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Abstract

In the largeNc (number of colors) limit, quenched QCD and QCD are identical. This implies that, in the effective field theory
framework, some of the low energy constants in (Nc = 3) quenched QCD and QCD are the same up to higher-order corrections
in the 1/Nc expansion. Thus the calculation of the non-leptonic kaon decays relevant for the �I = 1/2 rule in the quenched
approximation is expected to differ from the unquenched one by an O(1/Nc) correction. However, the calculation relevant to
the CP-violation parameter ε′/ε would have a relatively big higher-order correction due to the large cancellation in the leading
order. Some important weak matrix elements are poorly known that even constraints with 100% errors are interesting. In those
cases, quenched calculations will be very useful.

 2002 Elsevier Science B.V.

Quantum chromodynamics (QCD) is the under-
lying theory of strong interaction. At high energies
(� 1 GeV), the consequences of QCD can be studied
in systematic, perturbative expansions. Good agree-
ment with experiments is found in the electron–hadron
deep inelastic scattering and hadron–hadron inelastic
scattering (Drell–Yan process) [1]. At low energies
(� 1 GeV), however, QCD becomes non-perturbative.
Quantitative results not based on symmetry properties
along can only be calculated directly from QCD via
computer simulations on a Euclidean lattice.

In lattice QCD simulations, it is common to per-
form the quenched approximation which is to drop
the internal quark loop contributions by setting the
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fermion determinant arising from the path integral to
be one. This approximation cuts down the comput-
ing time tremendously and by construction, the re-
sults obtained are close to the unquenched ones when
the quark masses are heavy (� ΛQCD ∼ 200 MeV)
so that the internal quark loops are suppressed. Thus
the quenched approximation is an efficient and reli-
able tool to use as long as all the quark masses are
heavy. However, in the real world, the light quark
(u,d and s) masses are less than ΛQCD so the jus-
tification for quenching does not apply. In this range
of quark mass, quenching effects can be systemat-
ically studied by quenched chiral perturbation the-
ory (QχPT) [2], an effective field theory of quenched
QCD (QQCD). In QχPT, quenching could induce a
double pole to the flavor singlet meson propagator and
could make quenched quantities more singular than

0370-2693/02  2002 Elsevier Science B.V.
PII: S0370-2693(02)0 24 61 -9

Open access under CC BY license.

Open access under CC BY license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81925482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/npe
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


184 J.-W. Chen / Physics Letters B 543 (2002) 183–188

Fig. 1. Feynman diagrams contributing to the pion two point function. The solid lines and curly lines denote the quark and gluon propagators,
respectively.

the unquenched ones [2] in the infrared region. In the
ultraviolet region, QCD and QQCD are different as
well because QQCD can be considered as having in-
finite quark masses for the internal loops so its ultra-
violet behavior is different from that of QCD. Those
uncontrolled effects make it hard to see what we can
learn about QCD from QQCD.

However, there is a known connection between
QCD and QQCD in the limit that the number of
colors (Nc) becomes infinite; the large Nc limit of
QQCD is indistinguishable to the large Nc limit of
QCD. In this paper, we study the finite Nc quenching
errors systematically using effective field theories with
1/Nc expansions. Generally, in the real world where
Nc = 3, some of the contributions which are formally
higher order in the 1/Nc expansion could become
numerically important for certain observables near
the chiral limit (zero quark mass limit). Fortunately,
these big contributions are typically non-analytic in
quark masses and can be computed in effective field
theories of QCD and QQCD. After these big non-
analytic contributions in QQCD are replaced by those
in QCD, it is plausible that the errors which are
formally O(1/Nc) in the quenched approximation
could imply numerically ∼ 30% errors. Sometimes
even smaller errors can be achieved by forming ratios
of observables, such that the O(1/Nc) errors from
the leading terms in the chiral expansion cancel. The
ratio of B meson decay constants fBs /fB [3,4] is
an explicit example. We then study the quenched
calculations of the non-leptonic kaon decays K →
ππ [5,6]. We find that the quenching error in the
part relevant to the �I = 1/2 rule is consistent
with O(1/Nc) ∼ 30%. However, the CP violation
parameter ε′/ε calculation could have a big quenching
error due to the large cancellation in the leading terms
in the 1/Nc expansion. Finally, for illustration, we
identify some cases that quenched calculations can be
very useful. Those are calculations of important but

poorly known weak matrix elements for which even
100% error constraints are interesting.

It is known that the quenched world has some
similarity to the large Nc world. Take a pion two-
point function 〈0|π(x)π(0)|0〉, for example: there are
contributions from diagrams shown in Fig. 1. For
convenience, the quarks connected to the external
sources are called “valence quarks”; the quarks not
connected to the external sources are called “sea
quarks”. In the quenched approximation, the diagrams
with sea quark loops such as the one in Fig. 1(b)
are zero. (Then the gluon–quark coupling in surviving
diagrams such as the ones in Fig. 1(a), (c) are usually
rescaled to mimic the situation that the sea quark
masses are set to infinity. We will not do this rescaling
at this moment but leave it for later discussion.) In
contrast, in the large Nc limit proposed by ’t Hooft
[7],

(1)Nc → ∞, g → 0, Ncg
2 → constant,

where g is the quark gluon coupling, both the Fig. 1(b)
diagram with one sea quark loop and the “non-planar”
diagram of Fig. 1(c) with one crossing in gluon lines
are suppressed by one power of 1/Nc compared to that
of Fig. 1(a). The diagrams with more sea quark loops
or more gluon crossings are further suppressed by
even higher powers of 1/Nc. So, in the large Nc limit
of QCD, only the planar diagrams such as Fig. 1(a)
survive, while in QQCD both Fig. 1(a) and (c) survive.
Now if we further take the large Nc limit of QQCD,
the non-planar diagrams vanish as well. From this we
conclude that QQCD and QCD have the same largeNc
limit—at least in the mesonic two-point function case.
It is easy to generalize the above observation to an
arbitrary n-point function even involving baryons. To
generalize the baryons to the large Nc case, we follow
the prescription suggested by Dashen and Manohar [8]
such that there is no valence strange quark in a proton.
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The identity between the large Nc QCD and large
Nc QQCD imposes some constraints on the low en-
ergy effective field theories of QCD and QQCD, which
are the chiral perturbation theory (χPT) [9–12] and the
quenched chiral perturbation theory (QχPT) [2], re-
spectively. χPT and QχPT have the same symmetries
and symmetry breaking patterns as QCD and QQCD.
In both cases, low energy observables are expanded
in a power series of the small expansion parameters
(p,MGB)/Λχ , where p is the characteristic momen-
tum transfer in the problem, MGB is the Goldstone
boson mass and Λχ is an induced chiral perturbation
scale. In QCD, Λχ ∼ 1 GeV and the Goldstone bo-
son masses are Mπ ∼ 140 MeV, MK ∼ 500 MeV and
Mη ∼ 550 MeV. In the QCD case (Nc = 3), χPT gives
[10]
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where mq is the mass of the flavor q (= u,d, s)

quark and we have used md = mu. The pion decay
constant fπ = 93 MeV and the renormalization scale
µ dependence is absorbed by the low energy constants
(or counterterms) K3 and K4 defined in [10]. When
Nc becomes large, fπ = O(

√
Nc ), K4 = O(1/Nc),

while B , quark masses and K3 are O(1). Thus as
Nc → ∞, only the B and K3 terms contribute.

(3)M2
π → 2muB(1 + 2muK3)+O

(
m3
q

)
.

Note that the µ dependence of K3 is O(1/Nc), so K3
becomesµ independent asNc → ∞. In the real world,
the chiral logarithms could be numerically enhanced
even though they are formally higher order in 1/Nc.

In the QQCD (Nc = 3) case, QχPT gives a similar
result for the pion mass [2]

MQ2
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+ · · · ,

where the low energy constants BQ, f
Q
π and K

Q
3

have different values than those in QCD and where
M2

0 is the strength of the η′η′ coupling. In QCD,
M2

0 can be iterated to all orders to develop a shifted
η′ pole such that η′ becomes non-degenerate with
the Goldstone bosons in the chiral limit. However,
in QQCD, all the sea quark loops are dropped such
that the iteration stops at one insertion of M2

0 . This
gives the η′ propagator a double pole dependence and
makes physical quantities in QQCD more singular
than those in QCD in the infrared region [2]. The
quenched pion mass in Eq. (4) is an explicit example.
The quenched chiral logarithm (the M2

0 term) is more
singular than the QCD chiral logarithm in Eq. (2). As
Nc becomes large, M2

0 scales as 1/Nc while the other
quenched low energy constants scale the same way as
the corresponding unquenched ones, fQπ = O(

√
Nc ),

BQ and KQ
3 =O(1). Thus as Nc → ∞,

(5)MQ2
π → 2muB

Q
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1 + 2muK

Q
3

) +O
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)
.

Since QCD and QQCD have the same large Nc
limits, Eqs. (3) and (5) imply

(6)B = BQ, K3 =K
Q
3 as Nc → ∞.

Thus some low energy constants (to be more precise,
those that are leading in the 1/Nc expansion) of χPT
and QχPT are identical in the large Nc limit. This
implies their differences are higher order in 1/Nc:

BQ = B

(
1 +O

(
1
Nc

))
,

(7)K
Q
3 =K3

(
1 +O

(
1
Nc

))
.

Now we can have a clear idea about how large
the quenching error is. The error could come from
the quenched logarithms which might be formally
higher order in the 1/Nc expansion but numerically
significant. Fortunately, those chiral logarithms can
be calculated using effective field theories so that
one can just replace the quenched logarithms by the
real ones. Another source of error comes from the
difference between the low energy constants which is
an O(1/Nc)∼ 30% effect. This is consistent with the
∼ 25% quenching error seen in simulations (see [4],
for example).

Recently kaon weak matrix elements relevant to
the K → ππ process have been simulated using the
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quenched approximation by two groups [5,6]. In both
calculations, QχPT low energy constants are extracted
from K → π and K → vacuum amplitudes in order
to recover the desired K → ππ amplitude. Based
on the above discussion that leads to Eq. (7), the
errors of these analyses are O(1/Nc) and naively
are ∼ 30%. Indeed this is the case for the �I =
1/2 rule. The simulations give 25.3 ± 1.8 [5] and
10 ± 4 [6] compared to the experimental value 22.2.
However, for the case of CP violation ε′/ε parameter,
Ref. [5] obtained (−4.0 ± 2.3) × 10−4, consistent
with Ref. [6], compared to the current experimental
average of (17.2±1.8)×10−4. In the ε′/ε case, a large
accidental cancellation happens between the I = 0 and
I = 2 contributions such that the estimated ∼ 30%
errors from the two pieces add up to ∼ 8 × 10−4.
Besides, in the ε′/ε quenched calculation, there is
an additional quenched artifact that can be fixed by
dropping some “eye diagrams” [13]. Doing this will
increase the ε′/ε by ∼ 4×10−4 [14]. Thus in this case
the quenching error is significant.

The above examples suggest that in principle, the
quenched approximation is typically expected to give
a ∼ 30% error result if there are no big cancellations
between different contributions and if the quenched
chiral logarithms (or non-analytic contributions, in
general) are replaced by the unquenched ones. Now
we will try to identify some matrix elements that can
be reliably computed in the quenched approximation
with 100% errors and are still worth computing even
with that size of uncertainties.

The first quantity we look at is the proton strange
magnetic moment µs. It is measured in the electron–
proton and electron–deuteron parity violation exper-
iments [15]. The measured value has a large uncer-
tainty

µ
exp
s = [

0.01 ± 0.29(stat)± 0.31(sys)
(8)± 0.07(theor.)

]
n.m.

This implies that the strange quark only contributes
around −0.1±5.1% of the proton’s magnetic moment.
In χPT, the first two orders in chiral expansion for µs
is [16]

(9)µs = µ0
s + MNMK

24πf 2
π

(
5D2 − 6DF + 9F 2),

where D and F are Goldstone boson–nucleon cou-
plings. Using the standard values for the parameters,

the second term which is the kaon cloud contribution is
∼ 2.0 n.m. This combined with the experimental data
implies the leading order low energy constant µ0

s is
∼ −2.0 n.m. Thus a quenched calculation would have
a quenching error of ∼ 0.8 n.m. Again, the large can-
cellation makes the quenching error relatively big and,
hence, the result is not reliable within a 100% error.

The second quantity that is also interesting but even
less well measured is the longest range parity violating
(PV) isovector pion nucleon coupling, hπ . For many
years, serious attempts have been made to measure
this quantity in many-body systems where the PV ef-
fects are enhanced. However, currently even its order
of magnitude is still not well constrained (see [17] for
reviews) largely due to the theoretical uncertainties.
Few-nucleon experiments, such as the new �np → dγ

experiment at LANSCE [18], are expected to have
small theoretical uncertainties and will set a tight con-
straint on hπ . Also, recent studies in single nucleon
systems in Compton scattering [19] and pion produc-
tions [20] show that the near threshold �γp → π+n
process is both a theoretically clean and experimen-
tally feasible way to extract hπ [20]. Given the in-
tensive interests and the level of difficulty involved in
the experiments, a lattice QCD determination of hπ
with a 100% error will be very valuable. In fact, is-
sues such as chiral extrapolation has been addressed
in [21] in the context of partially quenched approx-
imations [22] in which sea and valence quark masses
are different. Since one does not expect large cancella-
tions between the first few orders—as what happened
in the µs case—we suggest that a quenched simulation
of hπ is enough to give a 100% error result.

Another interesting PV quantity is the longest range
PV photon–nucleon–delta (γN∆) coupling. Zhu et al.
suggested a model, which was inspired by the hyperon
decays, to argue that there could be enhanced PV
mixing in the initial and final state wave functions
such that the PV γN∆ coupling is 25–100 times larger
than its size from the naive dimensional analysis [23].
If correct, this enhancement will introduce an easily
measurable PV signal in �γp→ π+n at the delta peak.
To check if the large PV enhancement due to the wave
function mixing really takes place, one can compute
the PV mixing between ∆( 3

2
+
) and N(1520; 3

2
−
)

and between the nucleon ( 1
2
+
) and N(1535; 1

2
−
) in

QQCD. One expects the mixing between these states
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to be 5–20 times larger than their sizes from the
naive dimensional analysis according to the model of
Zhu et al. This can be checked easily by a quenched
calculation with a 100% error.

Recently, Young et al. [24] studied the lattice results
of nucleon and delta masses. They suggested the dif-
ference between the quenched and unquenched cases
is largely due to the one-loop self-energy contribu-
tions calculated in a certain cut-off scheme, while the
difference due to the low energy constants seems to
be smaller than a generic estimation of ∼ 30%. This
might be because in the real simulations, only the mass
ratios are computed. The absolute mass scale is set by
assuming zero quenching error for a certain quantity,
then the coupling constant and, equivalently, the lattice
spacing, is determined accordingly. It is conceivable
that the ratio of certain quantities can be computed
more reliably because the leading O(1/Nc) errors can-
cel. An explicit example is the ratio of B meson decay
constants fBs /fB , where Bs(B) denotes a low-lying
pseudoscalar meson with the same quantum number
as a bs(bd) state [3]. However, to argue that all the
mass ratios have smaller than O(1/Nc) quenching er-
rors is beyond the scape of effective field theory. To
see if certain error suppression really takes place, it
would be very interesting to study the Nc dependence
for quenched approximations by direct simulations.

There is another class of ratios in large Nc QCD
that the finite Nc correction is O(1/N2

c ) to the leading
order. It would be interesting to see whether the
correction is still O(1/N2

c ) in QQCD.
In summary, quenched QCD and QQCD have the

same large Nc limit, such that some of the low
energy constants in their corresponding effective field
theories are identical in the largeNc limit. This implies
that some physical quantities can be determined in
the quenched approximation with O(1/Nc) ∼ 30%
accuracy. A few interesting applications are explored.
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