COMMUTATIVE BASES OF DERIVATIONS IN POLYNOMIAL AND POWER SERIES RINGS

Andrzej NOWICKI

institute of Mathematics, N. Copernicus University, ul. Chopina 12/18, 87-100 Toruti, Poland

Communicated by H. Bass Received 10 December 1984

In this note we give at first a description of commutative basis of modules $Der_k(k[x_1, ..., x_n])$ and $Der_k(k[[x_1, ..., x_n]])$ in characteristic zero (Theorem 2), and next we prove, using a theorem of Nousiainen and Sweedler [3, Theorem 3.3], an equivalent version of the Jacobian Conjecture (Theorem 5).

Let k be a commutative ring containing the field $\mathbb Q$ of rational numbers and let R denote either the ring $k[x_1,...,x_n]$ of polynomials over k or the ring $k[[x_1, ..., x_n]]$ of formal power series over k. We denote by $A_1, ..., A_n$ the partial derivatives $\partial/\partial x_1, \ldots, \partial/\partial x_n$, and by Der_k(R) the R-module of all k-derivations from R to R .

It is well-known [2] that $Der_k(R)$ is a free R-module on the basis $\Delta_1, \ldots, \Delta_n$.

Proposition 1. Let $d_1, ..., d_n$ be k-derivations of R. The set $\{d_1, ..., d_n\}$ is a basis of $Der_k(R)$ *if and only if the matrix* $[d_i(x_i)]$ *is invertible.*

Proof. If $d_1, ..., d_n$ form a basis of $Der_k(R)$, then there exist elements $b_{ij} \in R$ $(i, j = 1, ..., n)$ such that $\sum_{p=1}^{n} b_{ip}d_p = \Delta_i$ for any $i = 1, ..., n$. Hence, for each $i, j = 1, \ldots, n$, we have

$$
\delta_{ij} = \Delta_i(x_j) = \sum_{p=1}^n b_{ip} d_p(x_j),
$$

where δ_{ii} is the Kronecker delta. Hence the matrix $[d_i(x_i)]$ is invertible.

Conversely, if the matrix $[d_i(x_j)]$ is invertible, then there exists an invertible matrix $[b_{ij}]$ of elements of R such that $\delta_{ij} = \sum_{p=1}^n b_{ip} d_p(x_j)$, for each $i, j = 1, ..., n$.

Denote by D_i (for $i = 1, ..., n$) the map $\sum_{p=1}^{n} b_{ip} d_p$. Since D_i is a k-derivation of R and $D_i(x_j) = \delta_{ij}$ for $j = 1, ..., n$, we have $D_i = A_i$. Hence $\sum_{p=1}^n b_{ip}d_p = A_i$, for any $i=1,\ldots,n$, and so the derivations d_1,\ldots,d_n form a basis of $Der_k(R)$. \square

We say that a basis $\{d_1, ..., d_n\}$ of $Der_k(R)$ is *commutative* if $d_i d_j = d_j d_i$ for any $i, j = 1, \ldots, n$. We have the following characterization of commutative basis of $Der_k(R)$.

Theorem 2. Let d_1, \ldots, d_n be k-derivations of R. Then the following conditions are *equivalent*

(i) The set $\{d_1, ..., d_n\}$ is a commutative basis of $Der_k(R)$.

(ii) *There exist elements* $F_1, \ldots, F_n \in \mathbb{R}$ such that $d_i(F_j) = \delta_{ij}$, for any $i, j = 1, \ldots, n$, *where* δ_{ij} is the Kronecker delta.

For the proof of this theorem we need two lemmas.

Lemma 3. Let f_1, \ldots, f_n be elements of R. Then the following conditions are equi*valent:*

(a) *There exists* $F \in R$ *such that* $\Delta_i(F) = f_i$ for $i = 1, ..., n$.

(b) $\Delta_i(f_i) = \Delta_i(f_i)$ for any $i, j = 1, ..., n$.

Proof. (a) \Rightarrow (b) follows from the equality $\Delta_i \Delta_j = \Delta_j \Delta_i$, for any $i, j = 1, ..., n$. $(b) \Rightarrow (a)$. Let

$$
f_i = \sum_{k_1, ..., k_n} [k_1, ..., k_n]_i x_1^{k_1} \cdots x_n^{k_n},
$$

for $i = 1, ..., n$, where the coefficients of the form $[k_1, ..., k_n]_i$ are elements of k. Since $\Delta_i f_j = \Delta_j f_i$, for any k_i , $k_j \ge 1$ we have

$$
(1/k_i)[k_1,\ldots,k_{i-1},k_i-1,k_{i+1},\ldots,k_n]_i
$$

$$
= (1/k_j)[k_1, \ldots, k_{j-1}, k_j-1, k_{j+1}, \ldots, k_n],
$$

Put

$$
F=\sum_{k_1,\ldots,k_n}a_{k_1\cdots k_n}x_1^{k_1}\cdots x_n^{k_n},
$$

where a_{0} ... $0 = 0$ and, if $k_i \ge 1$ for some i, then

$$
a_{k_1\cdots k_n} = (1/k_i)[k_1,\ldots,k_{i-1},k_i-1,k_{i+1},\ldots,k_n]_i.
$$

It is easy to check, that $\Delta_i(F) = f_i$ for $i = 1, ..., n$. \Box

Lemma 4. Let $\{d_1, ..., d_n\}$ be a commutative basis of $Der_k(R)$. Assume that $\Delta_i =$ $\sum_{j=1}^{n} b_{ij} d_j$ for all $i = 1, ..., n$, where b_{ij} $(i, j = 1, ..., n)$ are elements of R. Then $A_p(b_{qi}) = A_q(b_{pi})$ for any $p, q, j = 1, ..., n$.

Proof. It suffices to prove that

$$
\sum_{j=1}^n (\Delta_p(b_{qj}) - \Delta_q(b_{pj}))d_j = 0.
$$

From the commutativity of the basis $\Delta_1, \ldots, \Delta_n$ we have

$$
0 = A_p A_q - A_q A_p
$$

= $A_p \left(\sum_{j=1}^n b_{qj} d_j \right) - A_q \left(\sum_{j=1}^n b_{pj} d_j \right)$

$$
=\sum_{j=1}^n(\varDelta_p(b_{qj})d_j+b_{qj}\varDelta_p d_j-\varDelta_q(b_{pj})d_j-b_{pj}\varDelta_q d_j).
$$

Therefore

$$
\sum_{j=1}^{n} (A_p(b_{qj}) - A_q(b_{pj}))d_j = \sum_{j=1}^{n} (b_{pj}A_qd_j - b_{qj}A_pd_j)
$$

=
$$
\sum_{j=1}^{n} b_{pj} \left(\sum_{i=1}^{n} b_{qi}d_i d_j \right) - \sum_{j=1}^{n} b_{qj} \left(\sum_{i=1}^{n} b_{pi}d_i d_j \right)
$$

=
$$
\sum_{j=1}^{n} \sum_{i=1}^{n} b_{pj}b_{qj}(d_i d_j - d_j d_i) = 0.
$$

This completes the proof. \Box

Proof of Theorem 2. (i) \Rightarrow (ii). Assume that the set $\{d_1, \ldots, d_n\}$ is a commutative basis of $Der_k(R)$. Then, by Proposition 1, the matrix $A = [d_i(x_j)]$ is invertible. Put $A^{-1} = [b_{ij}]$, where $b_{ij} \in R$ for $i, j = 1, ..., n$. Then $A_i = \sum_{j=1}^n b_{ij} d_j$, for any $i = 1, ..., n$ (see proof of Proposition 1).

Now let us fix $j \in \{1, ..., n\}$ and consider the elements $b_{1j}, ..., b_{nj}$. Since $A_q(b_{pj}) = A_p(b_{qj})$ for any $p, q = 1, ..., n$ (Lemma 4), there exists an element $F_j \in R$ such that $A_p(F_j) = b_{pj}$ for any $p = 1, ..., n$ (by Lemma 3).

Moreover, we have

$$
d_i(F_j) = \sum_{p=1}^n \Delta_p(F_j) d_i(x_p)
$$

=
$$
\sum_{p=1}^n b_{pj} d_i(x_p) = (A \cdot A^{-1})_{ij} = \delta_{ij}.
$$

(ii) \Rightarrow (i). Since $d_i(F_j) = \delta_{ij}$, we have $\sum_{k=1}^n \Delta_k(F_j)d_i(x_k) = \delta_{ij}$. Thus the matrix $[d_i(x_i)]$ is invertible, and hence, by Proposition 1, the derivations d_1, \ldots, d_n form a basis of $Der_k(R)$.

Since $d_p d_q - d_q d_p$ is an element of $Der_k(R)$, there exist elements a_1, \ldots, a_n of R such that

$$
d_p d_q - d_q d_p = a_1 d_1 + \cdots + a_n d_n.
$$

But we have

$$
a_i = (a_1d_1 + \dots + a_nd_n)(F_i) = (d_p d_q - d_q d_p)(F_i) = 0
$$

for any $i = 1, ..., n$. Therefore $d_p d_q = d_q d_p$. This completes the proof of Theorem 2. \Box

Throughout the rest of the note we assume tha R is the ring $k[x_1, ..., x_n]$ of polynomials over k .

We recall from [3] that a k-derivation d of R is called *locally nilpotent* if for each

 $r \in R$ there exists a natural number *n* such that $d^n(r)=0$, and is called *locally finite* if for any $r \in R$ there exists a finite generated k-module M such that $r \in M$ and $d(M) \subseteq M$.

We say that a basis $\{d_1, ..., d_n\}$ of $Der_k(R)$ is *locally nilpotent* (resp. *locally finite*) if every derivation d_i ($i = 1, ..., n$) is locally nilpotent (resp. locally finite).

We recall that the *Jacobian Conjecture* states that if $F = (F_1, \ldots, F_n)$ is a polynomial map $(F_1, ..., F_n \in R)$ such that the Jacobian matrix $Jac(F) = Jac(F_1, ..., F_n) =$ $[\Delta_i(F_i)]$ is invertible, then F has a polynomial inverse (see [1]).

The following theorem is a modification of a result of Nousiainen and Sweedler [3].

Theorem 5. Let k be a commutative ring containing the field $\mathbb Q$ of rational numbers and let $R = k[x_1, ..., x_n]$ be the polynomial ring in n variables over k. The following *conditions are equivalent.*

(1) *The Jacobian Conjecture is true in the n-variable case.*

(2) *Every commutative basis of the R-module* $Der_k(R)$ *is locally nilpotent.*

(3) *Every commutative basis of the R-module* $Der_k(R)$ *is locally finite.*

Proof. (1) \Rightarrow (2) and (3). Let $\{d_1, ..., d_n\}$ be a commutative basis of Der_k(R). Then, by Theorem 2, there exist polynomials $F_1, \ldots, F_n \in \mathbb{R}$ such that $d_i(F_j) = \delta_{ij}$, that is $\sum_{p=1}^{n} \Delta_p(F_j) d_i(x_p) = \delta_{ij}$ for $i, j = 1, ..., n$. Therefore the Jacobian matrix $Jac(F_1, ..., F_n)$ is invertible and it is easy to see that the following matrix equality holds

(*)
$$
\begin{pmatrix} d_1 \\ \vdots \\ d_n \end{pmatrix} = \text{Jac}(F_1, ..., F_n)^{-1} \begin{pmatrix} \Delta_1 \\ \vdots \\ \Delta_n \end{pmatrix}.
$$

Hence, by [3, Theorem 3.3], the basis $\{d_1, \ldots, d_n\}$ is locally nilpotent and locally finite.

(2) or (3) \Rightarrow (1). Let $F_1, \ldots, F_n \in \mathbb{R}$ be polynomials such that the Jacobian matrix $Jac(F_1, ..., F_n)$ is invertible. We define derivations $d_1, ..., d_n$ of R by the equality (*). Then we can see, by [3, Proposition 2.4], that $\{d_1, \ldots, d_n\}$ is a commutative basis of Der_k(R). Therefore, by [3, Theorem 3.3], the polynomial map $(F_1, ..., F_n)$ has a polynomial inverse. This completes the proof. \Box

Remark. There exist bases (non-commutative) of the module $Der_k(k[x_1, ..., x_n])$ which are not locally finite (and hence are not locally nilpotent). The following is an example of those:

$$
\{d_1 = \Delta_1 + x_2^2 \Delta_2, d_2 = \Delta_2, \ldots, d_n = \Delta_n\}.
$$

References

- [1] H. Bass, E.H. Connell and D. Wright, The Jacobian Conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982) 287-330.
- [2] N. Bourbaki, Elements de Mathématique, Algèbre Commutative, Chapter 2 (Herman, Paris, 1961).
- [3] P. Nousiainen and M.E. Sweedler, Automorphisms of polynomial and power series rings, J. Pure Appl. Algebra 29 (1983) 93-97.