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A b s t r a c t - - A n  exact solution of an oscillatory boundary layer flow bounded by two horizontal flat 
plates, one of which is oscillating in its own plane and the other at rest, is developed. The fluid and 
the plates are in a state of solid body rotation with constant angular velocity about the z-axis normal 
to the plates. The fluid is assumed to be second grade, incompressible, and electrically conducting. 
A uniform transverse magnetic field is applied. During the mathematical analysis, it is found that 
the steady part of the solution is identical to that of viscous fluid. The structure of the boundary 
layers is also discussed. Several known results of interest are found to follow as particular cases of 
the solution of the problem considered. © 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - S e c o n d  grade fluid, Parallel plates, Resonance, Magnetohydrodynamic fluid, Oscil- 
lation flow. 

1. I N T R O D U C T I O N  

T h e  analysis  of  t he  effects of ro ta t ion  and magne t i c  field in fluid flows has been  an act ive  area  of 

research because  of  i ts  geophysical  and technological  impor tance .  In te res t  in M H D  flow began  in 

1918, when  H a r t m a n n  [1] invented  t h e  e l ec t romagne t i c  pump.  T h e  s tudy  of  magne t i c  field effects 

on t h e  l amina r  flow of an  incompress ib le  e lectr ical ly  conduc t ing  fluid is an i m p o r t a n t  p rob lem 

t h a t  is r e la ted  to  m a n y  prac t ica l  appl icat ions ,  such as t he  M H D  power  gene ra to r  and b o u n d a r y  

layer flow control .  Historical ly,  Rossow [2] was the  first to  s t udy  t h e  h y d r o d y n a m i c  behav ior  of the  
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boundary layer on a semi-infinite flat plate in the presence of a uniform transverse magnetic field. 
Since then, a large amount of literature has been developed on this subject. A review of this topic 
today can be found in [3]. The effects of a uniform transverse magnetic field were investigated 
by Gupta [4], Debnath [5], Soundalgekar and Pop [6], Mazumder et al. [7]. In another paper, 
Mazumder [8] investigated the unsteady oscillatory Couette flow of a viscous incompressible fluid 
between two parallel plates, one of which is oscillating and the other at rest. Later, Ganapthy [9] 
proposed an alternative solution for the problem in [8]. More recently, Singh [10] extended this 
analysis by including the magnetic field effects. Despite the above studies, attention has hardly 
been given to the study of hydromagnetic flows of non-Newtonian fluids. The study of non- 
Newtonian fluid dynamics is important in connection with plastics manufacture, performance of 
lubricants, applications of paints, processing of food, and movement of biological fluids. Most 
biologically important fluids contain higher molecular weight components and are, therefore, 
non-Newtonian. 

Keeping in view the importance of non-Newtonian fluids, the main objective o f  this communi- 
cation is to present an exact solution to the study of oscillatory flow between two parallel plates. 
The fluid considered is electrically conducting and second grade. The entire system rotates about 
an axis perpendicular to the planes of plates. The study of hydromagnetic flow of second grade 
fluid between two horizontal plates responds to oscillations in one plate in a rotating system 
has remained attented. For ~1 = 0, the problem reduces to the one discussed by Singh [10]. 
Moreover, for/~1 = 0 = M, the problem reduces to that of Ganapathy [9]. Similar to Singh [10] 
it is noted that the claim of Ganapathy [9] that the solution of Mazumder [8] explains resonance 
phenomenon in rotating system is incorrect. 

2. G O V E R N I N G  E Q U A T I O N S  

The physical situation considered is that of the unsteady hydromagnetic flow of a second grade, 
incompressible, and electrically conducting fluid bounded by infinite-parallel plates, distant d 
apart, when both the fluid and plates rotate with a constant angular velocity ~t about the z-axis 
taken normal to the plates. It is assumed that the plates are electrically nonconducting and an 
applied uniform magnetic field B0 is acting parallel to the z-axis. The lower plate is at rest 
and the upper plate oscillating in its own plane with a velocity U ( t )  = 0"0(1+ E coswt) about a 
nonzero constant mean velocity U0. The origin is taken on the lower plate and the x-axis parallel 
to the direction of motion of the upper plate. Since the plates are infinite in extent, all the 
physical quantities, except the pressure, depend on z and t only. In a coordinate system rotating 
with the fluid, the governing equations of continuity and motion and Maxwell's equations are 

v . v  = 0, (1) [0v ] 
p - - ~ + ( V . V ) V + 2 1 2 × V + a × ( a × r )  = V . T + J × B ,  (2) 

~7 × B = #~J, (3) 

0B  
V × E - O t '  (4) 

V . B  = 0, (5) 

J = (E + V × B ) ,  (6) 

where V = (u, v, w) is the velocity vector, ~ = ~tk, k, the unit vector in the z-direction, t, the 
time, p, the density, J, the current density, B, the magnetic induction, E, the electric field, /~, 
the magnetic permeability, a, the electrical conductivity, T, the Cauchy stress, and r, the radial 
coordinate given by 

r 2 = x 2 + y2. (7) 
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The constitutive equation for Cauchy stress tensor T is [11,12] 

T = - p I  + #A1 + OZlA2 + oz2A12. (s) 

Here p is the dynamic pressure function, I the unit tensor, # the constant dynamic viscosity, and 
c~1, a2 the normal stress moduli, A1 and A2 are the Rivlin-Eriksen tensors [13] and are given by 

A1 = (grad V ) +  (grad V) T , (9) 

dA1 T A1 + A1 (gradV) ,  (101 A 2 =  ~ + ( g r a d V )  

where d is the material time derivative. According to Dunn and Fosdick [14], the second grade 
fluid model is compatible with thermodynamics when the Helmholtz free energy of the fluid is a 
minimum for the fluid in equilibrium. The fluid model then has general and pleasant boundedness 
and stability properties. The aforementioned and the Clausius-Duhem inequality imply that  the 
coefficients #, a l ,  and c~2 must satisfy 

# k 0, O~1 k 0, O~1 + a2 = 0. (11) 

Since we are dealing with second grade fluid flow, the strict inequality holds true. Fosdick 
and Rajagopal [15] showed that when a l  < 0, the fluid exhibits anomalous behavior that is 
incompatible with any fluid of rheological interest, and so results in a fluid that  is unstable. 
Further, we assume that the magnetic Reynolds number is so small that  the induced magnetic 
field can be neglected in comparison with the applied one [16], so that  

B = (0, 0, B0),  (12) 

where B0 is a constant. It  is assumed that  no applied and polarization voltage exists (i.e., E = 0). 
This then corresponds to the case when no energy is added to or extracted from the fluid by the 
electric field. Since the plates are infinite in extent, all physical variables (except pressure) are 
functions of z and t only. Thus, equation (1) becomes - ~  = 0 which, because w = 0 on the 
boundaries, implies that  w = 0 every where in the fluid. Now, the equation for the conservation 
of electric charge, V . J  = 0, leads to J ,  = constant, where J = (0r=, Jy, Jz). As in the case of 
vertical velocity, we immediately see that J~ = 0. Thus, equation (6) yields 

4 = GB2o v, 4 = -aB2u. (13) 

In view of the above consideration, equation (2) can be rewritten in the component form 

Ouot p101°*Ox ( -~O)02u-oTgz 2 aB~u - + - + Z l  + m v  - - - ,  ( 1 4 )  
P 

Ov lop* ( O)02v aB~v 
at -- p O~ + ~+Zlo7 ~ - 2 a u - - - ' p  (15 / 

where v is the kinematic viscosity, •1 = O~I/P and the modified pressure 

P*=P-7 \ & )  + \az)  j 

The boundary conditions for the present problem are 

u = v = 0 ,  at z = 0 ,  

u=U(t)=Uo(l+ecosaJt), v = 0 ,  at z = d ,  

where w is the frequency of oscillations and e is a constant. 

(16) 

(lr) 
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Now eliminating the modified pressure gradient p*, under the boundary  layer approximation,  
the resulting equation of (14) and (15) can be combined as 

Oq ( O) 02q O U _ 2 i f ~ ( q _ U ) _ a B  ~ 
= + + -b-/- - - 7 -  (q - u ) ,  (18) 

and the corresponding boundary  conditions (17) are 

q = O ,  at z = O ,  

q = U(t), at z = d, (19) 

where 
q = u + iv (20) 

is the fluid velocity in the complex form. I t  should be noted tha t  equation (18) includes the 
Navier-Stokes fluid as a special case for ~1 = 0. If f/ = 0, the equation reduces to tha t  of 
second grade fluid in an inertial frame. Moreover, if B0 = 0, the equation governing the flow of 
a nonconducting second grade fluid is obtained• 

3.  S O L U T I O N  O F  T H E  P R O B L E M  

In order to solve equation (18) subject to the boundary  conditions (19), we look for the solution 
of the form [17] 

q (r h t) = Uo qo (~?) + ~ {ql (~?) ei~°t + q2 (rl) e -i~t } , (21) 

where 
z 

rl=-~, qo(rj)=uo(~)+ivo(~) and ql(rl)e~t+q2(r~)e-i~t=ul(rl, t)+ivl(7?,t). (22) 

Using equation (21) into equation (18) and boundary  condition (19) and then collecting harmonic 
and nonharmonic terms, we obtain 

d2q° (2iK + M 2) q0 = -  (2iK + M 2) (23) 
d?72 

d2ql 1 + [2iK + M 2 + i)~] ql = -  1+  [2iK+M~+i;~] (24) 
d~ 2 v 

d2 qe • - 1  

i \ l̂,.O\lx+iWfll)-l[2iK+M2i~]q2=_~l+~) [ 2 iK+M2-i)~  ] (25) 
dr] 2 v 

q0 = ql = q2 -- 0, at ~ = 0, 

q0 = ql = q2 = 1, at r / =  1. (26) 

In the above equations, K = ~2d2/u is the rotat ion parameter ,  A = wd2/u is an oscillatory 
Reynolds number and M = Bod(a/#) 1/~ is the Har tmann  number.  Solving equations (23)-(25) 
under boundary  conditions (26), we get 

q0 (r~) = 1 s inh/ (1  - rl) (27) 
sinh 1 ' 

ql (7) = 1 s i nhm (1 - r l )  (28) 
sinh m ' 

s inhn  (1 - 7]) (29) 
q2 (rl) = 1 sinh n ' 

where 

l = ( 2 i K + M 2 ) l / 2 ,  [2iK-t-M2+i)~] 1/2 [2 iK+M2- i )~]  1/2 

We note from equations (27)-(29) tha t  if/~1 = 0, then results of Singh [10] are recovered. 
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4 .  R E S U L T S  A N D  D I S C U S S I O N  

We note that steady solution (27) is independent on/31. It means that primary and secondary 
velocity components u0 and v0, respectively, for present steady flow do not depend upon the 
nature of the fluid. The amplitudes and phase differences in terms of uo and vo are given by 

Ro = ~ o  2 + Vo 2, 0o = tan -1 V0 

?t o 

From equation (27), we have for large K 

u0 ~ 1 - e -z~ cos 107, (30) 

v0 ~ e -l~v sin/i% 

where 
1 ] , li = ~ [ - M e +  x / M 4 +  4K2] 1/e • (31) I r = ~  [M e + x / M  4 + 4 K  2 1/2 1 

Equations (30) represent spiral distribution. The thickness of boundary layer is of O(l~ 1) in the 
neighborhood of plates. We conclude with the help of equations (31) that the thickness is reduced 
as M or K is increased. 

Solutions (28) and (29) together give the unsteady part of the flow. These solutions depend 
on/31. For large K, the primary and secondary velocity components ul and vl, respectively, for 
the fluctuating flow are given by 

U 1 (T], t) ~,~ 2 COS 0Jr -- e -mrr/cos ( m i ~  -- o Jr) - e -n~? cos (ni~  + w t ) ,  

Vl (7, t)  ~ e - m ' v  sin ( m i ~  - wt )  + e - ~ ' '  sin ( n i t  + wt )  , 

(32) 

(33) 

where 

], 

A1 = M e + 
(2K + A) w/31 

11' 

B1 = ( 2 K  + ~) 
Mew~31 

Ae = M e + (2K - A) w/31 
/2 

Be = ( 2 K  - ~) 
M2~/31 

/ /  

c 1 =  2 l+--y~j. 
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Expressions (32) and (33) for ul  and vl show the emergence of a boundary  layer of thickness of 
order O(m~ 1) superimposed with a boundary layer of thickness of order O(n~l). These boundary 
layers which are a direct consequence of the cyclonic and anticyclonic components of the impressed 
harmonic oscillations decrease with increase in M,  ill, and K.  It  may be noted that  in second 
grade fluid the boundary layer thickness decrease more rapidly than for viscous fluid. Also, the 
present analysis exhibits a striking difference between the structure of hydrodynamic and the 
hydromagnetic boundary layers. 

In case of resonance (2~ - w = 0 or 2K - ,k = 0), the solution of equation (25) is 

sinh h?/(1 - ~) (34) 
q2 (77) ---- 1 sinh 2~/ ' 

where 

( j~/2 = M 2 1 + z 1 (35) 

We note that  when M = 0, then q2(~) for viscous and second grade fluids is the same and is 
given by 

q 2 ( 7 )  = 

This above solution is the same as obtained by Singh [10]. Even in the case of resonance, 
differential equation (5) in [9] yields q2(~) = V ¢ 0. This is a contradiction to the claim of 
Ganapathy that  q2(~) = 0 and the solution 

of Mazumder is valid for the special case. 
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