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We consider the problem of whether it is possible to improve the Novikov inequalities for closed l-forms, or any 
other inequalities of a similar nature, if we assume, additionally, that the given l-form is harmonic with respect to 
some Riemannian metric. We show that, under suitable assumptions, it is impossible. We use a theorem of Calabi 
[l], characterizing l-forms which are harmonic with respect to some metric, in an essential way. We also study 
some interesting examples illustrating our results. 0 1997 Elsevier Science Ltd. All rights reserved 

1. INTRODUCTION 

The Morse theory of closed l-forms was begun by Novikov [8,9]; a survey can be found in 
[lo]. The standard Morse inequalities for functions were generalized, by Novikov, to forms 
using a twisted cohomology defined by the l-form in place of the usual cohomology. In 
some cases it is known that these inequalities are sharp [3, lo]. 

In this paper we will address the problem of whether it is possible to improve these 
Novikov inequalities (or any other inequalities of a similar nature) assuming additionally 
that the given closed l-form is harmonic with respect to some Riemannian metric. This 
problem was first considered in the paper of Calabi [l] even before Novikov’s theory. There 
is one obvious restriction-namely, any non-constant harmonic form has no local minima 
and maxima-and Calabi asked in [l] if there are any other restrictions on the critical point 
structure of Morse harmonic l-forms. 

Motivated by this, Calabi solved instead in [l] another fundamental problem: he gave 
a complete topological criterion for a closed Morse l-form to be harmonic with respect to 
some Riemannian metric. We will call such forms intrinsically harmonic or Calabi forms. We 
will describe the theorem of Calabi briefly in Section 3. 

The thrust of the main results in this paper is that, at least under certain quite general 
conditions, there exist no restrictions on the Morse numbers of harmonic forms except for the 

trivial restrictions mentioned above. 

The conditions we need to impose are closely tied to the topological nature of the 
(singular) foliation which is associated to a Morse l-form (see below for the definition). In 
particular, compactness of the leaves is a crucial item. Our results will show that if the 
foliation defined by a form o is made up entirely of non-compact leaves or, at the other 
extreme, belongs to a cohomology class which is a scalar multiple of an integral class (in 
which case all the leaves of the foliation are compact), then there is a Calabi form 6 which is 
contiguous to o, i.e. it is in the same cohomology class and has the same number of critical 
points of each index.+ 

We will also present some results concerning two issues related to the existence of 
compact leaves in the foliation of a closed Morse l-form. In Section 8.1 we show that such 

+ Recently Ko Monda has shown this to be true for any form w. 
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a form defines a natural decomposition of the manifold into pieces, each of whose interiors 
consists of all compact or all non-compact leaves. The combinatorics of this decomposition 
plays a crucial role in dete~ining whether the form is contiguous to a Calabi form. 

In Sections 8.2 and 8.3 we present two results which give restrictions on the cohomology 
class of a form when either all or none of the leaves of its foliation are compact. In Section 9 we 
describe several examples for surfaces which will illuminate and illustrate our results, 

It is a theorem of Lalonde-Polterovich [6] that, given any non-trivial class in H’(M, iR), 
then, for a generic Riemannian metric, the harmonic form representing that class has only 
Morse singularities. In other words, generically harmonic forms have only Morse type 
singula~ties. This allows us to avoid considering more complicated singularities and leaves 
us with the question addressed here of how many critical points these Morse harmonic 

forms can have. 

2. THE MAIN RESULTS 

Here we state in a precise form our principal results 

THEOREM 1. Suppose that w is a closed Morse l-form on a closed manifold M which 

represents a scalar multiple of an integral cohomology class and such that w has no critical 

points of index 0 or n = dim M. Then there exists an intrinsically harmonic Morse l-form 
c;i which has the same numbers of critical points of at1 indices as o and which is in the same 

cohomology class as w. 

This theorem implies that, if there exist Morse type inequalities for harmonic forms 
estimating the numbers of critical points by information depending only on the cohomol- 
ogy class of the form, they have to be also true for any closed l-form representing a scalar 
multiple of an integru~ cohomology class. We refer to such cohomology classes as being of 
rank one. Following Novikov [S], we say that a cohomology ciass r E H1 (M, R) is of rank k if 
the image of the homomorphism 7cl (M) + II% determined by 5 is a free abelian group of rank k. 

We recall from [8] that, for a closed l-form o of rank one on a closed manifold M, the 
Novikov inequalities take the form: 

m&4 2 b,Kwl) f ~JC~l) + qp- 1 (Cal) 

where m,(u) is the number of critical points of index p and b&w]), qP([w]) are the rank and 
torsion Novikov numbers of the cohomology of M with local coefficients defined by [w] 
(see [3,8] for precise definitions). In [3] it is shown that these inequalities are exact. 
Combining this with Theorem 1 gives: 

COROLLARY. If n,(M) = Z and n = dim M 2 6, then for any nonzero class <EH’(M, R), 

there exists an intrinsically harmonic More form CO representing [ such that mP(o) = 

b,(5) + q&Y + qp- I(<). 

This follows by combining the main theorem of [33 and Theorem 1 above and observing 
that, since b,(r) = qO(c) = b,(t) = qnP1(4) = 0, the l-form given by [3] realizing the given 
non-zero cohomology class 5_ has no critical points of indices 0 and n. 

It is an easy fact that rank one More forms must have all compact leaves. In the next 
theorem we consider the opposite situation: we assume that all leaves are non-compact. In 
addition we need to assume that w is generic, which we define to mean that any singular leaf 
contains only one critical point. It is easy to see that any Morse form can be perturbed 
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slightly so that it becomes generic without changing the numbers of critical points or the 

cohomology class. 

THEOREM 2. If w is a generic closed Morse l-form all of whose leaves are non-compact then 

w is intrinsically harmonic. 

Theorem 2 is false if w is not generic. See Example 4 in Section 9. 

Theorems 1 and 2 will be proved in Sections 6 and 7. 

3. CALABI’S THEOREM 

In this section we will recall Calabi’s theorem [l]. 
Let w be a fixed closed l-form on a closed manifold M. 

A smooth path y: [0, 1] + M will be called w-positive if w(?(t)) > 0 for any t E [0, 11. 

Calabi considered the following condition on w which he calls transitivity: 

(a) For any ordered pair of points x and y in M, which are not singular points of w, there 
exists an w-positive path from x to y. 

Evidently, (a) implies: 
(b) For any non-singular point x E M there exists a closed w-positive path y through x. 
We shall see that, in fact, (a) is equivalent to (b). 
The main result of [l] can be reformulated as follows. 

THEOREM (Calabi Cl]). A closed Morse l-form w on M is harmonic with respect to some 

Riemannian metric $and only if condition (b) holds. 

Remark. It is pointed out in [l] that (a) precludes the existence of critical points of index 
0 or n = dim M and that non-singular forms satisfy (a). 

4. SINGULAR FOLIATION OF A MORSE FORM 

Let again w denote a closed l-form with only Morse-type singularities. 
For any simply connected open set U c M we have w 1” = d fv for some Morse function 

fv: U -+ [w determined up to a constant. We will consider the foliation in lJ determined 
by the level sets of fv. Choosing a covering {U> of M we see that all these foliations 
match together to form a foliation 9 of M. We will call it the foliation determined by the 

form 0. 
Note this foliation has finitely many singular points which are the critical points of o. 

Locally, the structure of the singular foliation 9 around a critical point of index d has the 
form 

_+ . -X;+x$+i... +x,z=c. 

A leaf of 9 is, by definition, any maximal subset 9 of M such that for any two points x, y 
in 2 there exists a smooth path y: [0, l] -+ M which connects x with y and such that 
w(lj(t)) = 0 for all t. There are finitely many leaves containing the singular points; we will 
call those leaves singular. 

Note that the non-singular leaves, i.e. those containing none of the critical points of w, are 
smooth while the singular leaves are smooth except at each of the critical points which has 
a neighborhood homeomorphic to a cone over Sd-’ x Sn-d-1, where d is the index of the 
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critical point. Each nonsingular leaf 3 has a natural topology (which will be called the leaf 

topology) and smooth manifold structure such that the inclusion 3 + A4 is an immersion; 
similarly for the singular leaves. We will be particularly interested in those leaves containing 
critical points of index 1 or n - 1. In these cases removing a critical point locally discon- 

nects the leaf and we will find it useful to define a singular leafcomponent to be the closure (in 
the leaf topology) of a connected component of 9 - X(Z), where X(9) denotes the set of 
all singular points of the leaf .Y. 

5. CALABI GRAPHS 

5.1. We now make some preliminary constructions to set up the proof of Theorem 1. In 
section 5.2 we will see that the Calabi properties of closed l-forms can be interpreted by 
analogous properties of oriented graphs. 

Let F be an oriented connected finite graph. Consider the following two properties. 

(a’) If x,y~T (it suffices to consider only vertices) then there is a path from x to y that 
traverses edges of I only in the positive direction. 

(b’) For any point XEI, there exists a closed path through x that traverses edges of 

I only in the positive direction. 
Clearly (a’) implies (b’). 

LEMMA 1. If r satisfies (b’), then it satisjies (a’). 

ProoJ: Condition (b’) tells us that I is the union of closed edge-paths which can be 
traversed in a positive direction will respect to the orientation. Since I is connected, then, 
for any two points x, y E F, there is a sequence of points x = x1, x2, . . . , xk = y such that 
xi and xi+1 are on a common closed edge path Ci. Clearly Xi and xi+ 1 can be joined by 
a positive path on CL. Putting these together gives the desired path from x to y. 0 

Dejnition. We shall say that r is a Calabi graph ifit satisjes (a’) and (b’). 

In Fig. 1 we show an example of a Calabi graph and a non-Calabi graph. 

5.2. With any closed Morse l-form o on a closed manifold M, generating a singular 
foliation with all compact leaves, we shall associate an oriented connected graph I,. With 
this goal in mind, we introduce an equivalence relation in M. We declare two points in M to 
be equivalent if they lie on the same leaf of the foliation Ym, generated by w. When all the 
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leaves of 9, are compact, then the singular leaves are isolated (i.e. each singular leaf has 

a neighborhood, free of other singular leaves) and the quotient space r, := M/- is a graph. 

Indeed, any non-singular leaf 9 has a collar, consisting of non-singular leaves. Hence, its 
neighborhood in the quotient space To is an open interval. Suppose that $YO is a singular 
leaf corresponding to a point v E I-=. Then form o is exact in some neighborhood of 8,,. 
Suppose o = dfandf-‘(a) = Zfi. Then, for some ~,f]~-++ + E. andflf-IC, _E,II) are fibrations 
and the fibers are non-singular leaves. Thus the complement of LYO in this neighborhood is 
a product of an open interval with a finite number of compact manifolds which define 
a finite number of edges of lYw with v viewed as a vertex. 

Suppose x~E~,, is a critical point of index si. If 1 < si < n - 1, then it follows from the 
local strutiure of a non-degenerate critical point that the intersection of each leaf with 

a small neighborhood of Xi is connected. We conclude that if all the indices si for a given 
singular leaf Y,, satisfy 1 < si < n - 1, then the leaves on both sides of Z0 are connected 
and so v is just an interior point of an edge of r,. If Si = 1 or n - 1 and n > 2, then locally 
we have two non-singular leaves coalescing into the singular leaf from one side and one 
emerging on the other side (see Fig. 2). (Of course it is possible that the what looks like two 
leaves locally may actually be part of the same leaf globally.) 

Thus when one or more of the indices si equal 1 or n - 1, then v may be a true vertex of 
To. If Si = 0 or n, then we have non-singular fibers on only one side and v will again be a true 
vertex. 

In Fig. 3 we show two examples of Morse l-forms with all compact leaves whose 
associated graphs are those in Fig. 1. The forms are the pullbacks of the canonical l-form dt) 
on the circle S via the obvious projection maps onto S. 

The following lemma is obvious from the preceding discussion. 

Y 
Fig. 2. 
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LEMMA 2. (M, o) (with all leaves compact) satisJes properties (a) and (b) of Section 3 

iff the associated oriented graph To satisjes properties (a’) and (b’) of Section 5.1, 

respectively. 

6. PROOF OF THEOREM 1 

First, we remark that we may assume that n = dim M > 2 without loss of generality. In 
fact, if n = 2, then from the Euler-Poincare theorem it follows that any l-form which has no 
maxima and minima, has precisely - x(M) critical points of index 1. Thus we will assume 
in the sequel that n > 2. In fact, with some extra care, all our arguments will work in 
dimension 2. Our figures are all in dimension 2 so the reader should interpret them 

accordingly. 
Multiplying the form o by a scalar, we may assume that it is the differential of 

a (multivalued) Morse functionf: M + S, where S is an oriented circle. More precisely, this 
means that o =f*(dqb), where d4 is the standard angular form on the circle. 

We may also assume, after a perturbation, that all the critical values off are distinct. 
Then, since there are no critical points of index 0 or n, every vertex of the graph To (cf. 
Section 5.2) is trivalent. 

Consider the map tif: Tw + S induced byf: Define the complexity of o to be the smallest 
cardinality of any $7 ‘(a), where a ranges over the regular values ofJ: For example in Fig. 3 
the complexities of the two graphs are 2 and 1, respectively. 

We will show that either: 

(1) Fw has no vertices, or 
(2) there exists another closed l-form w’ with strictly smaller complexity such that o and 

o’ are contiguous. Recall, that this means, that w and o’ have the same numbers of 
critical points of all indices and belong to the same cohomology class. 

Thus, using induction, we will eventually reach case (1) i.e. we will find a closed l-form 
6 contiguous to o and such that r, is a circle and tj, is a covering map. In this case it is 
clear that r, is a Calabi graph and we are done. 

Suppose that r, has at least one vertex. Choose a regular value a such that the cardinality 
of $ -‘(a) equals the complexity of w. Cut open M along M, = f- ‘(a) to obtain a manifold 
IV. The mapfinduces a Morse functionf: A + [0,27c] such that the two identical boundary 
components M: and M, map to 0 and 2n respectively. The leaves of the foliation defined 
by fare the same as those of o and the graph F’it defines (cf. Section 5.2) can be obtained 
from Tw by cutting some of the edges. We now change the function x using the 
Morse-Smale reindexing technique (see [7]), to obtain a self-indexing Morse function 
#:A -+ [0, 27~1 with the same number of critical points of each index as fand such that 
J agrees withfin a neighborhood of Bli;i. The self-indexing property means that for any two 
critical points x, y, index(x) > index(y) implies g(x) > g(y). We may also assume that all the 
critical values of S are distinct. If we reglue M: and Mi, the function S induces a new Morse 
l-form w’ on M which is contiguous to o. See Fig. 4. 

Now consider the associated oriented trivalent graphs r,, and FQ. The vertices of Fg are 
of two types: those with two ingoing and one outgoing edge (they necessarily belong to 
singular leaves containing critical points of index 1) and those with one ingoing and two 
outgoing edges (they necessarily belong to singular leaves containing critical points of index 
n - 1). The self-indexing property implies (since we assume that n > 2 and so 1 < n - 1) 
that the induced map $s : lYs -+ [0,27c] has the property that there is some b E (0,271) such that 
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Fig. 4. 

ul, maps each vertex of the first type into (0, b) and each vertex of the second type into (b, 271). 
As a consequence, if there are any vertices at all, then the cardinality of $i l(b) is strictly 
smaller than that of $-‘(a). But this means that the complexity of o’ is smaller than the 
complexity of w. 

For example, applying this modification to the non-Calabi example in Fig. 3 and its 
graph in Fig. 1 will produce the form given by the other example in Fig. 3. 

This completes the proof. cl 

7. PROOF OF THEOREM 2 

Suppose the Morse l-form w has all non-compact leaves. We will show that it satisfies the 
Calabi condition (b) of Section 3. Let x E M. If x belongs to a non-singular leaf, we will 
denote it by YX; if x belongs to a singular leaf, then we will denote by 9, the singular leqf 

component (cf. Section 4) containing x. 
By statement (2) of Proposition 1 (cf. below in Section 8.1) since w is assumed to be 

generic, we know that 9, is non-compact. 
First of all we point out that if any non-singular point x’ of _fZX satisfies Calabi condition 

(b), i.e. there is a o-positive closed path y passing through x’, then any other non-singular 
point x” in _.VX satisfies Calabi condition (b) as well. To show this we connect x” to x’ by 
a path in 9,. Now, y crosses _YX transversely at x’ and so we can pull y, as it passes through 
x’, along y, so that it now passes through x”. It is clear that we may keep y positive during 
this deformation. Thus, it suffices to find an o-positive closed path intersecting 9, any- 
where. 

Since 9”, is not compact there exists a limit point y of _?ZX not in _YX. Since we have 
explicit models for the foliation near y, for the singular and non-singular case, we can see 
that all points on 9, close to y are also limit points of YX. So we may assume that y is not 
a critical point. If U is a sufficiently small coordinate neighborhood of y, then the foliation 
on U consists of parallel hyperplanes and so _!ZXnU must contain a sequence of these 
hyperplanes converging to the one containing y. Choose any two points x’, x” of gxn U in 
different hyperplanes. We can connect these two points by a path p: [ - 1, l] --t .Zpx with 
p( - 1) = x” and p(l) = x’. We can also obviously connect them by a positive path 5 in 
U (say, running from x’ to x”). We now push p slightly off _Y’, to make it into a positive path. 
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Fig. 5. 

To do so choose a vector field X on 9, so that u(X) is a positive constant. We can assume 
X is tangent to [ at x’ and x”. Define q(t) = r(t) + ~tX(y(t)) for E small enough, so that 
q( - 1) lies ahead of q(l) on [. Now we can put q together with the portion of t that runs 
from q(l) to q( - 1) to create a positive closed path which intersects 9, at q(O). Of course, 

we need to round corners. See Fig. 5. cl 

8. COMPACT AND NON-COMPACT LEAVES 

8.1. It is clear from Theorems 1 and 2 that the general problem of deciding whether a given 
closed Morse l-form is contiguous to a Calabi form may depend on the structure of the 
foliation defined by o. We will now explain how the manifold M breaks up, in a nice way, 
into pieces made up (roughly) of all compact leaves or all non-compact leaves. 

It is a theorem of Novikov, mentioned in [ll], that when w is non-singular (and M is 
connected) then either all the leaves are compact, or all the leaves are non-compact. This is 
certainly not true for general foliations (e.g. the Reeb foliation) but, in Proposition 1, we will 
generalize Novikov’s theorem to foliations coming from a closed Morse l-form, showing 
that the compact and non-compact leaves give a nice decomposition of M. The terms used 
in the statement were defined above in sections 4 and 2. 

PROPOSITION 1. Ifm is a closed Morse l-form on M, then M is the union of two compact 
n-dimensional submanifolds M, and M,, with a common (but generally singular) boundary, 
satisfying: 

(1) 

(2) 

(3) 

(4) 

Int M, is a union of all of the compact leaves plus some compact singular leaf components 
of non-compact leaves. 
Int M, is a union of all non-compact non-singular leaves, all non-compact singular leaf 

components and some compact singular leaf components of non-compact leaves. 
aM, = aM, = M,nM, is a subvariety which is smooth except at a finite number of 

points, which are critical points of CL), and is a union of some compact singular leaf 

components of non-compact singular leaves. 
If CL) is generic, then M, c M, contains all compact singular leaf components of 
non-compact leaves. 

The theorem of Novikov follows from Proposition 1 since if there are no critical points, 
then by statement (3) 

andsoM=M,orM=M,. 



MORSE THEORY OF HARMONIC FORMS 411 

Proof. (1) Let U be the union of all the compact leaves of the foliation determined by the 
form o. We show that U is open. If 9 is a compact leaf, then it has a neighborhood W with 

compact closure and containing no critical points other than those on 9, such that o 1 v = df 

for some smooth function on V with f- ‘(0) = C. Then there exists E > 0 such that 

f-‘(-r,.s) c I/ and sof-’ (a) is a compact leaf for la1 < E. 

(2) Let X be the union of all compact leaves and compact leaf components of non- 
compact leaves. Then X is closed. Indeed if we consider the non-singular foliation P,, 
defined by o on M,, = M - critical points of U, we can apply a theorem of Haefliger 
[4, p. 3861 to conclude that the union X0 of all the closed leaves of Fto is a closed subset 
of MO. But then X is just the closure of X0 in M. 

Let M, = 0 and I/ = M - 0. From (2) we conclude that Y = M, - U is a union of some 
compact leaf components of non-compact leaves. Y is a codimension one submanifold of 
M except for singularities at the critical points of w in Y. If x is such a critical point of index 
q then, for some neighborhood W of x, (W, Y n W) E cone over (S”- ‘, Sq- ’ x S”-q- ‘) if 
1 < q < n - 1, while if q = 1 or n - 1 then (W, YnW) E cone over (Sn-1,Sn-2) or 
(W. Yn W) 2 cone over (S-l , So x Y2). In this last case we call x special. It is clear that 
M, is a manifold with boundary Y which is smooth except at the critical points and at those 
points we have a very explicit model of the singularity. At every point of Y, except the 
special points, Y locally separates M into two components exactly one of which must lie in 
U and the other lies in I/. At the special points Y locally separates M into three components 
if n > 2 or four components if n = 2. If n > 2 then either one or two of the components lie in 
U. See Fig. 6. 

It remains to discuss the generic case. Suppose C is a compact leaf component 
of a non-compact leaf 9. Then C contains exactly one critical point x which must 
be of index 1 or n - 1. As above we have a neighborhood W of x so that (W, _Pn W) g 
cone over (Sri--- ,S” x Snm2) where Cn W is one of the two cones over Sne2. Now 
we can choose a regular neighborhood R of C so that R = W near x but 
(R - W,C - W) E ((C - W) x [ - l,l], (C - W) x 0) since there are no other critical 
points on C. See Fig. 7. It is clear that the leaves of the foliation defined by w on one side of 
C must lie entirely in R and are homeomorphic to C. Since C is compact this shows that 
c E 0. 0 

8.2. The next two propositions describe some relations between the cohomology class 
represented by a Morse l-form and the presence of compact leaves in its foliation. 

PROPOSITION 2. A class 5 E H’(M, [w) has a representative Morse l-form with all compact 

leaves if and only if the homomorphism x1(M) -+ iw determined by the cohomology class 5 can 

be factorized 7c1(M) + F + [w through a free group F. 

Fig. 6. 
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Fig. I. 

It will be convenient for us to refer to the cohomology classes satisfying the condition 
of Proposition 2 as split cohomology classes. A more geometric description of this 
condition is the following. The manifold M can be cut into several pieces by disjoint 
codimension one submanifolds so that the restriction of the class 5 to each piece is of rank 
one. 

Remarks 

0) 

(ii) 

As pointed out in Section 2, a rank one class has the property that every representa- 
tive Morse l-form has all compact leaves. In Section 9 we will give examples that 
suggest that only rank one classes have this stronger property. 
It seems to be difficult to give a purely cohomological criterion for 5 to be split, but 
a necessary condition is that there exist a finite subset {li} G H’(M, Z) such that t is 
a linear combination of the 5i and all Massey products (see [2]) of the {gi} vanish. 
However this condition is not sufficient. At example can be obtained as follows. 
Choose a slice link L of two components which is not a homology boundary link. 
According to [2, p. 721 the link in Fig. 8 is such an example. Define M to be the result 
of O-surgery on S3 along L. Then H’(M, Z) z 2’ and all Massey products vanish. But 
there is no map n,(M) + F, F a free group inducing an injection on H’ and so, any 
class t of rank two is not split. 

Proofof Proposition 2. Let w be a Morse l-form representing g with all compact leaves 
and IO the associated oriented graph as defined in Section 5.2. Let 4: M -+ Tw be the 
identification map. It is clear that r E $*H1 (I,; R) and half of Proposition 2 follows since 
any connected graph has a free fundamental group. 

Now suppose we are given 5 and a map f: M + W, where W is a wedge of circles, such 
that 5 =f*(r’) for some ~‘EH’(W, F!). Choose a point ai in each circle Si of W; we may 
assume that ai is a regular value ofJ: Then Mi =f -‘(ai) is a smooth compact submanifold 
of M. Let It? be the result of cutting M open along the ML. Then dri;i consists of two copies 
Mz and My of each ML. Obviously t Im = 0. Now assume each Si is oriented and set 
pi = (t’, [Si]), the period of the class <’ on the circle Si. We may assume that the 
orientations are such that a short path in M which crosses Mi, hitting M+ before Mi- , maps 
into Si with positive orientation. Now choose a Morse function g: R + R with no critical 
points on i3ri;r, which is constant on each boundary component so that g(M’) - g(M;) 

= pi. We may also assume that gJam fits together smoothly to form a smooth l-form w on 
M. Clearly u is Morse and closed, has zero periods in rii and has period pi around any 
closed curve which crosses Mi “positively” but no other Mjs Thus o represents t. Further- 
more, the leaves of the foliation defined by o are components off- ‘(a) for some a E R and 
so they are compact. Cl 
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Fig. 8. 

8.3. 

PROPOSITION 3. If w is a closed intrinsically harmonic Morse l-form whose associated 

foliation has a compact leaf, then there exists some non-zero 9~ H’(M,Z) such that 

&J[o] = OE H’(M, R). 

We will show in Section 9 that Proposition 3 is false if o is not assumed to be intrinsically 
harmonic. 

Proof: If o has a compact leaf, then, by statement (1) of Proposition 1, there exist 
non-singular compact leaves. Suppose 9 is a non-singular compact leaf of o. Then _!Z’ is 
a closed submanifold of M and the normal bundle to _!Z’ is trivialized by the form w. Also, 
L8 cannot bound in M since this would contradict the Calabi condition. 

We may find a cylinder U = [ - l/2,1/2] x LF in M fibred by the leaves of the foliation 
determined by w, such that the initially choosen leaf _Y is identified with 0 x 2. Now, let us 
construct a closed l-form c1 on M such that: 

(1) a vanishes outside the cylinder U; 
(2) on the cylinder U the form CI is given by CI 1” = d(4 0 p) where p: U + [ - l/2,1/2] 

denotes the projection, and 4: [ - l/2,1/2] + [ - l/2,1/2] is a smooth function satisfying: 

4(t) = t for all 1 t 1 < l/2 - E 

4(t) = l/2 for all t l [l/2 - f&1/2] 

f+(t) = - l/2 for all t E [ - l/2, - l/2 + S] 

where 0 < 6 < E. 
Thus we obtain that a represents a nonzero integral cohomology class 6’ E H1 (M, Z) and 

a A o = 0. Therefore, on the level of cohomology, we get 0u[o] = 0 in H’(M, R). IJ 

Suppose, for example, that the pairing H’(M, R) x H’(M, R) -+ H’(M, R) is non-degener- 
ate, i.e. for any t E H’(M, R) there exists ye E H’(M, R) such that tuq # 0. Then it follows 
from Proposition 3 that, if a class < E H1(M, IR) is completely irrational, then any representa- 
tive harmonic Morse l-form has all non-compact leaves. (We say that a cohomology class 
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5 is completely irrational if its rank is equal to the first Betti number of M). This applies to 
the cases when M is an orientable surface or A4 = S’ x ... x S’. 

9. EXAMPLES 

We complement and illustrate Theorem 2 and Propositions 2 and 3 with some examples 
in dimension two. We first summarize the assertions of these results for a class a E H’(M; Iw), 
where M is a closed orientable surface, and a representative Morse l-form 0,. 

(1) If rank a = 1, then any o, has all compact leaves. 
(2) a is split if and only if there exists some w, with all compact leaves. 
(3) If a is completely irrational and w, is Calabi, then no leaves are compact. 
(4) If w, is generic and has no compact leaves, then o, is Calabi. 

We will construct the following four examples of CI and o, which will illustrate the 
sharpness of these results. 

Examples. (1) Rank a = one less than maximal and o, Calabi with some compact leaves. 
(2) Rank a > 1, a split and w, Calabi with all leaves non-compact. 
(3) a completely irrational and o, non-Calabi with some compact leaves. 
(4) wa non-Calabi but all leaves non-compact (and so o, is not generic). 

We first describe three general connected sum operations which accept as input two 
closed two-dimensional manifolds Ml, M2 with closed Morse l-forms 01,02 and con- 
structs a closed Morse l-form o on the connected sum Ml # M2 such that 
o 1 Mi - Di = Oi 1 Mi - Dip where Di is any disk in Mi containing no critical points of Wi and 
within which the connected sum will be constructed. 

Choose smooth functionsfi:Di -+ R such that Oi = dfi. Suppose that we can identify each 
Di with an open rectangle (ai, bi) x (Ci, di) in Iw2 SO that fr (x, y) = y. Note that we can then 
move the rectangle by any translation in [w 2. Now we can perform a connected sum of 
D1 and D2 ambiently by connecting them with a straight tube in R3 in three different ways. 

A. fl(Dl)nf2(D2) = J is non-empty, the connecting tube intersects Di insidef;:-‘(J) and is 
approximately horizontal. 

B. fr (Dl )~&(Dz) is empty, 
C. fl(Dl)nf2(D2) is non-empty and the connecting tube has its two critical points at the 

same level. 

See Fig. 9. 
We then define f :D, # D2 + [w to be the restriction of the height function. Clearly df 

blends with o1 and o2 to define a closed l-form o on Ml # M2. Note that in each of these 
constructions two new critical points x, y of index 1 are introduced. In construction A, 
f(x) <f(y); in construction B, f(x) >f(y); in construction C,f(x) =f(y). 

If we assume that the 0; are Calabi then these constructions will have two important 
properties: 

(1) Under construction A, o is Calabi; under constructions B and C o is not Calabi. 
(2) Under construction A, every leaf of o intersects at least one leaf of o1 and one leaf of 

02; under construction B there are new compact leaves produced; under construction 
C there is just one new compact singular leaf component produced. 
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Fig. 9. 

We now use these general constructions to produce the four examples promised. In 
these examples we denote the torus by T and 8, 4 will denote the usual angle coordinates 
on T. 

Example 1. We construct a Calabi form with some compact leaves whose cohomology 
class has rank one less than the first Betti number. Let M, = T and o1 = de (or even 
p dO + q d+ for p, q relatively prime integers). Let Mz,w2 be arbitrary-for example w2 
might be a completely irrational Calabi form. Choose D1 c M1 to be small enough so that 
many of the leaves of o1 do not meet D1. If we use construction A, the result is a Calabi form 
of non-maximal rank with some compact leaves. See Fig. 10. 

Example 2. We construct a Calabi form with all non-compact leaves whose coho- 
mology class is split but has rank > 1. Let Mi = M2 = T and o1 = de, w2 = AdO, 
where 3, is irrational, and we use construction A to produce a Calabi form. If the 
disks D1 and D2 are small, then every leaf of o1 or w2 will hit them at most once and the 
leaves of o will all be compact. If we choose the disks differently, though, so that they take 
the form of thin ribbons winding several times around T, then each leaf will hit the disk 
several times. The increments Afr between different intersections of the same leaf of o1 with 
D1 will be integral multiples of 271. The increments A f2 between different intersections of the 
same leaf of o2 with D2 will be integral multiples of 271/l. Since il is irrational, the 
attachments of leaves of o1 with leaves of o2 will produce non-compact leaves of w. See 
Fig. Il. 

Example 3. We construct a non-Calabi form with some compact leaves whose cohomol- 
ogy class is completely irrational. Let Mi and Oi be arbitrary and use construction B. This 
will produce a non-Calabi Morse l-form w with some compact leaves. In this way choosing 
q’s to be completely irrational with corresponding normalization so that o will be 
completely irrational as well, we can realize any cohomology class on any surface except for 
a completely irrational class on a torus. 

Example 4. We construct a non-Calabi non-generic form with all non-compact leaves. 
This is similar to example 3. Let M1 = M2 = T and 0; be any two forms of the form 
a dfl + h dtj, where a/b is irrational. Then use construction C with small disks D1 and D2. 
This will produce a non-Calabi form with one compact singular leaf component and all 
non-compact leaves. See Fig. 12. 
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Fig. 10. 

Fig. il. 

Fig. 12. 

10. F~ALRE~RKS 

Theorems 1 and 2 still leave us with the problem of deciding, in general, whether closed 
Morse l-forms are contiguous to harmonic forms.+ The next case to consider might be when 
the form CO has all compact leaves-the issue then reduces to a combinatorial question 
about the graph To. Settling the general compact leaf case and using Theorem 2 might then 
enable one to use Proposition 1 to deal with the general case. 

The results of Sections 8.2 and 8.3 and the examples of Section 9 leave open several 
interesting questions about the relation between the cohomofogy class of a closed Morse 
l-form and the presence of compact leaves in its foliation. 

‘Theorem 1 has recently been proved by Ko Monda for any closed Morse 1 form. 
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(1) What conditions on a cohomology class will assure that it has a representative Morse 

form with no compact leaves? Example 2 suggests that rank > 1 might be sufficient. 

(2) What conditions on a cohomology class are satisfied if every representative Morse form 
has all leaves compact? Example 2 suggests that rank = 1 is necessary. 

(3) Is there some condition on a cohomology class which implies that eoery representative 
Morse form has all non-compact leaves? It is not hard to see that, on the torus, rank > 1 
will do. Example 1 shows that this is the only case for surfaces. In higher dimensions it is 
not hard to see that if a cohomology class CI is completely irrational and unsplittable, in 
the sense that it is impossible to separate the manifold M by a codimension one 
submanifold I/ so that LX # 0 on each component of M - I/, and if the pairing 
H’(M) x H’(M) -+ H’(M) is non-degenerate then x has the desired property. 
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