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This Perspective proposes definitions for key terms in the field of HIV-1 latency and eradication. In the context
of eradication, a reservoir is a cell type that allows persistence of replication-competent HIV-1 on a timescale
of years in patients on optimal antiretroviral therapy. Reservoirs act as a barrier to eradication in the patient
population in which cure attempts will likely be made. Halting viral replication is essential to eradication,
and definitions and criteria for assessing whether this goal has been achieved are proposed. The cell types
that may serve as reservoirs for HIV-1 are discussed. Currently, only latently infected resting CD4+ T cells fit
the proposed definition of a reservoir, and more evidence is necessary to demonstrate that other cell types,
including hematopoietic stem cells and macrophages, fit this definition. Further research is urgently required
on potential reservoirs in the gut-associated lymphoid tissue and the central nervous system.
Introduction
In 1997, it became possible for the first time to reduce plasma

HIV-1 levels to below the detection limit of clinical assays (50

copies of HIV-1 RNA/ml) with combinations of three antiretroviral

drugs (Perelson et al., 1997). This approach, known as highly

active antiretroviral therapy (HAART), dramatically decreased

deaths from HIV-1 infection (Palella et al., 1998). With millions of

life years saved because of it (Walensky et al., 2006), HAART is

amajor achievement ofmodernmedicine, converting a uniformly

fatal illness into one in which adherent patients starting treatment

early now have near-normal life expectancy (Mills et al., 2011).

The effective suppression of viremia initially inspired hopes

that the virus could be eradicated with 2–3 years of HAART (Per-

elson et al., 1997). However, in 1995, a latent form of HIV-1 infec-

tionwas demonstrated in vivo (Chun et al., 1995). A small fraction

of resting memory CD4+ T cells were shown to carry integrated

viral genomes. These cells do not release infectious virus in the

resting state but can do so following cellular activation (Chun

et al., 1995; Chun et al., 1997a). This latent reservoir in resting

CD4+ T cells persists even in patients on HAART who have no

clinically detectable viremia (Chun et al., 1997b; Finzi et al.,

1997; Wong et al., 1997). Longitudinal analysis demonstrated

that in patients on HAART, the time to eradication of the popula-

tion of latently infected cells would be over 60 years (Finzi et al.,

1999; Siliciano et al., 2003; Strain et al., 2003). This latent reser-

voir is now recognized as the major barrier to HIV-1 eradication

(Richman et al., 2009). Even patients who have been on HAART

for several years experience viral rebound within weeks of treat-

ment interruption (Davey et al., 1999), typically from an archival

variant (Joos et al., 2008). Life-long HAART is therefore required.

The latent reservoir for HIV-1 in resting CD4+ T cells differs in

important ways from classic forms of latency observed for

viruses such as those of the Herpesviridae family. For herpes

simplex viruses, latency allows immune evasion and viral persis-

tence between episodes of active replication (Perng and Jones,

2010). In contrast, in untreated HIV-1 infection, there is contin-
uous viral replication throughout the disease course (Figure 1)

(Piatak et al., 1993). Rapid viral evolution allows escape from

neutralizing antibodies (Richman et al., 2003) and cytolytic

T lymphocyte (CTL) responses (Borrow et al., 1997) and provides

the principal mechanism of immune evasion.

Why, then, does latent HIV-1 infection occur? HIV-1 latency is

best viewed as an accidental consequence of viral tropism for

activated CD4+ T cells. Generally, infection leads to the rapid

death of activated CD4+ T cells (Ho et al., 1995; Wei et al.,

1995), but rarely, activated CD4+ T cells become infected as

they are reverting back to a resting memory state. Resting

CD4+ T cells aremuch less permissive for HIV-1 gene expression

due to profound differences in the transcriptional environment.

Thus, latency can be established. Latent HIV-1 is found in

resting memory CD4+ T cells but not in naive CD4+ T cells

(Brenchley et al., 2004a; Chomont et al., 2009; Chun et al.,

1997a; Pierson et al., 2000), supporting the idea that the cells

become infected during the transition from activated effectors

to resting memory cells. The establishment of latent infection is

a rare event; hence, the frequency of latently infected cells is

extremely low, typically around 1/106 resting CD4+ T cells

(Chun et al., 1997a; Finzi et al., 1997). Encountering antigen or

other activating stimuli can induce latently infected cells to

produce the virus, but the rate of virus production from this

and other stable reservoirs is typically <0.01% of the rate of virus

production due to ongoing replication in untreated patients

(Figure 1). Thus, this small pool of latently infected cells probably

plays only a minor role in the natural history of infection. Essen-

tially, HIV-1 latency is an epiphenomenon, but one that is

extremely important in the context of HAART because it repre-

sents a barrier to a cure. This view of latency has significant

implications for therapeutic efforts to purge the latent reservoir

cells and for the search for other HIV-1 reservoirs.

In addition to the latent reservoir in resting CD4+ T cells, there

is another important indication of viral persistence in patients on

HAART. Although HAART suppresses viremia to <50 copies/ml,
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Figure 1. Plasma Virus Levels in Untreated and Treated HIV-1
Infection
Virus production continues throughout the course of untreated HIV-1 infection
(top panel). Levels of viremia vary widely between patients but average
between 10,000 and 100,000 copies/ml. Stable reservoirs make a very small
contribution to overall virus production. Their contribution, apparent only when
active replication is halted by HAART, is around 1 copy/ml (Palmer et al., 2003,
2008). HAART induces a rapid biphasic drop in the level of viremia (bottom
panel), reflecting the rapid turnover of the cells that produce most of the
plasma virus (Ho et al., 1995; Perelson et al., 1996, 1997; Wei et al., 1995).
Eradication strategies will likely be implemented in patients who have had
suppression of viremia to below the limit of detection for >1 year to allow decay
of these labile infected cell populations.
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more sensitive assays with limits of detection as low as 1

copy/ml reveal trace levels of viremia in many patients (Dorna-

dula et al., 1999; Palmer et al., 2003, 2008). Because the half-

life of plasma virus is on the order of minutes (Perelson et al.,

1996; Ramratnam et al., 1999), this low-level viremia, referred

to as ‘‘residual viremia,’’ indicates ongoing virus production in

patients on HAART. At least some of these viruses appear to be

replication competent (Sahu et al., 2010). In principle, residual

viremia could result froma lowdegreeof ongoing viral replication,

the release of virus from latently infected cells that have become

activated, or the release of virus from other stable reservoirs.

Although the discovery of a stable latent reservoir for HIV-1

diminished hopes for eradication, the recent cure of a single
378 Immunity 37, September 21, 2012 ª2012 Elsevier Inc.
patient using an ablative bone marrow transplantation strategy

has renewed interest in cure research (Hütter et al., 2009). The

patient had stable suppression of viremia on HAART when he

developed acute myelogenous leukemia (AML). As part of the

treatment for AML, he received chemotherapy and radiation

followed by a bone marrow transplant from an HLA-matched

donor. The unique aspect of the case was the choice of a donor

who was also homozygous for a 32 base pair deletion in the

HIV-1 coreceptor CCR5. Thus, the patient’s hematopoietic

compartment was reconstituted with HIV-1-resistant cells. At

the time of initial transplantation, HAARTwas stopped, and there

has been no rebound in viremia for over 5 years. This patient is

thus considered to be the first and, to date, the only patient cured

of HIV-1 infection. Although this approach will be difficult to

generalize, the successful cure of a single patient has renewed

interest in the possibility of eradicating HIV-1 infection. The

purpose of this article is to precisely define the viral reservoirs

that represent a barrier to eradication.

Definitions
Discussions of HIV-1 eradication have been hindered by a lack of

precision and consensus regarding the meaning of key terms

such as latency, viral replication, reservoir, sanctuary, compart-

ment, and cure. Therefore, we propose here a set of definitions

that can be used as a starting point for refining the terminology

in cure research (Table 1).

Latency

The standard virologic definition of latency is a reversibly

nonproductive state of infection of individual cells. Latently

infected cells do not produce infectious virus particles but retain

the capacity to do so. Resting memory CD4+ T cells carrying

transcriptionally silent HIV-1 genomes clearly represent a form

of latency because a fraction of these cells produce infectious

virus following cellular activation (Chun et al., 1995, 1997a,

1997b; Finzi et al., 1997; Wong et al., 1997). The term latency

is sometimes used in clinical settings to refer to the prolonged

asymptomatic phase between acute infection and the develop-

ment of AIDS. This usage is incorrect because viral replication

continues throughout the course of untreated HIV-1 infection

(Figure 1) (Piatak et al., 1993).

Viral Replication

The first step in HIV-1 eradication is to stop the virus from repli-

cating. Surprisingly, there is considerable confusion regarding

the term ‘‘viral replication’’ and the measures that can be used

to determine whether replication has been halted by HAART.

Some authors erroneously equate virus production with viral

replication. The mere detection of viral RNA in cells from patients

on HAART does not demonstrate ongoing replication, nor does

the presence of residual viremia. Both can be explained by the

reactivation of latently infected cells (Figure 2). Virus production

by these cells can occur without new rounds of infection and

does not propagate the infection. We suggest that the term

‘‘replication’’ be used to mean new cycles of infection in which

previously uninfected cells become infected and produce virus

that goes on to infect additional cells.

Reservoir

Viral reservoirs have been defined as cell types or anatomical

sites in association with which replication-competent forms of

the virus persist with more stable kinetic properties than the
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Figure 2. Distinguishing Ongoing Viral Replication from Virus
Production by Latently Infected Cells that Have Been Activated
A variety of parameters have been evaluated to determine whether a low
degree of viral replication continues in patients on HAART. These are indicated
in red and include expression of HIV-1 RNA, residual viremia, labile products of
reverse transcription such as linear unintegrated HIV-1 DNA, LTR circles, and
the accumulation of mutations (viral evolution). Depending on the HAART
regimen, some of these parameters can also reflect the reactivation of latently
infected cells without further replication (bottom panel). For example, in
patients on regimens in which an integrase inhibitor is the most active drug, all
of these features except evolution would be present. Only the accumulation of
new mutations is uniquely characteristic of ongoing replication.

Table 1. Proposed Definitions for Key Terms in Eradication

Research

Term Brief Definition

Latency Reversibly nonproductive state of infection

of individual cells. Latently infected cells

retain the capacity to produce infectious

virus particles.

Viral replication New cycles of infection in which previously

uninfected cells become infected and

produce virus, which goes on to infect

additional cells. Evidence for viral replication

includes the presence of labile products of

reverse transcription, viral evolution during

prolonged HAART with drugs at therapeutic

concentrations, and a decrease in residual

viremia levels upon adding a fourth drug

to a HAART regimen.

Reservoir (previous

virologic definition)

Cell type or anatomical site, in association

with which a replication-competent form of

the virus persists with more stable kinetics

than the main pool of actively replicating

virus.

Reservoir (practical

definition)

Infected cell population that allows

persistence of replication-competent

HIV-1 in patients on optimal HAART

regimens on the order of years.

Compartment An anatomical site for which there is limited

exchange of viral genetic information with

other sites; observable using phylogenetic

tools. May contain compartment-specific

viral sequences.

Sanctuary An anatomical site with suboptimal free

drug levels.

Cure: sterilizing Complete eradication of all replication-

competent forms of the virus.

Cure: functional Permanent viral suppression in the

absence of therapy to levels that prevent

immunodeficiency and transmission.
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main pool of actively replicating virus (Blankson et al., 2002).

There are two important elements to this definition. First, a reser-

voir allows persistence of some replication-competent form of

the virus capable of replenishing the pool of infected cells in

the future. Many HIV-1 genomes are defective, and thus the

detection of proviral DNA by PCR does not establish that a viral

reservoir is present. Second, there is a kinetic element to the

definition. Classic studies of viral dynamics in HIV-1 infection

(Ho et al., 1995; Perelson et al., 1996, 1997; Wei et al., 1995;

Zhang et al., 1999) established that most of the plasma virus is

produced by activated CD4+ T cells, which turn over very quickly

in the productively infected state (t1/2z 1 day). The mechanisms

by which the cells are cleared have not yet been elucidated and

may not involve direct lysis by CTL (Klatt et al., 2010; Wong et al.,

2010). The rapid death of these cells causes the precipitous drop

in viremia seen when new infection of susceptible cells is

blocked by HAART (Figure 1).

By the definition given above, any infected cell with a half-life

longer than 1 day could be considered a reservoir. Careful anal-

ysis of the rate of decay of viremia following the initiation of
HAART revealed a minor population of virus-producing cells

with a half-life of approximately 2 weeks (Perelson et al., 1997).

The nature of these cells is controversial. Productively infected
Immunity 37, September 21, 2012 ª2012 Elsevier Inc. 379
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CD4+ T cells with a resting phenotype are observed in vivo in

acute infection (Zhang et al., 1999), and in vitro studies suggest

that chemokines can render resting CD4+ T cells susceptible to

infection (Saleh et al., 2007). Macrophages are also infected

in vivo, but whether either of these cell types is responsible for

the second phase of decay remains unclear.

Eradication efforts will likely be attempted only in patients on

HAART who have had sustained suppression of viral replication

for years, and therefore the cells responsible for the second

phasemay not represent a barrier to eradication. Clinically signif-

icant reservoirs are more stable. This element of long-term

stability is captured in an elegant genetic definition of a viral

reservoir proposed by Nickle and colleagues (Nickle et al.,

2003). Because sequences arising at different time points in

the course of infection can be deposited and persist in a reser-

voir, the viral sequences in a reservoir will lack temporal structure

and show less mean divergence from the most recent common

ancestor (MRCA) than the contemporaneous pool of actively

replicating virus. The latent reservoir in resting CD4+ T cells

meets these criteria and can store the original wild-type

sequences as well as drug-resistant sequences arising due to

suboptimal therapy (Noë et al., 2005; Persaud et al., 2000; Ruff

et al., 2002). Extensive sequence analysis is required to define

reservoirs in this way. We suggest that a simple and practical

definition for an HIV-1 reservoir is an infected cell population

that allows the persistence of replication-competent HIV-1 in

patients on optimal HAART regimens on a timescale of years.

To date, the latent reservoir in resting CD4+ T cells is the only

reservoir shown to fit this definition.

Sanctuaries and Compartments

There is also confusion over these terms. Both refer to anatomic

sites in which the virus may be present. Sanctuary is typically

used to refer to a site in which limited penetration of antiretroviral

drugs allows persistent replication. Whether there are sanctu-

aries of this kind in patients on HAART is unclear. Most studies

of pharmacologic sanctuaries measure the total drug concentra-

tion, including both protein-bound and -unbound forms of the

drug. However, according to the free drug hypothesis (Martin,

1965), only unbound forms distribute across membranes and

determine the biological effect. An important recent study has

shown that while the total concentration of the reverse transcrip-

tase inhibitor efavirenz (EFV) is much higher in the blood than in

the seminal plasma, the free EFV concentration is actually the

same (Avery et al., 2011). Thus, the male genital tract is actually

not a drug sanctuary for EFV, despite having much a lower total

EFV concentration. Similar arguments may apply to other puta-

tive drug sanctuaries such as the central nervous system

(CNS), and it is critical that free drug concentrations be

measured in these sites. Despite concerns about drug sanctu-

aries, there is no anatomical site where continued HIV-1 replica-

tion has been documented in the majority of patients.

Some antiretroviral drugs such as reverse transcriptase (RT)

and integrase inhibitors act intracellularly. Nucleoside analog

RT inhibitors (NRTIs) must be phosphorylated by cellular

enzymes to an active triphosphate form. Intracellular concentra-

tions of NRTIs correlate significantly with virological efficacy,

whereas plasma concentrations do not (for review, see Bazzoli

et al., 2010). Because of the technical barriers to sampling intra-

cellular drug concentrations in putative drug sanctuaries, other
380 Immunity 37, September 21, 2012 ª2012 Elsevier Inc.
methods must be used to determine whether viral replication is

ongoing, as is discussed below.

The term compartment is sometimes used to refer to an

anatomical site in which the virus is present. More specifically,

it refers to a site that has limited exchange of viral genetic

information with other sites (Nickle et al., 2003). Compartments

can be identified using phylogenetic criteria. Typically there are

compartment-specific sequences—viral variants that evolve in

a particular site and are not distributed to other sites. The exten-

sive literature on compartmentalization of HIV-1 has been

recently reviewed (Blackard, 2012). Many early studies of

HIV-1 compartmentalization were flawed by PCR resampling

(Jabara et al., 2011). Compartments can only be defined with

adequate sampling of individual viral genomes in different sites.

HIV-1 compartmentalization has been explored mainly in un-

treated patients, and in terms of eradication, the key issue is

whether there are compartments that function as reservoirs.

Cure

Definitions for two types of cures have been proposed (Dieffen-

bach and Fauci, 2011). In a sterilizing cure, there is complete

eradication of the virus. In light of the high fraction of defective

viral genomes, this definition could be further refined as follows:

A sterilizing cure eliminates all replication-competent forms of

the virus; no viral reservoirs remain. By this definition, a patient

who retains some defective viral sequences would still be

considered cured. In a functional cure, there is permanent

control of viral replication without therapy. Elite suppressors

(ESs), patients who control viral replication without therapy, are

often considered examples of a functional cure (Deeks and

Walker, 2007). However, replication-competent virus can be iso-

lated from ESs (Blankson et al., 2007). In addition, it can be

shownwith sensitive assays (Pereyra et al., 2009) that these indi-

viduals have low-level viremia, analysis of which reveals

evidence for viral evolution (Bailey et al., 2006b; O’Connell

et al., 2010). Nevertheless, ESs generally maintain stable CD4+

T cell counts and plasma HIV-1 levels below the limit of detection

of clinical assays and are unlikely to transmit the virus. In this

light, a functional cure could be an intervention that renders

patients with progressive disease able to permanently control

viral replication to <50 copies/ml without therapy, thereby pre-

venting clinical immunodeficiency and transmission.

The Debate over Ongoing Virus Replication in Patients
on HAART
A critical issue is whether HAART completely stops viral replica-

tion. This issue has been difficult to resolve because some indi-

cators of viral replication can also reflect virus production from

stable reservoirs (Figure 2). Certain virologic measures could

provide conclusive evidence that HIV-1 replication is ongoing

in patients on HAART. The first is the detection of labile products

of reverse transcription (Zack et al., 1990). In patients on effec-

tive regimens composed of protease inhibitors, entry inhibitors,

and/or RT inhibitors, labile products of reverse transcription

should be absent. The final product of reverse transcription is

a full-length, linear, double-stranded viral DNA that is inserted

into host DNA by HIV-1 integrase. Pioneering studies by Mario

Stevenson showed that linear unintegrated HIV-1 DNA is a prev-

alent species in resting CD4+ T cells in untreated patients

(Bukrinsky et al., 1993). However, this form can be targeted by



Immunity

Perspective
exonucleases and is labile until it is integrated into cellular DNA

(Pierson et al., 2002b; Zhou et al., 2005). Thus, the detection of

linear unintegrated HIV-1 DNA would indicate recent infection.

Linear unintegrated HIV-1 DNA has not been conclusively

demonstrated in patients on HAART. Circular forms of the viral

genome, specifically 1- and 2-LTR circles, can arise, particularly

when integration is blocked (Bukrinsky et al., 1993; Farnet and

Haseltine, 1991; Sharkey et al., 2000). These forms represent

dead ends with respect to replication but could serve as indica-

tors of recent infection if they are labile. However, the stability of

these forms is controversial (Butler et al., 2002; Pierson et al.,

2002a; Sharkey et al., 2005). In addition, as shown in Figure 2,

these forms could be generated through the activation of latently

infected cells in patients on regimens that rely on an integrase

inhibitor to provide most of the antiviral effect. In summary, the

analysis of unintegrated forms of the viral genome has not yet

provided unequivocal evidence for ongoing replication in most

patients on HAART.

Progressive evolutionary change is an inevitable characteristic

of HIV-1 replication due to the high error rate of RT (Mansky and

Temin, 1995). In each infected individual, one or a small number

of transmitted founder viruses evolve(s) over time into a complex

quasispecies (Keele et al., 2008; Wood et al., 2009). Thus,

ongoing evolution would also be a clear indication that HAART

does not completely stop replication. However, most studies

fail to detect evolution in the majority of patients on HAART

(Bailey et al., 2006a; Evering et al., 2012; Frenkel et al., 2003;

Kieffer et al., 2004). Analysis is complicated by variable adher-

ence in patient populations. In any population, there will be

patients with poor adherence in whom viral replication occurs

as a result of low drug levels. Thus, evolution in a small subset

of patients cannot be taken as evidence that the virus continues

to replicate in patients on optimal HAART regimens. There is no

study documenting evolutionary change in patients known to

have therapeutic levels of antiretroviral drugs. As discussed

above, residual viremia in patients on HAART reflects ongoing

virus production and might be expected to capture evolutionary

change if new cycles of replication were occurring. Interestingly,

detailed studies of residual viremia have shown that it is drug

sensitive, archival in character, and nonevolving (Bailey et al.,

2006a; Kieffer et al., 2004; Nettles et al., 2005; Persaud et al.,

2004). This lack of evolution is also consistent with the general

clinical experience that adherent patients can maintain suppres-

sion of viremia on HAART indefinitely.

A final experimental test of the hypothesis that viral replication

continues in patients on HAARTwould be the demonstration that

intensification of HAART with additional antiretroviral drugs

further reduces some measure of viral persistence. Numerous

studies with several different intensification drugs have all shown

that intensification has no effect on residual viremia (Dinoso

et al., 2009; Gandhi et al., 2010; Yukl et al., 2010b). These results

strongly suggest that residual viremia originates from stable

reservoirs rather than ongoing replication. A single study

suggests that intensification transiently increases the levels of

2-LTR circles in a subset of patients (Buzón et al., 2010), but in

light of uncertainty about the half-life of these circles, the signif-

icance of this result remains unclear.

In summary, the weight of the current evidence suggests that

HAART effectively halts ongoing viral replication as defined
above. This conclusion is supported by recent pharmacody-

namic studies that quantitate the inhibitory potential of HAART

regimens (Jilek et al., 2012). Clinical concentrations of some

antiretroviral drugs, specifically certain protease inhibitors, can

produce 10 logs of inhibition of a single round of infection, and

three-drug HAART regimens have an even higher combined

inhibitory potential. Given that there are only 1012 lymphocytes

in the entire body, only a small fraction of which are infected,

this degree of inhibition should effectively block all new infection

events in any drug-accessible region of the body. An interesting

recent paper suggests that in the vicinity of a virus-producing

cell, the exposure of adjacent cells to multiple infection events

reduces the efficacy of antiretroviral drugs on a probabilistic

basis (Sigal et al., 2011). However, cells with multiple proviruses

are rare in vivo (Josefsson et al., 2011). Any replication that does

continue in adherent patients on HAART is sufficiently limited

that resistance does not evolve. The success of HAART at block-

ing replication has led to a shift in the HIV-1 treatment field away

from the development of new antiretroviral drugs and toward the

eradication of reservoirs (Richman et al., 2009).

The Latent Reservoir in Resting CD4+ T Cells
The mechanisms by which latent infection is established and

maintained in resting CD4+ T cells have been recently reviewed

(Karn, 2011; Richman et al., 2009; Siliciano and Greene, 2011)

andwill be only briefly summarized here. In resting cells, an inter-

related set of changes in the transcriptional environment prevent

viral gene expression. These include both the sequestration of

critical host transcription factors and epigenetic modifications

that inhibit transcription. The transcription factors NFkB and

NFAT, both of which are involved in HIV-1 gene expression,

are excluded from the nucleus in resting CD4+ T cells (Böhnlein

et al., 1988; Nabel and Baltimore, 1987). In addition, in resting

cells there is also sequestration of pTEFb, a complex of CDK9

and cyclin T1 that, in association with the HIV-1 protein Tat,

promotes elongation of HIV-1 transcripts (Contreras et al.,

2007; Kao et al., 1987; Peterlin and Price, 2006; Zhu et al.,

1997). Even though HIV-1 proviruses are typically integrated

within genes that are actively transcribed in resting CD4+

T cells (Han et al., 2004; Shan et al., 2011), repressive chromatin

modifications of nucleosomes and DNAmethylation at the HIV-1

LTR can interfere with expression of viral genes (Blazkova et al.,

2009; Van Lint et al., 1996; Ylisastigui et al., 2004). Many of these

mechanisms have been elucidated using transformed cell lines,

and the relative importance of each mechanism in maintaining

latency in vivo is unclear. The reversal of latency in vivo with

agents designed to target these mechanisms may provide

insight into this critical issue.

Several approaches to curing HIV-1 infection have been

proposed (reviewed in Durand et al., 2012a). One involves reac-

tivation of latent virus while patients are on HAART. This could

cause death of infected cells from viral cytopathic effects or

could allow the immune system to act against these cells.

Classes of small molecules capable of reactivating latent HIV-1

include histone deacetylase inhibitors such as vorinostat (suber-

oylanilide hydroxamic acid, SAHA) (Archin et al., 2009; Contreras

et al., 2009) and phorbol esters such as bryostatin and prostratin

that induce transcription of HIV-1 through activation of the

cellular protein kinase C pathway (Korin et al., 2002; Kulkosky
Immunity 37, September 21, 2012 ª2012 Elsevier Inc. 381
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et al., 2001; Mehla et al., 2010; Williams et al., 2004). One recent

clinical study demonstrated increased HIV-1 RNA expression in

resting CD4+ T cells of patients on HAART after a single oral dose

of SAHA, suggesting that SAHA is capable of perturbing the

latent reservoir in vivo (Archin et al., 2012). However, recent

evidence indicates that simply reactivating latent HIV-1 may

not be sufficient to induce immune-mediated purging of latent

reservoirs (Shan et al., 2012). Ex vivo experiments have shown

that priming of CD8+ T cells with HIV-1 gag peptides permits

these cells to kill HIV-1-infected CD4+ T cells whose virus had

been reactivated with SAHA, suggesting that a combination of

immune priming and reactivation of latent HIV-1 may be neces-

sary for a cure.

As approaches for targeting the latent reservoir are developed,

it is important to understand how the reservoir is measured. The

original in vivo measurements of the latent reservoir in resting

CD4+ T cells were made using a viral outgrowth assay (Chun

et al., 1997a; Finzi et al., 1997). In this assay, serial dilutions of

purified resting CD4+ T cells from an HIV-1 infected individual

are activated with the mitogen phytohemagglutinin (PHA) and

irradiated allogeneic peripheral blood mononuclear cells. This

causes uniform T cell activation and thereby switches all of

the cells carrying latent HIV-1 genomes into a state that is

permissive for virus gene expression. CD4+ T lymphoblasts

from healthy donors are added to amplify any virus released

from the infected cells, and after a period of 2–3 weeks, the

numbers of culture wells at each dilution that are positive for viral

growth is determined by ELISA assay for HIV-1 p24 antigen.

Using Poisson statistics, the number of positive wells can be

used to calculate the number of latently infected cells per million

resting CD4+ T cells (infectious units per million, IUPM). The

advantage of this assay is that it quantifies the minimum number

of latently infected cells harboring replication-competent virus.

Disadvantages include cost and complexity and the fact that

it does not distinguish between cells carrying integrated provi-

ruses and recently infected cells carrying linear unintegrated

HIV-1 DNA. However, because linear forms are labile, they

may not confound the measurement in patients on HAART.

The most serious problem is the dynamic range, which is limited

by the low frequency of latently infected cells and the large

amount of blood required to detect them. Eradication

approaches that produce only small (1 log) reductions in the

size of the latent reservoir may render the reservoir undetectable

with this assay.

Alternative assays use PCR to quantify cells containing viral

genomes. Some PCR assays are specific for integrated provi-

ruses (Chun et al., 1995, 1997a; O’Doherty et al., 2002). A

problem with all PCR-based assays is that they do not differen-

tiate between cells that can produce infectious virus and

cells containing proviruses that have been either permanently

silenced through epigenetic mechanisms or rendered noninfec-

tious through APOBEC3G-mediated hypermutation or some

other form of mutation (Chun et al., 1997a; Kieffer et al., 2005).

In patients on HAART, the frequency of resting CD4+ T cells

carrying HIV-1 DNA is 100- to 300-fold greater than the

frequency latently infected cells detected in the culture assay

(J. Siliciano et al., personal communication). Thus, although

PCR assays are simpler, it is not yet clear that they will provide

an effective way to monitor eradication efforts.
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Other Reservoirs
Although the existence of a stable latent reservoir in resting CD4+

T cells is clearly established, additional reservoirs could further

complicate eradication efforts. Evidence for additional reservoirs

comes from a detailed analysis of residual viremia. Although

many viral sequences in the plasma of patients on HAART are

identical to sequences found in the latent reservoir, the residual

viremia in some patients is dominated by oligoclonal populations

called predominant plasma clones (PPC) that are profoundly

underrepresented among proviruses in circulating CD4+ T cells

(Bailey et al., 2006a). Sophisticated genetic tests for population

structure also suggest that some of the residual viremia origi-

nates from cells other than resting CD4+ T cells found in the

circulation (Bailey et al., 2006a; Sahu et al., 2009). It is also

possible that these clonal sequences originate from resting

CD4+ T cells present only at low frequency in the circulation (An-

derson et al., 2011). In any event, residual viremia provides an

important window into the state of virologic suppression

because it reveals ongoing virus production in patients on

HAART and thus reports on the existence and persistence of viral

reservoirs.

Macrophages

Among other cell types that could serve as HIV-1 reservoirs,

macrophages are frequently mentioned. Early studies demon-

strated HIV-1 infection of macrophages in vivo and showed

that these cells are more resistant to viral cytopathic effects

than are activated CD4+ T cells (Gartner et al., 1986; Koenig

et al., 1986). Macrophage-tropic HIV-1 variants utilize the

CCR5 coreceptor (Alkhatib et al., 1996; Deng et al., 1996) but

also have sequence changes in the Env protein that allow entry

into cells that express low amounts of CD4, including macro-

phages (Schnell et al., 2011; Walter et al., 2005). Infection of

macrophages is particularly prominent late in the course of

infection, when most of the CD4+ T cells have been lost (Igarashi

et al., 2001). Although infected macrophages play a role in HIV-1

pathogenesis, it is not yet clear that these cells fit the definition

proposed above for a reservoir.

Infection of macrophages should be viewed in the context of

the normal differentiation of these cells (reviewed in Auffray

et al., 2009; Shi and Pamer, 2011). Macrophages are derived

from the pluripotent hematopoietic stem cells (HSCs) that give

rise to all cellular components of the blood. HSCs give rise to

hematopoietic progenitor cells (HPCs) with more restricted

differentiation potential, including a common myeloid progenitor

that gives rise to the granulocyte and monocyte-macrophage

lineages through an integrated process of proliferation and

differentiation occurring in the bonemarrow (Iwasaki and Akashi,

2007). The bone marrow phase of macrophage differentiation

lasts 2–5 days and ends when promonocytes leave the marrow

and enter the circulation as monocytes. Monocytes can be

divided into subsets based on expression of chemokine recep-

tors and other surface proteins, trafficking patterns, and differen-

tiation potential (Auffray et al., 2009; Shi and Pamer, 2011). After

less than 1 day, monocytes leave the circulation and undergo

further differentiation. This differentiation is tissue specific in

the sense that it results in the generation of cells with different

morphologies and functions, depending on the tissue. These

tissue forms include ordinary tissue macrophages, dendritic

cells, Langerhans cells in the epidermis, alveolar macrophages
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in the lung, Kupffer cells in the liver, perivascular macrophages

and microglial cells in the CNS, and osteoclasts in bone. The

tissue half-lives of these cell types are not well studied. Impor-

tantly, there is evidence that Langerhans cells and microglial

cells take up residence in their respective anatomic sites and

persist with less need for continuous replacement by monocytes

(Saijo and Glass, 2011).

Macrophages could in principle be infected at three different

stages: during differentiation in the marrow, in the blood as

monocytes, or in the tissues as mature macrophages. Infection

of HPCs in the marrow is discussed below. Little is known about

infection of bone marrow progenitor cells committed to the

monocyte-macrophage lineage, but if it does occur, it must be

rare. The number of circulating monocytes carrying HIV-1 DNA

is extremely low—so low, in fact, that contaminating CD4+

T cells cannot be excluded as a source of the signal (Zhu et al.,

2002). Monocytes appear to be relatively resistant to in vitro

infection with HIV-1 due to inefficient entry and delays in early

steps in the life cycle (Arfi et al., 2008). In addition, the recently

identified host restriction factor SAMHD1may protect these cells

from infection (Laguette et al., 2011). Neither monocytes nor any

of the committed progenitors in the marrow can be considered

reservoirs by the definition proposed in Table 1 because these

are transient stages of differentiation lasting only a matter of

days before further differentiation occurs. In contrast, macro-

phages could serve as a reservoir if they can persist in an in-

fected state on a timescale of years in patients on HAART.

Most studies documenting HIV-1 infection of macrophages in

various tissues were from the pre-HAART era (Hufert et al.,

1993; Koenig et al., 1986; McIlroy et al., 1996; Wiley et al.,

1986). Proving that macrophages function as a reservoir will

require definitive demonstration that these cells harbor replica-

tion-competent HIV-1 in patients who have had prolonged

suppression of viremia on HAART.

Hematopoietic Progenitor Cells

Hematopoietic progenitor cells (HPCs) express low amounts of

CD4 and the coreceptors required for HIV-1 entry, CCR5 and

CXCR4. Most studies have concluded that these cells do not

harbor HIV-1 in vivo (reviewed in McNamara and Collins,

2011). Recently, Carter et al. (2010) reported HIV-1 infection in

CD34+ HPCs in four of nine patients on HAART at a frequency

of 2.5–40 copies of HIV-1 DNA/104 cells. Interestingly, the infec-

tion remained latent until the cells were driven to differentiate. A

follow-up study indicated that CD133+ cord-blood-derived cells

were susceptible to in vitro infection, but only with X4-tropic virus

(Carter et al., 2011). Other, more recent, studies in patients on

HAART have used more rigorous purification of CD34+ cells

and have not detected HIV-1 DNA by PCR (Durand et al.,

2012b). It is therefore not clear that hematopoietic stem and

progenitor cells constitute a reservoir.

Anatomic Sites of HIV-1 Persistence
CNS

The CNS is an anatomic site in which viral replication has unique

pathophysiologic consequences. In the pre-HAART era, HIV-1-

associated dementia was a devastating consequence of the

disease (reviewed in González-Scarano and Martı́n-Garcı́a,

2005; McArthur et al., 2010). HIV-1 has been detected in several

areas of the brain as early as 15 days after infection (Davis et al.,
1992). Within the CNS, infection is detected principally in peri-

vascular macrophages and microglial cells (Wiley et al., 1986).

There is strong evidence for compartmentalization of HIV-1 in

the CNS and concern that the CNS is a pharmacologic sanc-

tuary. CNS-specific viral variants can be demonstrated in un-

treated individuals and may be associated with dementia

(Schnell et al., 2010, 2011). With respect to the sanctuary issue,

drug concentrations in brain parenchyma are hard to assess, but

for some drugs, concentrations in the cerebrospinal fluid (CSF)

are substantially lower than in the blood. A sophisticated index

for the CNS penetration and effectiveness of antiretroviral drugs

has been developed (Letendre et al., 2008), but the best

predictor of neurocognitive disorders is the pretreatment CD4+

T cell count nadir (Heaton et al., 2010). Studies of drug concen-

trations in the CSF are subject to the same caveats mentioned

above for the male genital tract. Antiretroviral drugs are

substrates for a variety of transporters that could potentially

affect drug levels (reviewed in Varatharajan and Thomas,

2009). Arguing against the sanctuary concept is the general

finding that initiation of HAART rapidly reduces virus concentra-

tions in the CSF, generally to undetectable levels, and prevents

or improves many of the neurocognitive problems seen in

untreated HIV-1 infection (Price and Spudich, 2008). However,

there are rare patients in whom replication appears to continue,

as evidenced by detectable free virus in the CSF (Price and

Spudich, 2008). Given the prevalence of asymptomatic neuro-

cognitive impairment in patients on HAART (25%–50% in

some studies; Heaton et al., 2010), this is an extremely important

area for future research.

Compelling evidence for viral persistence in the CNS comes

from an elegant model of HIV-1-associated neurologic disease

in SIV-infected macaques (Zink and Clements, 2002). In this

model, infection with a neurovirulent SIV inoculum consistently

produces neurologic disease within months of infection in

untreated animals. Infection of microglial cells is particularly pro-

minent (Babas et al., 2003). Antiretroviral drugs rapidly reduce

plasma and CSF levels of virus and viral RNA in the brain paren-

chyma (Zink et al., 2010). Interestingly, levels of SIV DNA remain

constant. Because of the evidence from murine studies that

microglial cells turn over less rapidly than other monocyte-

derived cells (Saijo and Glass, 2011), there is concern that these

cells may serve as an important HIV-1 reservoir. The SIV model

affords the best opportunity to establish whether infected micro-

glial cells can persist on a timescale of years in the setting of

HAART.

Gut-Associated Lymphoid Tissue

A substantial fraction of the total lymphocytes in the body are in

specialized sites along the gastrointestinal tract. The gut-associ-

ated lymphoid tissue (GALT) includes the Peyer’s patches, orga-

nized lymphoid structures in the small intestine that function as

inductive sites. In addition, there are activated T cells in the

lamina propria layer of the intestinal mucosa, beneath the epithe-

lium. There are also lymphocytes within the epithelium. Pioneer-

ing studies by Veazey and colleagues in the SIV model (Veazey

et al., 1998) indicated that a dramatic loss of lamina propria

CD4+ T cells occurs early in infection, much earlier than the

loss of CD4+ T cells in other sites. The same is true for patients

with HIV-1 infection (Brenchley et al., 2004b; Guadalupe et al.,

2003). This appears to reflect the high frequency of lamina
Immunity 37, September 21, 2012 ª2012 Elsevier Inc. 383
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propria CD4+ T cells that express the HIV-1 coreceptor CCR5

and that are in an activated state that is optimal for HIV-1 infec-

tion. The loss of CD4+ T cells from the lamina propria is not

rapidly reversed by HAART (Chun et al., 2008; Guadalupe

et al., 2003; Mehandru et al., 2006). In patients on HAART, the

fraction of CD4+ T cells in the lamina propria that carry HIV-1

DNA is substantially higher than in other sites (Chun et al.,

2008; Yukl et al., 2010a). Chun and colleagues reported an

average of approximately 5,000 HIV-1 DNA copies/106 CD4+

T cells in CD8-depleted biopsy samples from the terminal ileum

of patients on HAART, roughly five times greater than the HIV-1

DNA levels in resting CD4+ T cells from the peripheral blood.

These findings raise the issue of whether CD4+ T cells in the

GALT provide a unique reservoir for HIV-1. However, there are

unresolved issues. Because many CD4+ T cells in the gut are

in an activated state, it is important to know whether the infected

cells in this site are expressing viral RNA, and if so, whether

ongoing viral replication in this site contributes to the high level

of proviruses observed. A recent report describes a striking

lack of evolution in the proviral sequences from recto-sigmoid

biopsies (Evering et al., 2012). These results are inconsistent

with continuous viral replication in this site. It is also important

to determine the half-life of these infected cells and whether

they contribute to residual viremia and viral rebound following

treatment interruption.

Concluding Remarks
Recent developments have contributed to renewed optimism

that HIV-1 infection can be cured, but the discussion of this issue

has been hampered by lack of agreement regarding themeaning

of important terms. This review suggests definitions to facilitate

the discussion. The weight of evidence suggests that HIV-1

persistence in patients on HAART is due to long-lived infected

cells that function as a reservoir rather than viral replication

that continues despite HAART or in drug sanctuaries. Although

previous studies have proposed the existence of multiple reser-

voirs for HIV-1, only the latent reservoir in resting CD4+ T cells

meets the practical definition proposed here, a cell type in which

replication-competent virus can persist on a timescale of years in

patients on optimal HAART regimens. Macrophages are clearly

infected in vivo, but it is not yet clear that infected macrophages

in tissue sites survive on a timescale of years in patients on

optimal HAART regimens. It will be particularly important to

understand viral persistence in compartments such as the

CNS, where long-lived microglial cells may represent a reservoir,

and in the GALT, which is a major site of HIV-1 replication in

untreated individuals.
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