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Abstract

In [math.AG/0010030; Math. Z., to appear] R. Bocklandt and the author proved that
certain quotient varieties of representations of deformed preprojective algebras are coad-
joint orbits for the necklace Lie algebraNQ of the corresponding quiver�Q. A conjec-
tural ring-theoretical explanation of these results was given in terms of noncommutative
smoothness in the sense of C. Procesi [J. Algebra 107 (1987) 63–74]. In this paper we
prove these conjectures. The main tool in the proof is the étale local description due to
W. Crawley-Boevey [math.AG/0105247]. Along the way we determine the smooth locus
of the Marsden–Weinstein reductions for quiver representations.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

In [2] Yu. Berest and G. Wilson asked whether the Calogero–Moser phase
space is a coadjoint orbit for a central extension of the automorphism group
of the Weyl algebra. This is indeed the case as was first proved by V.
Ginzburg [8] and subsequently generalized independently by V. Ginzburg [9]
and R. Bocklandt and the author [3] to certain quiver-varieties. Both proofs use
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Fig. 1. Lie bracket[w1,w2] in NQ.

noncommutative symplectic geometry as outlined by M. Kontsevich [10] in an
essential way.

Recall that a quiver�Q is a finite directed graph on a set of verticesQv =
{v1, . . . , vk} and having a finite set of arrowsQa = {a1, . . . , al} where we allow
both multiple arrows between vertices and loops in vertices. The double quiver
Q of the quiver �Q is the quiver obtained by adjoining to every arrowa ∈Qa an
arrow a∗ in the opposite direction. Two oriented cycles inQ are equivalent if
they are equal up to a cyclic permutation of the arrow components. Anecklace
word w for Q is an equivalence class of oriented cycles inQ. Thenecklace Lie
algebraNQ of the quiver �Q has as basis the set of all necklace wordsw forQ and
with Lie bracket[w1,w2] determined by Fig. 1. That is, for every arrowa ∈Qa
we look for an occurrence ofa in w1 and of a∗ in w2. We then open up the
necklaces by removing these factors and regluing the open ends together to form
a new necklace word. We repeat this operation forall occurrences ofa (in w1)
anda∗ (in w2). We then replace the roles ofa∗ anda and redo this operation with
a minus sign. Finally, we add up all these obtained necklace words for all arrows
a ∈Qa .

The path algebraCQ has asC-basis the set of all oriented pathsp = aiu . . . ai1
of lengthu � 1 together with the vertex-idempotentsei considered as paths of
length zero. Multiplication inCQ is induced by concatenation (on the left) of
paths. LetV = C×· · ·×C be thek-dimensional semisimple subalgebra generated
by the vertex-idempotents. In [3] the noncommutativerelativedifferential forms
ΩiVCQ (introduced and studied by J. Cuntz and D. Quillen in [6]) were used to
describe the noncommutative relative deRham (or Karoubi) complex

dR0
V CQ d−→ dR1

V CQ d−→ dR2
V CQ d−→ · · ·

where we define the vector-space quotients dividing out the super-commutators

dRnV CQ= ΩnVCQ∑n
i=0[ΩiVCQ,Ωn−iV CQ] .
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In particular, the noncommutative functionsdR0
V CQ coincide withNQ. A non-

commutative symplectic structure is defined onCQ by the element
ω= ∑

a∈Qa da∗ da ∈ dR2
V CQ and we have a noncommutative version of the

classical result in symplectic geometry relating the Lie algebra of functions to
Hamiltonian vector-fields: there is a central extension of Lie algebras

0 → V → NQ → DerωCQ→ 0

where DerωCQ is the Lie algebra ofsymplecticderivations, that is,θ ∈ DerV CQ

such thatLθω = 0 whereLθ is the degree preserving derivation on the relative
differential forms determined byLθ (a) = θ(a) and Lθ (da) = dθ(a), see [3,
Theorem 4.2]. As DerωCQ corresponds to the group ofV -automorphisms of
CQ preserving the elementm = ∑

a∈Qa [a, a∗] it is natural to consider for

λ= ∑k
i=1λiei with λi ∈ Q thedeformed preprojective algebra

Πλ
(
Q

) = CQ

(m− λ) .

For a given dimension vectorα = (a1, . . . , ak) ∈ Nk one defines the affine scheme
repα Πλ of α-dimensional representations ofΠλ. There is a natural action of the
base-change groupGL(α) = ∏k

i=1 GLai on this scheme and the corresponding
quotient varietyissα Πλ represents the isomorphism classes of semisimple
α-dimensional representations ofΠλ. The main coadjoint orbit result of [9] and
[3, Theorem 5.5] is the following theorem.

Theorem 1.1. If α is a minimal element ofΣλ, the set of dimension vectors of
simple representations ofΠλ, thenissα Πλ is a coadjoint orbit for the necklace
Lie algebraNQ.

The first description ofΣλ is due to W. Crawley-Boevey [4]. In [14] the author
gave an alternative characterization. In [3] we gave a conjectural ring-theoretical
explanation for these coadjoint orbit results in terms of noncommutative notions
of smoothness which we will recall in Section 2. The main result of this paper is
the following affirmative solution to this conjecture.

Theorem 1.2. The following are equivalent:

(1) α is a minimal element ofΣλ.
(2) issα Πλ is a coadjoint orbit forNQ.
(3) issα Πλ is a smooth variety.
(4)

∫
α Πλ is an Azumaya algebra over the smooth varietyissα Πλ.

(5) Πλ is α-smooth in the sense of Procesi[18].



L. Le Bruyn / Journal of Algebra 258 (2002) 60–70 63

The outline of this paper, as well as the proof of this result is summarized in
the following picture:

2 4

Section 21
Section 2Theorem 1.1

3 Section 3

5
Section 4

2. Noncommutative smoothness

Path algebras of quivers are examples of formally smooth algebras as
defined and studied in [6], that is they have the lifting property for algebra
morphisms modulo nilpotent ideals. As a consequence they have a good theory
of differential forms, see for example [3]. IfA is a formally smoothV -algebra,
then for each dimension vectorα the scheme ofα-dimensional representations
repα A is smooth and noncommutative (relative) differential forms ofA induce
ordinaryGL(α)-invariant differential forms on these manifolds and hence on the
corresponding quotient varietiesissα A.

On the other hand we will see in the next sections that the deformed
preprojective algebraΠλ is not formally smooth as many of the representation
schemesrepα Πλ are singular. The quotientCQ →→ Πλ indicates thatΠλ
corresponds to a singular noncommutative subscheme of the noncommutative
manifold corresponding to the formally smooth algebraCQ. As a consequence,
the differential forms ofCQ, when restricted to the singular subvarietyΠλ, may
have rather unpredictable behavior.

Still, it may be that the inducedGL(α)-invariant differential forms on some
of the representation schemesrepα Πλ have desirable properties, in particular if
repα Πλ is a smooth variety. For this reason we need a notion of noncommutative
smoothness relative to a specific dimension vectorα. This notion was introduced
by C. Procesi in [18] and investigated further in [13]. We briefly recall the
definition and main results from [18].

With alg@α we denote the category ofV -algebrasC equipped with
a trace mapC t−→ C satisfying t (ab) = t (ba), t (a)b = bt (a), t (t (a)b) =
t (a)t (b) for all a, b ∈ C and such thatt (ei) = ai if α = (a1, . . . , ak) and C
satisfies the formal Cayley–Hamilton identity of degreen where n = ∑

i ai .
To explain the last definition, consider the characteristic polynomialχM(t) of
a generaln × n matrix M which is a polynomial in a central variablet with
coefficients which can be expressed as polynomials with rational coefficients in
Tr(M),Tr(M2), . . . ,Tr(Mn). ReplacingM by a and Tr(Mi) by t (ai) we have
a formal characteristic polynomialχa(t) ∈ C[t] and we require thatχa(a) = 0
for all a ∈ C. Morphisms inalg@α areV -algebra morphisms which are trace
preserving.
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An algebraC in alg@α is said to beα-smooth if it satisfies the lifting
property for morphisms modulo nilpotent ideals inalg@α. That is, every
diagram

B
π B

I

C

φ
∃φ̃

with B,B/I in alg@α, I a nilpotent ideal andπ andφ trace preserving maps,
can be completed with a trace preserving algebra mapφ̃.

The forgetful functoralg@α → V -alg has a left inverse which we will
denote by

∫
α . It is defined in the following way. LetA be aV -algebra and consider

the algebra∫
A=A⊗C C

[
A

[A,A]vec

]
,

where the second component is the symmetric algebra of the quotient space where
[A,A]vec is the subspace spanned by all commutators.

∫
A has a trace map defined

by ∫
A t−→

∫
A, t (a⊗ c)= 1⊗ c.a,

wherea is the image ofa in the quotient spaceA/[A,A]vec. Using this trace map
one can define the formalnth Cayley–Hamilton polynomials wheren = ∑

i ai
as defined before. The algebra

∫
α
A is now the quotient in algebras with trace

of
∫
A modulo the ideal generated by the elementsχa(a) for all a ∈ ∫

A and
the elementst (ei) = ai . For more details we refer to [16]. From [18] we recall
geometric reconstruction results for

∫
α
A and its central subalgebra

∮
α
A= t ∫

α
A

as well as the characterization ofα-smoothness.

Theorem 2.1 (C. Procesi).With notations as above we have:

(1) The algebra
∫
α A is the ring of GL(α)-equivariant maps fromrepα A to

Mn(C) where GL(α) acts on the latter by conjugation via the diagonal
embedding GL(α) ↪→ GLn; that is,∫

α

A=Mn
(
C[repα A])GL(α)

.

(2) The image of the trace map on
∫
α
A is the ring of GL(α)-invariant polynomial

functions onrepα A; that is,∮
α

A= C[issα A].
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(3) A is α-smooth in the sense of Procesi; that is,
∫
α
A is α-smooth inalg@α if

and only ifrepα A is a smooth variety.

Recall that an algebraC in alg@α is said to be an Azumaya algebra if and
only if every trace preserving morphismC →Mn(C) is an epimorphism. If we
start with aV -algebraA, then a trace preserving algebra map

∫
α
A→ Mn(C)

corresponds one-to-one to aV -algebra mapA→Mn(C) hence to a geometric
point ofrepα A. The Azumaya property for

∫
α A is therefore equivalent to saying

that the quotient map

repα A
π−→→ issα A

is a principalPGL(α)-fibration in the étale topology. For, in general a geo-
metric point inissα A determines an isomorphism class of a semi-simpleα-
dimensional representation ofA and the mapπ sends anα-dimensional repre-
sentation to the direct sum of its Jordan–Hölder factors.

Proposition 2.2. The following implications of Theorem1.1hold:
(1) ⇒ (4): If α is a minimal element ofΣλ, then

∫
α
Πλ is an Azumaya algebra

over the smooth varietyissα Πλ.
(4) ⇒ (5): If

∫
α
Πλ is an Azumaya algebra over the smooth varietyissα Πλ,

thenΠλ is α-smooth in the sense of Procesi.

Proof. (1) ⇒ (4). Consider thecomplex moment map

repα Q
µC−−→M0

α(C), V �→
∑
a∈Qa

[Va,Va∗],

whereM0
α(C) is the subspace ofk-tuples(m1, . . . ,mk) ∈Ma1(C)⊕· · ·⊕Mak(C)

such that
∑
i tr(mi) = 0. For λ = (λ1, . . . , λk) ∈ Qk such that

∑
i aiλi = 0

we consider the elementλ = (λ11n1, . . . , λk1nk ) in M0
α(C). The inverse image

µ−1
C
( λ ) = repα Πλ. By a result of M. Artin [1] one knows that the geometric

points of the quotient schemeissα Πλ are the isomorphism classes ofα-dimen-
sional semisimple representations ofΠλ. Becauseα is a minimal element ofΣλ
all α-dimensional representations ofΠλ must be simple (consider the dimension
vectors of Jordan–Hölder components) so each fiber of the quotient mapπ is
isomorphic toPGL(α). The fact thatµ−1

C
( λ ) is smooth ifα is a minimal non-zero

element ofΣλ follows from computing the differential of the complex moment
map, see also [4, Lemma 5.5]. Becauserepα Πλ

π−→→ issα Πλ is a principal
PGL(α)-fibration,

∫
α A is an Azumaya algebra and as the total spacerepα Πλ is

smooth it follows that also the base spaceissα Πλ is smooth.
(4) ⇒ (5). If

∫
α
Πλ is an Azumaya algebra, it follows that

repα Πλ
π−→→ issα Πλ
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is a principalPGL(α)-fibration. If in addition the base-space is smooth, so is
the top spacerepα Πλ. The assertion follows from Procesi’s characterization of
α-smoothness, Theorem 2.1.✷

3. Central singularities

Clearly, if issα Πλ is a coadjoint orbit ofNQ it is a smooth variety. In this
section we will show that unlessα is a minimal element ofΣλ the quotient variety
issα Πλ always has singularities. The crucial ingredient in the proof is the étale
local description ofissα Πλ due to W. Crawley-Boevey [5].

Let χQ be the Euler-form of the quiver�Q, that is, the bilinear form

χQ :Z × Z → Z

is determined by the matrix(χij )i,j ∈Mk(Z) whereχij = δij −#{a ∈Qa starting
at vi and ending invj }. We denote the symmetrization ofχQ by TQ (the Tits
form) andp(α)= 1− χQ(α,α) for every dimension vectorα.

Throughout we assume thatα ∈ Σλ and we consider a geometric pointξ ∈
issα Πλ which determines an isomorphism class of a semisimpleα-dimensional
representation ofΠλ, say

Mξ = S⊕e1
1 ⊕ · · · ⊕ S⊕eu

u ,

where theSi are distinct simple representations ofΠλ with dimension vectorsβi
and occurring inMξ with multiplicity ei , that is,α = ∑u

i=1 eiβi . We say thatξ is
of representation typeτ = (e1, β1; . . . ; eu,βu).

Construct a new (symmetric) quiverΓτ onu vertices{v′1, . . . , v′u} (correspond-
ing to the distinct simple components) such that there are

• 2p(βi) loops in vertexv′i , and
• −TQ(βi, βj ) directed arrows fromv′i to v′j .

We also consider the dimension vectorατ = (e1, . . . , eu) for Γτ .

Theorem 3.1 (W. Crawley-Boevey).With notations as above there is an étale
isomorphism between

(1) a neighborhood ofξ in issα Πλ(Q), and
(2) a neighborhood of the trivial representation0̄ in issατ Π0(Γτ ),

whereΠ0(Γτ ) is the preprojective algebra corresponding to the double quiverΓτ .

In particular, it follows thatissα Πλ is smooth in all pointsξ of representation
typeτ = (1, α) (the so calledAzumaya locus) and that the dimension ofissα Πλ
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is equal to 2p(α). In [5, Proposition 8.6] it was proved thatissα Π0(Q) has
singularities in case�Q is a quiver without loops andα is an imaginary indivisible
root ofΣ0. Recall that a dimension vector is said to be indivisible if the greatest
common divisor of its components is one.

Theorem 3.2. For α ∈ Σλ, the smooth locus ofissα Πλ coincides with the
Azumaya locus. In particular, ifα is not a minimal element ofΣλ, thenissα Πλ
is singular; that is, implication(3) ⇒ (1) of Theorem1.2holds.

Proof. With issα(τ ) we will denote the locally closed subvariety ofissα Πλ
consisting of all geometric pointsξ of representation typeτ . Observe that there is
a natural ordering on the set of representation types

τ � τ ′ ⇐⇒ issα(τ )⊂ issα(τ ′)

where the closure is with respect to the Zariski topology. Clearly, if we can prove
that all points ofissα(τ ′) are singular then so are those ofissα(τ ).

Let ξ be a point outside of the Azumaya locus of representation typeτ =
(e1, β1; . . . ; eu,βu) then by Theorem 3.1 is suffices to prove thatissατ Π0(Γτ )

is singular in0̄.
Assume thatΓτ has 2p(βi) > 0 loops in the vertexv′i whereei > 1. This

means that there are infinitely many nonisomorphic simpleΠλ-representations of
dimension vectorβi , but thenτ < τ ′ where

τ ′ = (
e1, β1; . . . ; ei−1, βi−1;1, βi; . . . ;1, βi︸ ︷︷ ︸

ei

; ei+1, βi+1; . . . ; eu,βu
)

and by the above remark it suffices to prove singularity forτ ′. That is, we may
assume that the quiver setting(Γτ ,ατ ) is such that the symmetric quiverΓτ has
loops only at verticesv′i where the dimensionei = 1.

Assume moreover thatατ is indivisible (which by the above can be arranged
once we start from a typeτ such thatΓτ has loops). Recall from [15] that
invariants of quivers are generated by traces along oriented cycles in the
quiver. As a consequence we have algebra generators of the coordinate ring
C[issατ Π0(Γτ )] which is a graded algebra by homogeneity of the defining
relations of the preprojective algebraΠ0(Γτ ). To prove singularity it therefore
suffices to prove that the coordinate ring is not a polynomial ring. LetΓ ′

τ

be the quiver obtained fromΓτ by removing all loops (which by the above
reduction exist only at vertices where the dimension is one). Because the relations
of the preprojective algebra are irrelevant for loops in such vertices we have
that C[issατ Π0(Γτ )] is a polynomial ring (in the variables corresponding
to the loops) overC[issατ Π0(Γ

′
τ )]. By [5, Proposition 8.6] we know that

issατ Π0(Γ
′
τ ) is singular, finishing the proof in this case.

The remaining case is whenΓτ contains no loops (that is, allβi are real roots
for �Q) and whenατ is divisible. Becauseατ is the dimension vector of a simple
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representation ofΠ0(Γτ ) we know from [14] that the quiver setting(Γτ ,ατ ) is
such thatΓτ contains a subquiver say on the verticesT = {v′i1, . . . , v′iz } which is
the double of a tame quiver such that(ατ | T )� δ whereδ = (di1, . . . , diz ) is the
imaginary root of this tame subquiver. Consider the representation type ofατ for
Π0(Γτ ),

γ = (1, δ; e1, ε1; . . . ; ei1 − di1, εi1, . . . ; eix − dix , εix ; . . . ; eu, εu).
If we can show that a points is theγ -stratum ofissατ Π0(Γτ ) is singular, then the
quotient scheme is singular in the trivial representation and we are done. Consider
the quiverΓγ ; then it has loops in the vertex corresponding to(1, δ). Moreover,
αγ is indivisible so we can repeat the argument above. The fact thatατ was
assumed to be divisible asserts thatγ is not the Azumaya type(1, ατ ), finishing
the proof. ✷

4. Noncommutative singularities

We can refine the notion ofα-smoothness to allow for noncommutative
singularities with respect to the dimension vectorα. Let A be aV -algebra and
consider the quotient map

repα A
π−→→ issα A

and consider the open subvarietysmα A of issα A consisting of those geometric
pointsξ such thatrepα A is smooth along the fiberπ−1(ξ) and callsmα A the
α-smooth locus ofA. In particular,A is α-smooth in the sense of Procesi if and
only if smα A= issα A.

Returning toΠλ it is clear from the foregoing that the Azumaya locus is
contained in theα-smooth locus forα ∈ Σλ. We will show in this section that
this these loci are actually identical showing that deformed preprojective algebras
are as singular as possible. This result should be compared to a similar result on
quantum groups at roots of unity [12].

Using the notations needed in Theorem 3.1 we observe that the method of proof
actually proves a stronger result which is a symplectic version of Luna slices [17],
see also [7, Section 41].

Theorem 4.1. There is a GL(α)-equivariant étale isomorphism between

(1) a neighborhood of the orbit ofMξ in repα Πλ, and
(2) a neighborhood of the orbit of(1α,0) in the principal fiber bundle

GL(α)×GL(ατ ) repατ Π0(Γτ ).

We are now in a position to prove the final implication of Theorem 1.2.
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Theorem 4.2. If α ∈ Σλ, then theα-smooth locus ofΠλ coincides with the
Azumaya locus. In particular, ifΠλ is α-smooth in the sense of Procesi, then
there is only one representation type(1, α), that is,α is a minimal element ofΣλ.
Hence,(5)⇒ (1) of Theorem1.2holds.

Proof. Assume thatξ ∈ smα Πλ and of representation typeτ = (e1, β1; . . . ;
eu,βu). Then,repα Πλ is smooth in a neighborhood of theclosed GL(α)-orbit
of the semisimple representationMξ (closedness follows from [1]). By a result of
Voigt [11] we know that the normal-spaceNξ to the orbit inrepα Πλ is equal to
the space of self-extensions

Ext1Πλ(Mξ ,Mξ )=
u⊕

i,j=1

Ext1Πλ(Si, Sj )
⊕ei ej .

As a consequence we can identify this space with the representation space
repατ ∆τ where∆τ is the quiver onu vertices{w′

1, . . . ,w
′
u} having

• dimExt1Πλ(Si, Si) loops in vertexw′
i , and

• dimExt1Πλ(Si, Sj ) directed arrows fromw′
i tow′

j .

Moreover, the action of the stabilizer subgroup ofMξ (which is GL(ατ )) on the
normal; space is the base-change action of this group onrepατ ∆τ . By the Luna
slice theorem [17] we have aGL(α)-equivariant étale isomorphism between

(1) a neighborhood of the orbit ofMξ in repα Πλ, and
(2) a neighborhood of the orbit of(1α,0) in the principal fiber bundle

GL(α)×GL(ατ ) repατ ∆τ .

Combining this étale description with the one from Theorem 4.1 we deduce an
étale GL(ατ )-isomorphism between the representation schemerepατ Π0(Γτ )

(in a neighborhood of the trivial representation) and the representation space
repατ ∆τ (in a neighborhood of the trivial representation).

But then0̄ ∈ smατ Π0(Γτ ) and in [3, Theorem 6.3] it was shown that for a pre-
projective algebra the smooth locus coincides with the Azumaya algebra. The
only way the trivial representation can be a simple representation ofΠ0(Γτ ) (or
indeed, even ofCΓτ ) is whenΓτ has only one vertex and the dimension vector is
ατ = 1. But then the representation type ofξ is (1, α) finishing the proof. ✷
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