiber terminals in the hippocampus and from the

basket cell terminals of the cerebellum where Kv1.1 channels

are also expressed [22,24–26]. An altered sensitivity to Zn2þ

may therefore have a profound effect on hKv1.1 function.

Structural studies of several zinc-binding proteins demon-

strate that zinc is typically coordinated by histidine, cysteine,

and less commonly, aspartate and glutamate residues. There-

fore, the main aim of the study was to investigate whether the

F184C mutation may alter the Zn2þ sensitivity of the channel.
blished by Elsevier B.V. All rights reserved.
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Indeed, we find that F184C channels showed a higher affinity

for zinc than the wild-type (WT) and the activation kinetics of

the mutated channel were markedly slowed by this metal ion.

The data demonstrate that zinc alters the gating properties of

F184C channel that may contribute to causing EA1 symptoms

in patients bearing this genetic mutation.
2. Materials and methods

2.1. Heterologous expression of Kv channels in Xenopus oocytes
Procedures involving Xenopus laevis and their care have been con-

ducted in conformity with the institutional guidelines that are in
compliance with national (D.L. no. 116, G.U., suppl. 40, 18 February,
1992) and international laws and policies (EEC Council Directive 86/
609, OJ L 358,1, Dec. 12, 1987; NIH Guide for the Care and Use of
Laboratory Animals, NIH Publication No. 85-23, 1985 and Guidelines
for the Use of Animals in Biomedical Research, Thromb. Haemost. 58,
1078–1084, 1987).
The animals underwent no more than two surgeries, with an interval

of at least three weeks. Xenopus laevis were anesthetized with an aer-
ated solution containing 5 mM 3-aminobenzoic acid ethyl ester
methansulfonate salt and 60 mM sodium bicarbonate, pH 7.3. The
ovary was dissected and the oocytes digested in OR-2 solution con-
taining 0.5 units/ml collagenase A (SIGMA). In vitro transcribed
mRNAs were microinjected into the oocytes 24 h later by using a
nanoliter injector-WPI and incubated at 16 �C. Typically, every oocyte
was injected with 50 nl of a solution containing the relevant mRNA.
The amount of the mRNAs was quantified using a spectrophotometer
and by ethidium bromide staining.

2.2. Electrophysiology
Two-electrode voltage-clamp recordings (TEVC) were performed

from Xenopus oocytes at �22 �C, 1–8 days after injection. A Gene-
Clamp 500 amplifier (Axon Instruments) interfaced to a Power Mac-
intosh 7200/90 computer with an ITC-16 interface (Instrutech Corp.,
New York, USA) was used. Microelectrodes were filled with KCl 3 M
and had resistances of 0.1–0.5 MX. The recording solution contained
(mM): NaCl 96, KCl 2, MgCl2 1, CaCl2 1.8, and HEPES 5, pH 7.4.
Currents were evoked by voltage commands from a holding potential
of )80 mV as described in the figure legends. Tail currents were fitted
with a double exponential function and the amplitude was calculated
to determine the peak tail currents. The recordings were filtered at 2
kHz and acquired at 5 kHz with a Pulse software (HEKA elektronik
GmbH, Germany). Data analysis was performed by using: IGOR
(Wavemetrics), PulseFit (HEKA elektronik GmbH, Germany) and
KaleidaGraph (Synergy Software, USA). Leak and capacitative cur-
rents were subtracted using a P/4 protocol. To determine the statistical
significance, an unpaired Student’s test was used. P values <0.01 were
considered significant.

2.3. Molecular biology
The F184C mutation was introduced into the human Kv1.1 cDNA

by using the QuikChange� Site-Directed Mutagenesis Kit (Strata-
gene) according to the manufacturer’s instructions. The nucleotide
sequence of the mutant subunit was determined by automated se-
quencing. All cDNAs were subcloned into the oocyte expression vector
pBF, which provides 50 and 30 untranslated regions from the Xenopus
b-globin gene, flanking a polylinker containing multiple restriction
sites. The cRNAs were synthesized in vitro by using SP6 RNA poly-
merase.
Fig. 1. Current inhibition induced by Zn2þ on hKv1.1 WT and F184C
currents The data points show the effects of Zn2þ on the normalized
current amplitudes recorded at +60 mV (interpulse interval: 30 s) from
Xenopus oocytes expressing WT (s) and F184C (d) channels. The bar
above the records indicates the period during which the perfusing so-
lution was changed to one that contained Zn2þ 1 mM (mean� S.E.M.
of 6 cells).
3. Results

3.1. The F184C mutation increases the sensitivity of the channel

to Zn2þ-induced inhibition

In order to determine the sensitivity of F184C channels to

Zn2þ, this point mutation was introduced into the human

Kv1.1 cDNA by site-directed mutagenesis and in vitro tran-

scribed mRNA microinjected into Xenopus oocytes. The
macroscopic currents were recorded from oocytes expressing

WT and F184C channels under two-electrode voltage-clamp

configuration, before and during the superfusion into the re-

cording chamber of a solution containing ZnCl2 (Fig. 1). These

recordings revealed that indeed F184C currents were reduced

significantly more than the WT by Zn2þ. To determine the KD

for Zn2þ inhibition of WT and F184C channels, the concen-

tration–response relationships were constructed at +60 mV.

This test potential was chosen for two main reasons: (i) the

open probability of WT and F184C channel is maximal at this

potential [27,14] and, therefore, both channel types have been

exposed to the same concentrations of zinc when their overall

activity is similar; (ii) this potential corresponds approximately

at the peak of the action potential and it allows to gain

physiologically relevant information. This analysis revealed

that the F184C mutation increases �4.5-fold the KD for Zn2þ

reduction of the current amplitude (Fig. 2C).

Wild-type hKv1.1 channels possess a native cysteine at po-

sition 185. To test the contribution of this residue to Zn2þ-
induced current reduction, the C185 was mutated into an

alanine in both WT and F184C channels. The Zn2þ concen-

tration–inhibition relationships for C185A and F184C/C185A

channels yielded KD values of 1.8� 0.1 mM (Hill coefficient:

0.8) and 5.1� 0.4 mM (Hill coefficient: 0.8), respectively

(mean� S.E.M. of 4–6 cells). These results suggest that the

sensitivity of the channel to Zn2þ is not abolished by mutation

of the cysteine at position 185.

3.2. Effects of Zn2þ and Cd2þ on the activation–deactivation

kinetics and on the voltage dependence of F184C channels

Zn2þ ions are known to modulate the activation–deactiva-

tion kinetics of voltage-gated potassium channels. To deter-



Fig. 2. F184C channels show a higher sensitivity to Zn2þ-induced inhibition. Representative current families recorded from Xenopus oocytes ex-
pressing the indicated channels before (above) and after (below) the superfusion of 1 mM Zn2þ (A and B). The currents were evoked by 500 ms
depolarizing commands from )60 to +60 mV, delivered in 10 mV increments from a holding potential of )80 mV. (C) Concentration–response
relationships for Zn2þ inhibition of WT (s) and F184C (d) steady-state current recorded at +60 mV. The solid lines represent the fit of the data
points with the Hill equation yielding KD values of 3.4� 0.2 mM (Hill coefficient: 0.9) and 0.75� 0.01* mM (Hill coefficient: 0.9) for WT and F184C
channels, respectively (*P < 0:01; mean� S.D.; n ¼ 6).
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mine whether the F184C mutation alters the Zn2þ-modulation

of the channel’s kinetics, the activation and deactivation time

constants were calculated at several potentials before and after

the external application of 30 lM Zn2þ, and plotted as a

function of membrane potentials (Fig. 3). Zn2þ greatly slowed

the kinetics of activation of F184C channels, but, did not affect

their deactivation rates (Fig. 3B; see figure legend). The ki-

netics properties of WT channels were not modified signifi-

cantly by 30 lM Zn2þ (Fig. 3A). The activation and

deactivation time constants for WT and F184C channels were

also calculated at different Zn2þconcentrations (Fig. 4). These
results revealed that Zn2þ markedly increases the time con-

stants of F184C activation, in a concentration dependent

fashion (Fig. 4A). By contrast, the time constants of WT

channel activation were little affected even at very high Zn2þ

concentrations. On the other hand, Zn2þ accelerated the

deactivation rates of WT and F184C channels, similarly

(Fig. 4B).
Some Zn2þ-induced effects can be exerted also by cadmium

ions. To assess the effects of Cd2þ on F184C kinetics, the ac-

tivation and deactivation time constants were calculated at

several potentials before and after the external application of

500 lM CdCl2 and plotted as a function of membrane po-

tentials (Fig. 5A). This plot shows that Cd2þ greatly slowed the

kinetics of activation of F184C channels. By contrast, the de-

activation rates were slightly accelerated by Cd2þ. The kinetics
properties of WT channels were not modified significantly by

this divalent cation (Fig. 5A inset; see figure legend).

Cd2þ (500 lM) also shifted the V1=2 of F184C channels

�32 mV to positive potential and did not modify the slope

factor k (Fig. 5B). On the other hand, the current–voltage

relationship of WT channels was right-shifted �10 mV by

cadmium (not shown). Four of such experiments were car-

ried out independently and yielded similar results. The shift

caused by Cd2þ on F184C voltage-dependence suggested that

Zn2þ might consequently exert a similar effect (Fig. 6).



Fig. 3. Zn2þ slows the activation rates of F184C channels at low micromolar concentrations. The activating and deactivating current traces for WT
(A) and F184C (B) were recorded before (s) and after the application of 30 lM Zn2þ (d). The activating currents were evoked as described in Fig. 2.
The deactivating currents were recorded after a depolarizing command to +60 mV for 200 ms duration, followed by hyperpolarizing test commands
delivered in 10 mV decrements in a voltage range between +60 and )80 mV. The activating and deactivating current traces were fitted with two
exponential functions. The fast time constants were plotted as a function of membrane potential and were fitted with the equation:
s ¼ sV1=2 exp½ðV � V1=2Þ=k�, where sV1=2 is the time constant at the V1=2 of each channel type and k is the slope factor for the voltage dependence of the
time constants. The data points are means�S.E.M. of 6–7 cells. The sV1=2 (ms) and the slope factors k (mV; in brackets) were for WT channels,
WTcontrol: activation 16.4� 0.4 (52.1� 2.3), deactivation 14.4� 0.5 (44.5� 3.9); WTzinc: activation 20.5� 1.1 (46.7� 2.7), deactivation 14.9� 0.6
(38.7� 3.4). For F184C channels these values were F184Ccontrol: activation 52.3� 3.7 (44.8� 2.8), deactivation 16.0� 0.9 (52.6� 5.9); F184Czinc:
activation 101.0� 4.3* (43.2� 1.5), deactivation 17.0� 0.7 (43.8� 3.3). *Significance of P < 0:01 compared with control.

Fig. 4. Concentration-dependent effects of Zn2þ on the activation and deactivation of WT and F184C channels. (A) Fast time constant of activation
calculated at +60 mV for WT (s) and F184C channels (d) and plotted as a function of zinc concentration. The insets show superimposed and
normalized current traces recorded at +60 mV before and after the application of Zn2þ (300 lM) from oocytes expressing the indicated channels.
(B) The fast time constants of deactivation were calculated at )30 mV forWT (s) and at 0 mV for F184C channels (d) and plotted as a function of zinc
concentration. These potentials correspond approximately at the V1=2 of each channel type. The insets show the deactivating current traces recorded
before and after the application of Zn2þ (300 lM) from oocytes expressing the indicated channels. The data points are means� S.E.M. of 6–7 cells.
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Indeed, the current–voltage relationships for F184C were

right-shifted also by Zn2þ. This effect was more pronounced

for F184C than for WT channels. The shift of the midpoint

activation voltage (V1=2), caused by Zn2þ on both channel

types, was concentration dependent (Fig. 6C). The Zn2þ

concentration–response curve was shifted leftward for F184C

channels and yielded a half-maximal concentration signifi-

cantly different from that of WT channels (Fig. 6, see figure

legend).

A number of control experiments were carried out to assess

the contribution of divalent cation effect by using external

solutions containing both 5 mM Mg2þ and 4 mM Ca2þ [28].

The effects of Zn2þ on current amplitudes, kinetics and volt-

age-dependence of F184C channels were not prevented by
solutions containing both calcium and magnesium at higher

concentrations.

3.3. The carboxy-terminal region of S1 is accessible to MTS

reagents

Methanethiosulfonate (MTS) are cysteine-modifying re-

agents that have been extensively used in site-specific acces-

sibility studies of ion channels [29]. Generally, it is assumed

that the hydrophilic MTS compounds, which also bear a

positive or negative charge, react rapidly with a cysteine that

is exposed to either the intracellular or extracellular milieu.

Therefore, we tested the reactivity of the F184C channel with

the (2-aminoethyl) methane thiosulfonate (MTSEA), (2-sul-

fonatoethyl) methane thiosulfonate (MTSES) or (2-trime-



Fig. 5. Cadmium ions affect the kinetics and voltage-dependence of
F184C channels. (A) The insets show the superimposed and normal-
ized current traces recorded at +20 mV from Xenopus oocytes ex-
pressing the indicated channels, before and after the application of 500
lM cadmium. The activating and deactivating F184C current traces
were fitted with double exponential functions and the fast time con-
stants were calculated before (d) and after the application of 500 lM
Cd2þ (s). The solid lines show the fit of the data points (mean� S.D.
of 7 cells) with the equation: s ¼ sV1=2 exp½ðV � V1=2Þ=k�, where sV1=2 is
the time constant at the V1=2 of the channel and k is the slope factor for
the voltage dependence of the time constants. The time constants
calculated at the activation midpoint (sV1=2 ; ms) and the slope factors
k (mV; in brackets) were for F184C channels, F184Ccontrol: activa-
tion 22.1� 0.3 (48.8� 1.5), deactivation 26.2� 1.9 (46.8� 3.2);
F184Ccadmium: activation 39.4� 0.5* (47.7� 1.8), deactivation
20.5� 0.5 (40.2� 0.8). For WT channels these values were WTcontrol:
activation 7.2� 0.1 (32.9� 1.3), deactivation 20.1� 1.0 (29.1� 1.5);
WTcadmium: activation 11.7� 0.4 (33.7� 2.3), deactivation 23.5� 1.0
(33.8� 2.0); mean� S.D., n ¼ 7. *Significance of P < 0:01 compared
with control. (B) The current–voltage relationships of F184C channels
were constructed before (d) and after the extracellular application of
500 lM Cd2þ (s). The normalized peak tail currents were plotted as a
function of membrane prepulse potentials and fitted with a Boltzmann
function: I ¼ 1=f1þ exp½ðV � V1=2Þ=k�g from which the V1=2 and k
values were computed. The I–V data points are means�S.D. of 7 cells.

Fig. 6. Zn2þ-modulation of WT and F184C voltage-dependence. The
peak tail currents were recorded from oocytes expressing WT (A) and
F184C channels (B) before (d), during the superfusion of 1 mM Zn2þ

(s) and after its wash-out from the recording chamber (r). These
currents were normalized, plotted as a function of membrane prepulse
potentials and fitted with a Boltzmann function (solid line). The insets
show representative I–Vs before normalization for WT and F184C
channels where the current reduction is also obvious after the appli-
cation of 1 mM Zn2þ (s). (C) Concentration-dependent effects of Zn2þ

on the delta mid-point activation curve for WT (s) and F184C
channels (d). The solid lines represent the fit of the data points with a
Hill equation yielding a half-maximal concentration of Zn2þ of
500� 45 lM (Hill coefficient: 1) and 286� 45* lM (Hill coefficient:
0.8) for WT and F184C channels, respectively (mean� S.D. of 6–7
cells). *Significance of P < 0:01 compared with WT.
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thylammoniumethyl) methane thiosulfonate (MTSET) com-

pounds. Several control experiments showed that the super-

fusion of solutions containing 0.1–5 mM MTSEA, MTSES

or MTSET onto Xenopus oocytes expressing WT channels,

did not alter the voltage-dependence and amplitude of the

currents (Fig. 7, left panels). By contrast, the application of
the positively charged MTSEA (100 lM), shifted the mid-

point activation voltage of F184C channels �39 mV to the

right, leaving their slope factor k unaltered (Fig. 7B; Table

1). The effects exerted by MTSES 100 lM was much less

pronounced (Fig. 7D; Table 1). On the other hand, the



Fig. 7. The carboxy-terminal region of S1 is accessible to MTS-reagents. Current-voltage relationships of WT channels obtained in control conditions
(d) and after the extracellular application of MTSEA, MTSES and MTSET (100 lM/10 min, s; left panels). The right panels show the I–Vs for
F184C before (d) and after the superfusion of the indicated sulfhydryl reagents (100 lM/10 min, s). The I–Vs were constructed as detailed in Fig. 5.
The inset shows the inhibitory effects exerted by the indicated MTS-derivatives on F184C currents. The bar graph reports the maximal current in-
hibition (%) calculated at +60 mV. WT current amplitudes were not affected by the superfusion of these compounds (not shown).

Table 1
Effects of MTS-reagents on the voltage-dependent parameters of WT and F184C channels

WT F184C

V1=2 (mV) k (mV) V1=2 (mV) k (mV)

Control )27.0� 2.0 7.2� 1.3 )1.8� 1.4 7.7� 0.7
MTSEA )27.8� 1.2 7.8� 2.1 36.8� 3.2� 7.4� 2.0
MTSES )27.4� 3.2 7.9� 0.9 9.4� 7.5� 10.6� 2.2�

MTSET )26.4� 3.0 6.2� 0.8 31.7� 7.4� 15.9� 2.8�

The voltage-dependent parameters of activation were calculated from the Boltzmann equation that was fitted to the current–voltage data points
plotted in Fig. 7. The data are means�S.D. of 7 cells.
* Significance of P < 0:01 compared with control.
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superfusion of MTSET (100 lM) produced a shift of the

voltage-dependence of F184C channel that was similar to

that exerted by MTSEA and, in addition, increased �2-fold

the slope factor k (Fig. 7F; Table 1). The F184C current

amplitude was reduced by the MTS-compounds differently
(Fig. 7, inset). The effects produced by these reagents on

both the voltage-dependence and amplitude of F184C cur-

rents were irreversible and were not observed in the presence

of dithiothreitol (10 mM), confirming the high specificity of

these reactions (not shown).
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4. Discussion

In this study, we demonstrate that the episodic ataxia mu-

tation F184C confers Kv1.1 channels with a higher sensitivity

to zinc. The Zn2þ-induced current decrease, its effects on the

kinetics of activation and on the voltage-dependence of the

channel likely contribute to the EA1 symptoms observed in

patients carrying the F184C mutation.

4.1. Pathogenic implications for EA1 syndrome and other

genetic diseases

Voltage-gated potassium channels (Kv) play key roles in

neurotransmission and nerve cell physiology. In particular,

these ion channels keep action potentials short and modulate

the release of neurotransmitters. They also control the excit-

ability, the electrical properties and the firing pattern of central

and peripheral neurons [30].

Here, we show that Zn2þ ions inhibit F184C currents at

concentrations significantly lower than those required to in-

hibit WT channels. In addition, Zn2þ greatly slows the kinetics

of F184C channel activation and speeds up the rate of deac-

tivation. By contrast, the rates of WT channels activation are

relatively insensitive. Moreover, Zn2þ positively shifts the

voltage dependence of activation in a concentration dependent

fashion. This shift is more pronounced for F184C channels

rather than for the WT. The Zn2þ-induced inhibition and its

effect on the opening rate of the mutated channel is already

significant at a lower micromolar range where this effect may

become pathophysiologically relevant. Furthermore, the Zn2þ

concentration response curves were constructed at +60 mV,

the peak of the action potential (Fig. 2). However, the Zn2þ

sensitivity of Kv1.1 channels is much higher at less depolarized

potentials [17] and therefore the Zn2þ-induced reduction of

F184C current amplitude is likely to be underestimated. This

also suggests that the electrical events which depolarize nerve

cell membranes to less positive values would be more affected

by the same concentration of Zn2þ. During the vesicular re-

lease of Zn2þ its inhibitory actions on F184C channels will be

additional to the intrinsic gating defects caused by the muta-

tion itself. These combined effects of the F184C mutation are

likely to result in increased cellular excitability. However, some

nerve structures would be more hyperexcitable than others due

to the additional Zn2þ effects. These would include the hip-

pocampus and the basket cell terminals of the cerebellum

where Kv1.1 channels likely undergo Zn2þ-modulation

[22,24–26]. Interestingly, patients bearing F184C mutation

showed generalized motor seizures, in addition to typical EA1

symptoms [1]. Whether Zn2þ plays any role in triggering epi-

leptic like symptoms in these patients remains to be deter-

mined. On a more general note, these findings point out that

any genetic disease introducing a cysteine or histidine mutation

may affect the sensitivity of the mutated protein to Zn2þ as for

F184C channels. Consequently, Zn2þ may alter the functional

properties of the protein and contribute to the pathogenesis of

the disease.

4.2. Speculations on Kv1.1 structure–function

The effects of Zn2þ on current amplitudes, kinetics and

voltage-dependence of F184C channels were observed also in

the presence of external solutions containing higher concen-

trations of divalent cations such as calcium and magnesium.

This suggests that surface charge screening is an unlikely
mechanism underlying the Zn2þ-induced effects on F184C

channels [28,31]. At least to some extent, Zn2þ modulates WT

channels as well. The molecular determinants of the Zn2þ ef-

fects on Kv1.1 channels are unknown. Recent studies on Kv1.5

channels have shown that Zn2þ may act on two distinct

binding sites, one of which is located in the pore turret [32,33].

It is possible that similar binding sites for this metal ion could

be found in both Kv1.1 and Kv1.5, although the latter channel

type is far more sensitive to Zn2þ [19]. Whether the F184C

mutation enhances the Zn2þ sensitivity of the channel by

producing a novel Zn2þ binding site or by means of a different

mechanism(s) remains to be established.

Zn2þ and Cd2þ specifically modulate F184C channel activity

by shifting the mid-point of channel activation to more de-

polarized potentials. Some MTS reagents caused this shift as

well. The rightward shift in the voltage dependence of activa-

tion suggests that Zn2þ, Cd2þ and the MTS reagents decrease

the relative stability of the active conformation of the channel.

Moreover, the slower opening and faster closing kinetics ob-

served after the application of both Zn2þ and Cd2þ suggest

that these ions may affect the conformational changes coupled

to channel opening. In particular, it appears that the F184C

mutation increases the Zn2þ and Cd2þ-induced stabilization of

the closed channel conformation(s), thus, further delaying

channel opening.

The cysteine-modifying reagents MTSEA, MTSET and

MTSES affect both the current amplitudes and voltage de-

pendence of F184C channels. These effects are either irre-

versible or do not occur in the presence of reducing agents.

This site-specific accessibility evidence suggests that the car-

boxy-terminal region of the S1 segment: (i) should be exposed

to the extracellular compartment either permanently or during

the conformational rearrangements occurring upon channel

gating or (ii) it resides in the interior of the membrane but,

somehow, it is still accessible to MTS reagents. Interestingly, a

recent report has also demonstrated the accessibility of the

F184C residue in the related Shaker potassium channel [34].

The Shaker mutant F244C (which corresponds to F184C in

hKv1.1) was shown to react with MTSET in both the open and

closed conformation of the channel, demonstrating that the

exposure of this residue is state independent [34]. However,

MTSET caused a leftward shift of the F244C channel current–

voltage relationship. By contrast, we observed a rightward

shift of the F184C channel I/V. The reasons for this discrep-

ancy are unknown. We have also shown that MTSET increases

the slope factor of the activation curve for F184C channel. The

calculated product of the gating charges of the channel z, times

the fraction of the field that they traverse d (zd value) was

reduced �2-fold by MTSET. In conventional models, this

would suggest that MTSET impairs the conformational rear-

rangements that the voltage-sensing domains undergo upon

membrane depolarization [35]. However, further experiments

will be required to assert this with certainty.
5. Conclusions

These studies have allowed us to define an additional path-

ogenic mechanism in EA1, which likely exacerbates the

symptoms in patients carrying F184C mutations. Further-

more, it should be kept in mind that genetic mutations
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introducing histidine or cysteine residues may alter the zinc

sensitivity of a given protein and, as a consequence, contribute

to the pathogenesis of the disease.
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