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Abstract

In [math.AG/0010030; Math. Z., to appear] R. Bocklandt and the author proved that
certain quotient varieties of representations of deformed preprojective algebras are coad-
joint orbits for the necklace Lie algebf& of the corresponding quive@. A conjec-
tural ring-theoretical explanation of these results was given in terms of noncommutative
smoothness in the sense of C. Procesi [J. Algebra 107 (1987) 63—74]. In this paper we
prove these conjectures. The main tool in the proof is the étale local description due to
W. Crawley-Boevey [math.AG/0105247]. Along the way we determine the smooth locus
of the Marsden—Weinstein reductions for quiver representations.

0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

In [2] Yu. Berest and G. Wilson asked whether the Calogero—Moser phase
space is a coadjoint orbit for a central extension of the automorphism group
of the Weyl algebra. This is indeed the case as was first proved by V.
Ginzburg [8] and subsequently generalized independently by V. Ginzburg [9]
and R. Bocklandt and the author [3] to certain quiver-varieties. Both proofs use
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Fig. 1. Lie brackefwy, wo] in Ng.

noncommutative symplectic geometry as outlined by M. Kontsevich [10] in an
essential way.

Recall that a quive@ is a finite directed graph on a set of vertic@s =
{v1, ..., v} and having a finite set of arron@, = {a1, ..., a;} where we allow
both multiple arrows between vertices and loops in vertices. The double quiver
0 of the quiveré is the quiver obtained by adjoining to every arrove Q, an
arrow a* in the opposite direction. Two oriented cycles@nare equivalent if
they are equal up to a cyclic permutation of the arrow componentecdklace
word w for Q is an equivalence class of oriented cyclegdnThenecklace Lie
algebraftp of the quiverQ has as basis the set of all necklace wardsr 0 and
with Lie bracket{ws, w2] determined by Fig. 1. That is, for every arrave Q,
we look for an occurrence af in w1 and ofa* in w». We then open up the
necklaces by removing these factors and regluing the open ends together to form
a new necklace word. We repeat this operationdibioccurrences of (in wi)
anda™ (in w2). We then replace the roles @f anda and redo this operation with
a minus sign. Finally, we add up all these obtained necklace words for all arrows
aeQq.

The path algebr&Q has a<C-basis the set of all oriented patps=a;, . ..a;,
of lengthu > 1 together with the vertex-idempoterisconsidered as paths of
length zero. Multiplication inCQ is induced by concatenation (on the left) of
paths. LetV = C x - - - x C be thek-dimensional semisimple subalgebra generated
by the vertex-idempotents. In [3] the noncommutatefative differential forms
Q{,(C@ (introduced and studied by J. Cuntz and D. Quillen in [6]) were used to
describe the noncommutative relative deRham (or Karoubi) complex

dR, Cco % drR, CQo % dR;, CO % - -
where we define the vector-space quotients dividing out the super-commutators
2yCQ

dR) CQ = ——— .
2izol$2yCQ, 2y CQI
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In particular, the noncommutative functiod, CQ coincide with,. A non-
commutative symplectic structure is defined diQ by the element
0=23 40, da*da € dRZ, CQ and we have a noncommutative version of the
classical result in symplectic geometry relating the Lie algebra of functions to
Hamiltonian vector-fields: there is a central extension of Lie algebras

0—>V—>‘ﬂQ—>Derw(C§—>0

where Deg, CQ is the Lie algebra ofymplecticerivations, that is9 € Dery CQ
such thatLyw = 0 whereLy is the degree preserving derivation on the relative
differential forms determined by.q(a) = 6(a) and Lg(da) = df(a), see [3,
Theorem 4.2]. As DgyCQ corresponds to the group df-automorphisms of
CQ preserving the element = ZaeQa[a,a*] it is natural to consider for

A= Zf‘zl Aie; with A; € Q thedeformed preprojective algebra

— C

1,(Q) = n _Q)L)'

For a given dimension vecter= (a1, . . ., ax) € N¥ one defines the affine scheme

r ep, I, of a-dimensional representations@f,. There is a natural action of the
base-change grouplL(«) = ]_[f;leLa,. on this scheme and the corresponding
quotient varietyi ss,, IT, represents the isomorphism classes of semisimple
a-dimensional representations &f,. The main coadjoint orbit result of [9] and
[3, Theorem 5.5] is the following theorem.

Theorem 1.1. If « is a minimal element of,, the set of dimension vectors of
simple representations @1, , theni ss, IT, is a coadjoint orbit for the necklace
Lie algebraMy.

The first description of; is due to W. Crawley-Boevey [4]. In [14] the author
gave an alternative characterization. In [3] we gave a conjectural ring-theoretical
explanation for these coadjoint orbit results in terms of noncommutative notions
of smoothness which we will recall in Section 2. The main result of this paper is
the following affirmative solution to this conjecture.

Theorem 1.2. The following are equivalent

(1) « is a minimal element of;.

(2) i ssq ), is a coadjoint orbit for)t,.

(3) i ssy I, is a smooth variety.

(4) [, 11, is an Azumaya algebra over the smooth varies . IT;.
(5) IT, is a-smooth in the sense of Proc¢%8].



L. Le Bruyn / Journal of Algebra 258 (2002) 60-70 63

The outline of this paper, as well as the proof of this result is summarized in
the following picture:

Section 2

2. Noncommutative smoothness

Path algebras of quivers are examples of formally smooth algebras as
defined and studied in [6], that is they have the lifting property for algebra
morphisms modulo nilpotent ideals. As a consequence they have a good theory
of differential forms, see for example [3]. K is a formally smoothV -algebra,
then for each dimension vectarthe scheme of-dimensional representations
repy A is smooth and noncommutative (relative) differential formstiaghduce
ordinaryGL(«)-invariant differential forms on these manifolds and hence on the
corresponding quotient varietiess, A.

On the other hand we will see in the next sections that the deformed
preprojective algebrdr, is not formally smooth as many of the representation
schemesr ep,, IT, are singular. The quotiel£Q — IT, indicates that/T;
corresponds to a singular noncommutative subscheme of the nhoncommutative
manifold corresponding to the formally smooth algefir@. As a consequence,
the differential forms ofC Q, when restricted to the singular subvariély, may
have rather unpredictable behavior.

Still, it may be that the induce®L(«)-invariant differential forms on some
of the representation schenresp,, T, have desirable properties, in particular if
r ep, 1, is a smooth variety. For this reason we need a notion of noncommutative
smoothness relative to a specific dimension vegtdrhis notion was introduced
by C. Procesi in [18] and investigated further in [13]. We briefly recall the
definition and main results from [18].

With al g@a we denote the category o¥-algebrasC equipped with
a trace mapC - C satisfying t(ab) = t(ba), t(a)b = bt(a), t(t(a)b) =
t(a)t(b) for all a,b € C and such that(e;) = a; if « = (a1,...,ar) andC
satisfies the formal Cayley—Hamilton identity of degreavheren =), a;.

To explain the last definition, consider the characteristic polynomialr) of

a general x n matrix M which is a polynomial in a central variablewith
coefficients which can be expressed as polynomials with rational coefficients in
Tr(M), Tr(M?), ..., Tr(M™). ReplacingM by a and T(M’) by t(a’) we have

a formal characteristic polynomiad,(¢) € C[z] and we require thag,(a) =0

for all @ € C. Morphisms inal g@« are V-algebra morphisms which are trace
preserving.
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An algebraC in al g@« is said to bex-smooth if it satisfies the lifting
property for morphisms modulo nilpotent ideals & g@«. That is, every
diagram

g B
B—"—=7
: 4

g
C

with B, B/I in al g@w, I a nilpotent ideal ana and¢ trace preserving maps,
can be completed with a trace preserving algebragap

The forgetful functoral g@o — V-al g has a left inverse which we will
denote by/, . Itis defined in the following way. Le be aV -algebra and consider
the algebra

A
A=A Cl| ———|,
/ e [[A,A]vej

where the second componentis the symmetric algebra of the quotient space where
[A, Alvecis the subspace spanned by all commutatprshas a trace map defined

by
/A—’)/A, ta®c)=1®c.a,

wherea is the image of: in the quotient spaca /[A, Alvec. Using this trace map
one can define the formalth Cayley—Hamilton polynomials where=}; a;

as defined before. The aIgebeA is now the quotient in algebras with trace
of /A modulo the ideal generated by the elemegisa) for all a € /A and
the elements(e;) = a;. For more details we refer to [16]. From [18] we recall
geometric reconstruction results ffy A and its central subalgebfg A =1 [, A

as well as the characterization@fsmoothness.

Theorem 2.1 (C. Procesi)With notations as above we have

(1) The algebraf, A is the ring of Gl(o)-equivariant maps fromrep, A to
M, (C) where Gl(w) acts on the latter by conjugation via the diagonal
embedding Glo) <— GL,; that s,

/ A= M,(CIr ep, A1)°H*

o

(2) The image of the trace map gp A is the ring of Gl(«)-invariant polynomial
functions orr ep,, A; that is,

y{A =CJi ssq A].

o
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(3) A isa-smooth in the sense of Procgsiat is,fa Aisa-smooth iml g@« if
and only ifr ep, A is a smooth variety.

Recall that an algebr@ in al g@« is said to be an Azumaya algebra if and
only if every trace preserving morphiséh— M, (C) is an epimorphism. If we
start with aV-algebraA, then a trace preserving algebra mapA — M, (C)
corresponds one-to-one tolaalgebra mapA — M, (C) hence to a geometric
point ofr ep, A. The Azumaya property fofa A is therefore equivalent to saying
that the quotient map

rep,A-X»>iss, A

is a principal PGL(«)-fibration in the étale topology. For, in general a geo-
metric point ini ss, A determines an isomorphism class of a semi-sinple
dimensional representation df and the mapr sends arw-dimensional repre-
sentation to the direct sum of its Jordan—Hdolder factors.

Proposition 2.2. The following implications of Theorefin1 hold:

(1) = (4): If « is a minimal element af}, thenfa IT, is an Azumaya algebra
over the smooth varietyss,, IT,.

(4)= (5):If [, IT, is an Azumaya algebra over the smooth variesg, IT,
then T, is «-smooth in the sense of Procesi.

Proof. (1) = (4). Consider theomplex moment map

rep, 0 25 MAC), Vi ) [Va. Varl,

a€Qq

whereMg((C) is the subspace @ftuples(my, ..., mi) € My, (C)®--- @ My, (C)
such that) ", tr(m;) = 0. For A = (A1,..., ) € Q% such that}",a;»; = 0
we consider the element= (A11,,, ..., AxL,,) in MS((C). The inverse image
uél(&) =rep, I,. By a result of M. Artin [1] one knows that the geometric
points of the quotient scheniess,, IT, are the isomorphism classescflimen-
sional semisimple representations/@f. Becausex is a minimal element o),
all a-dimensional representations &f, must be simple (consider the dimension
vectors of Jordan—Holder components) so each fiber of the quotienttmsap
isomorphic toPGL(«). The fact thau(gl(&) is smooth ife is a minimal non-zero
element ofX;, follows from computing the differential of the complex moment
map, see also [4, Lemma 5.5]. Becaussp,, IT) %> i sS4 IT, is a principal
PGL(a)-fibration,fa A is an Azumaya algebra and as the total spasg,, 17, is
smooth it follows that also the base spass,, 17, is smooth.

(4)= (5).1If fa I, is an Azumaya algebra, it follows that

repy Il =i sSq I,
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is a principalPGL(x)-fibration. If in addition the base-space is smooth, so is
the top space ep,, IT,. The assertion follows from Procesi’'s characterization of
a-smoothness, Theorem 2.10)

3. Central singularities

Clearly, ifi ss, T, is a coadjoint orbit oDt it is a smooth variety. In this
section we will show that unlessis a minimal element of’, the quotient variety
i ssq I, always has singularities. The crucial ingredient in the proof is the étale
local description of ss, IT, due to W. Crawley-Boevey [5].

Let xo be the Euler-form of the quive@, that is, the bilinear form

X0 LxZ—7

is determined by the matri;;); ; € My (Z) wherey;; = 8;; —#{a € Q, starting
atv; and ending inv;}. We denote the symmetrization g by Ty (the Tits
form) andp (@) =1 — xgo (e, a) for every dimension vectar.

Throughout we assume thate X, and we consider a geometric poii
i ssq IT, which determines an isomorphism class of a semisimpdénensional
representation of7,, say

ME:S?elea...@S’?e”’

where thes; are distinct simple representationsi@f with dimension vectorg;
and occurring il with multiplicity ¢;, thatis,« = Y/, ¢; ;. We say thag is
of representation type = (e1, 81; .. .; eu, Bu)-

Construct a new (Symmetric) quivef onu vertices{v], ..., v,} (correspond-
ing to the distinct simple components) such that there are

e 2p(B;) loops in vertex;, and
o —To(Bi, B)) directed arrows from; to v’

We also consider the dimension veaQr= (e1, ..., e,) for I';.

Theorem 3.1 (W. Crawley-Boevey)With notations as above there is an étale
isomorphism between

(1) aneighborhood of ini ss, IT,(Q), and
(2) aneighborhood of the trivial representati@in i ss,, [To({%),

wherellg (1) is the preprojective algebra corresponding to the double quiver

In particular, it follows that ss,, T, is smooth in all point§ of representation
typetr = (1, @) (the so calleddzumaya locysand that the dimension ofss, IT,,
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is equal to 2(«). In [5, Proposition 8.6] it was proved thass, ITo(Q) has
singularities in cas@ is a quiver without loops and is an imaginary indivisible
root of Xp. Recall that a dimension vector is said to be indivisible if the greatest
common divisor of its components is one.

Theorem 3.2. For « € X, the smooth locus afss, I7T, coincides with the
Azumaya locus. In particular, if is not a minimal element oY, , theni ss, T,
is singular, that is, implication(3) = (1) of Theoreni.2 holds.

Proof. With i ss, () we will denote the locally closed subvarietyio$s,, T,
consisting of all geometric pointsof representation type. Observe that there is
a natural ordering on the set of representation types

/

T<T &= 15S4(1)Cissy(t)

where the closure is with respect to the Zariski topology. Clearly, if we can prove
that all points ofl ss, (') are singular then so are those &fs (7).

Let & be a point outside of the Azumaya locus of representation type
(e1, B1; - - -; eu, Bu) then by Theorem 3.1 is suffices to prove thatsy, ITo(I%)
is singular in0.

Assume thatl; has 2(8;) > 0 loops in the vertew, wheree; > 1. This
means that there are infinitely many nonisomorphic siniplerepresentations of
dimension vectop;, but thent < ¢/ where

t'=(e1. B1;...iei-1, Bi—1; L Bis . .s L, Bis eig1, Bigs - eus Bu)
—_——
e

and by the above remark it suffices to prove singularity<forThat is, we may
assume that the quiver setting;, ;) is such that the symmetric quivétl has
loops only at vertices; where the dimensiog = 1.

Assume moreover that; is indivisible (which by the above can be arranged
once we start from a type such thatl; has loops). Recall from [15] that
invariants of quivers are generated by traces along oriented cycles in the
quiver. As a consequence we have algebra generators of the coordinate ring
Cli ssq, Mo(I7)] which is a graded algebra by homogeneity of the defining
relations of the preprojective algebf&(I;). To prove singularity it therefore
suffices to prove that the coordinate ring is not a polynomial ring. LCét
be the quiver obtained front; by removing all loops (which by the above
reduction exist only at vertices where the dimension is one). Because the relations
of the preprojective algebra are irrelevant for loops in such vertices we have
that C[i sSq, ITo(I7)] is a polynomial ring (in the variables corresponding
to the loops) overC[i sS,, ITo(I'})]. By [5, Proposition 8.6] we know that
i SSq, ITo(I")) is singular, finishing the proof in this case.

The remaining case is whef contains no loops (that is, g are real roots
for Q) and wheny; is divisible. Because; is the dimension vector of a simple
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representation ofIp(I;) we know from [14] that the quiver setting™, «;) is
such thatl”; contains a subquiver say on the vertides- {vlfl, e vlfz} which is
the double of a tame quiver such thiat | T') > é wheres = (d;,, ..., d;,) is the
imaginary root of this tame subquiver. Consider the representation typefof
ITo(I7),

y=(1,8;e1,61;...565 —diy, &y, .56, —di €. €us Eu).

If we can show that a points is thestratum ofi ss,, ITo(I';) is singular, then the
guotient scheme is singular in the trivial representation and we are done. Consider
the quiverr’, ; then it has loops in the vertex corresponding1os). Moreover,

a, is indivisible so we can repeat the argument above. The factathatas
assumed to be divisible asserts thais not the Azumaya typél, «-), finishing

the proof. O

4. Noncommutativesingularities

We can refine the notion o&-smoothness to allow for noncommutative
singularities with respect to the dimension vectorLet A be aV-algebra and
consider the quotient map

repg A -Z»issyA

and consider the open subvaristyy, A of i ss, A consisting of those geometric
points¢ such thar ep, A is smooth along the fiber —1(¢) and callsm, A the
a-smooth locus ofA. In particular,A is «-smooth in the sense of Procesi if and
onlyifsm, A=issyA.

Returning torlT7, it is clear from the foregoing that the Azumaya locus is
contained in thex-smooth locus fowr € X;. We will show in this section that
this these loci are actually identical showing that deformed preprojective algebras
are as singular as possible. This result should be compared to a similar result on
guantum groups at roots of unity [12].

Using the notations needed in Theorem 3.1 we observe that the method of proof
actually proves a stronger result which is a symplectic version of Luna slices [17],
see also [7, Section 41].

Theorem 4.1. There is a Gli)-equivariant étale isomorphism between

(1) aneighborhood of the orbit o¥¢ in r ep, I7,, and
(2) a neighborhood of the orbit dft,, 0) in the principal fiber bundle

GL() xCY) rep, Mo(I7).

We are now in a position to prove the final implication of Theorem 1.2.
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Theorem 4.2. If « € X, then thea-smooth locus off7, coincides with the
Azumaya locus. In particular, if7, is a-smooth in the sense of Procesi, then
there is only one representation tygk «), that is,« is a minimal element of;.
Hence,(5) = (1) of Theoremi..2 holds.

Proof. Assume thatt € sm, IT, and of representation type = (e1, 81; ...;
ey, Bu). Then,r ep, IT, is smooth in a neighborhood of tlodbosed Gl(x)-orbit
of the semisimple representatidfy (closedness follows from [1]). By a result of
Voigt [11] we know that the normal-spadé to the orbit inr ep, [T, is equal to
the space of self-extensions

u
Extr, (Ms, M) = P Exty, (Si, $;)®¢.
i,j=1
As a consequence we can identify this space with the representation space
rep,, A WhereA, is the quiver onu vertices{wy, ..., w; } having

e dim Ext,lTA (Si, Si) loops in vertexw;, and
e dim Ext}h (Si. §;) directed arrows fromw; to w;..

Moreover, the action of the stabilizer subgroupMf (which is GL(«;)) on the
normal; space is the base-change action of this groupeqm,.. A.. By the Luna
slice theorem [17] we have@L(x)-equivariant étale isomorphism between

(1) aneighborhood of the orbit @ in r ep, IT;, and
(2) a neighborhood of the orbit ¢f.,, 0) in the principal fiber bundle

GL(a) x®H) rep, A,.

Combining this étale description with the one from Theorem 4.1 we deduce an
étale GL(«,)-isomorphism between the representation schemp,, ITo(/%)

(in a neighborhood of the trivial representation) and the representation space
rep,, A (in a neighborhood of the trivial representation).

But then0 e smy, ITo(I;) and in [3, Theorem 6.3] it was shown that for a pre-
projective algebra the smooth locus coincides with the Azumaya algebra. The
only way the trivial representation can be a simple representatidfpaf;) (or
indeed, even of I';) is whenI; has only one vertex and the dimension vector is
a; = 1. But then the representation typefois (1, ) finishing the proof. O

References

[1] M. Artin, On Azumaya algebras and finite dimensional representations of rings, J. Algebra 11
(1969) 523-563.



70 L. Le Bruyn / Journal of Algebra 258 (2002) 60-70

[2] Yu. Berest, G. Wilson, Automorphisms and ideals of the Weyl algebra, preprint, London, 1999,
see also, math.QA/0102190, 2001.
[3] R. Bocklandt, L. Le Bruyn, Necklace Lie algebras and noncommutative symplectic geometry,
math.AG/0010030, 2000, Math. Z., to appear.
[4] W. Crawley-Boevey, Geometry of the moment map for representations of quivers, Compositio
Math. 126 (2001) 257—293.
[5] W. Crawley-Boevey, Normality of Marsden—Weinstein reductions for representations of quivers,
math.AG/0105247, 2001.
[6] J. Cuntz, D. Quillen, Algebra extensions and nonsingularity, J. Amer. Math. Soc. 8 (1995) 251—
289.
[7] V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press,
1990.
[8] V. Ginzburg, Non-commutative symplectic geometry and Calogero—Moser space, preprint,
Chicago, preliminary version, 1999.
[9] V. Ginzburg, Non-commutative symplectic geometry, quiver varieties and operads, preprint,
Chicago, 2000, math.QA/0005165, 2000.
[10] M. Kontsevich, Formal non-commutative symplectic geometry, in: Gelfand Seminar 1990-1992,
Birkhauser, 1993, pp. 173-187.
[11] H.P. Kraft, Geometrische Methoden in der Invariantentheorie, in: Aspekte Math., Vol. D1,
Vieweg-Verlag, Braunschweig, 1984.
[12] L. Le Bruyn, The singularities of quantum groups, Proc. London Math. Soc. 80 (2000) 304—336.
[13] L. Le Bruyn, Local structure of Schelter—Procesi smooth orders, Trans. Amer. Math. Soc. 352
(2000) 4815-4841.
[14] L. Le Bruyn, Simple roots of deformed preprojective algebras, math.RA/0107, 2001.
[15] L. Le Bruyn, C. Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc. 317
(1990) 585-598.
[16] L. Le Bruyn, Noncommutative Geometry, Monograph, to appear.
[17] D. Luna, Slices etales, Bull. Soc. Math. France Mem. 33 (1973) 81-105.
[18] C. Procesi, A formal inverse to the Cayley—Hamilton theorem, J. Algebra 107 (1987) 63-74.



