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In this note we give at first a description of commutative basis of modules 
Derk(k[xl, ..., xn]) and Derk(kI[xl, ..., xn]]) in characteristic zero (Theorem 2), and 
next we prove, using a theorem of Nousiainen and Sweedler [3, Theorem 3.3], an 
equivalent version of the Jacobian Conjecture (Theorem 5). 

Let k be a commutative ring containing the field Q of rational numbers and let 
R denote either the ring k[Xl,... ,xn] of polynomials over k or the ring 
k[[Xl, ..., Xn]] of formal power series over k. We denote by A 1, ..., An the partial 
derivatives O/Oxl, ..., O/Oxn, and by Derk(R) the R-module of all k-derivations 

from R to R. 
It is well-known [2] that Derk(R) is a free R-module on the basis A~, . . . ,An. 

Proposition 1. Let dl , . . . ,  dn be k-derivations o f  R. The set {dl, ..., dn} is a basis o f  
Derk(R) i f  and only i f  the matrix [di(xj)] is invertible. 

Proof. If d l , . . . ,dn  form a basis of Derk(R), then there exist elements b OeR 
(i , j=l , . . . ,n)  such t h a t  ~p=lbipdp=Ai for any i= l , . . . , n .  Hence, for each 
i,j= 1, ..., n, we have 

n 

aij= Ai(xj) = ~ bipdp(xj), 
p--1 

where ~ii is the Kronecker delta. Hence the matrix [di(xj)] is invertible. 
Conversely, if the matrix [di(xj)] is invertible, then there exists an invertible 

matrix [bo] of elements of R such that fiij = ~g_- 1 bipdp(xj), for each i,j = 1,..., n. 
n Denote by Di (for i = 1,..., n) the map ~p__ 1 bipdp. Since Di is a k-derivation of 

R and Di(xj)=Sij for , j =  1, ... ,n, we have Di =Ai. Hence ~g=l bipdp=Ai, for any 
i= 1,...,n, and so the derivations dl , . . . ,dn form a basis of Derk(R). [] 

We say that a basis {dl, . . . ,d ,}  of Derk(R) is commutative if didj=djdi for any 
i , j=l , . . . ,n .  We have the following characterization of commutative basis of 
Derk(R). 
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Theorem 2. Let  dl,  . . . ,  dn be k-derivations o f  R. Then the fo l lowing conditions are 

equivalent 
(i) The set {dl,  . . . ,dn} is a commutative basis o f  Derk(R). 

(ii) There exist elements F 1, ... ,F ,  ~ R  such that di(Fy) =Jij, f o r  any i , j=  1, ... ,n, 
where Ju is the Kronecker delta. 

For the proof of this theorem we need two lemmas. 

Lemma 3. Let  f l ,  ... , fn be elements o f  R. Then the fol lowing conditions are equi. 
valent: 

(a) There exists F e R  such that d i ( F ) = f i  f o r  i= 1, . . . ,n .  
(b) A i ( f y ) = A j ( f i )  f o r  any i , j=  1, . . . ,n .  

Proof.  (a)=(b)  follows from the equality A i A j = A j A  i, for any i , j=  1, ... ,n.  
(b) = (a). Let 

y , =  } :  [ k , , . . . ,  
kl ..... k. 

for i=  1, . . . ,  n, where the coefficients of the form [kl, . . . ,  kn]i are elements of k. 
Since d i.~ = djj~, for any ki, kj_> 1 we have 

(1/ki)[kl ,  . . . ,  k i -  l, k i -  1, ki+ 1, . . . ,  kn]i 

=(1/ky)[kl ,  . . . ,  k j - l ,  k j -  1, kj+ l, . . . ,  kn]j. 
Put 

F =  a,,, ... ,, x f '  .. . 
kl ..... k. 

where a0...0 =0  and, if ki_> 1 for some i, then 

ak, ... k, = (1/ki)[k~ , ... , ki_ l , ki - 1, ki + l , ... , k,]i. 

It is easy to check, that Ai(F ) = f / f o r  i=  1, ..., n. [] 

Lemma 4. Let  {dl, ... ,dn} be a commutative basis o f  Derk(R). Assume that Ai = 
F,~=lbijdj f o r  all i= 1, . . . ,n ,  where bij ( i , j= 1,. . . ,n) are elements o f  R. Then 
Ar~(bqj)= Aq(bpj ) f o r  any p , q , j =  l , . . . , n .  

Proof.  It suffices to prove that 

H 

( A p ( b q j )  -  q(bpj))dj = O. 
j = l  

From the commutativity of the basis A 1 ,  . . .  ,A n we have 

0 = ApAq-  AqAp 

= Ap( j~l  bqjdj) - Aq(j~= l bpjdj ) 



Commutative bases of derivations 277 

Therefore 

n 

= ~ (ap(bqj)dj+ bqjapdj - Aq(bpj)dj - bpjAqdj). 
j = l  

n T/ 

(Ap(bqj)-  Aq(bpj))dj= ~ (bpj/I qdj - bqjZIpdj) 
j=l j=l 

n n 

= ~ bpJ(i~=lbqididj)- ~ bqJ<i~=lbpididj) 
j = l  j=l 

n n 

This completes the proof. [] 

= • 2 bplb,v(d~dj-didi)=O. 
j = l i = l  

Proof of Theorem 2. ( i )= (ii). Assume that the set {dl, ... ,d,,} is a commutative 
basis of Derk(R). Then, by Proposition 1, the matrix A = [di(xj)] is invertible. Put 

A-l=[bii], where b o e R  for i , j= l , . . . , n .  Then Ai = ~.=lbi.idj, for any i = l , . . . , n  
(see proof of Proposition 1). 

Now let us fix j e  {1, . . . ,n} and consider the elements blj,...,bnj. Since 
Aq(bpj)=Ap(bqj) for any p,q= 1,.. . ,n (Lemma 4), there exists an element F j e R  

such that Ap(Fj)= bpj for any p = 1,..., n (by Lemma 3). 

Moreover, we have 

n 

di(Fj)= E ZIp(Fj)di(xp) 
p=l 

n 

= S. b,ji(Xp)=(A'A- )ii=' ij • 
p=l 

(ii)=(i). Since di(F1)=6ii, we have r, nk=lAk(Fj)di(xk)=6ii. T h u s  the matrix 
[di(xj)] is invertible, and hence, by Proposition 1, the derivations dl, ..., d, form a 

basis of Derk(R). 
Since dpdq-dqdp is an element of  Derk(R), there exist elements al, ..., an of  R 

such that 

apaq-  aqap= ala  + ... + a .a . .  

But we have 

a i = ( a  I d 1 + . - .  + andn)(Fi) = (dpdq - dq dp)(Fi) = 0 

for any i=  1, ..., n. Therefore dpdq= dqdp. This completes the proof of Theorem 
2. [] 

Throughout the rest of  the note we assume tha R is the ring k[x~, ...,Xn] of 
polynomials over k. 

We recall from [3] that a k-derivation d of R is called locally nilpotent if for each 
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r ~ R  there exists a natural number n such that dn(r)=0,  and is called locally finite 
if for any r ~ R there exists a finite generated k-module M such that r e M and 
d(M)c_M. 

We say that a basis {d l , . . . , dn}  of Derk(R) is locally nilpotent (resp. locally 
finite) if every derivation d i (i = 1, . . . ,  n) is locally nilpotent (resp. locally finite). 

We recall that the Jacobian Conjecture states that if F =  (F1,. . . ,Fn) is a poly- 
nomial map (Fl, . . . ,  Fn ~ R) such that  the Jacobian matrix Jac(F) = Jac(Fl, . . . ,  Fn) = 
[Ai(Fj)] is invertible, then F has a polynomial inverse (see [1]). 

The following theorem is a modification of a result of Nousiainen and Sweedler 
[3]. 

Theorem 5. Let  k be a commutative ring containing the f ie ld  ~ o f  rational numbers 
and let R = k[xl,  . . . ,  xn] be the polynomial  ring in n variables over k. The following 
conditions are equivalent. 

(1) The Jacobian Conjecture is true in the n-variable case. 
(2) Every commutative basis o f  the R-module Derk(R ) is locally nilpotent. 
(3) Every commutative basis o f  the R-module Derk(R) is locally finite. 

Proof.  (1)= (2) and (3). Let {dl, . . . ,  dn} be a commutative basis of Derk(R). Then, 
by Theorem 2, there exist polynomials F l, ... ,Fn e R such that di(Fj)= Jij, that is 
~,~= l Ap(Fj)di(xp)=Jij for i , j = l , . . . , n .  Therefore the Jacobian matrix 
Jac(Fl, ... , F  n) is invertible and it is easy to see that the following matrix equality 
holds 

(.)  = Jac(Fl , . . . ,Fn)  -1 . 

Hence, by [3, Theorem 3.3], the basis {dl, . . . ,dn} is locally nilpotent and locally 
finite. ~ 

(2) or (3)=(1).  Let F l, ... , F n e R  be polynomials such that the Jacobian matrix 
Jac(Fl, ... ,Fn) is invertible. We define derivations dl, . . . ,  dn of  R by the equality 
(.). Then we can see, by [3, Proposition 2.4], that {dl, . . . ,d~} is a commutative 
basis of Derk(R). Therefore, by [3, Theorem 3.3], the polynomial map (F1, ... ,Fn) 
has a polynomial inverse. This completes the proof. [] 

Remark. There exist bases (non-commutative) of  the module Derk(k[xl, ...,Xn]) 
which are not locally finite (and hence are not locally nilpotent). The following is 
an example of those: 

{d 1 - 'Z I  1 + X~2ZI2, 02 -- ZI2, . . .  , d  n =An}.  
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