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Abstract

This paper describes the results of comprehensive empirical studies of the
inherent optical properties (IOPs), the remote sensing reflectance Rrs(λ) and
the contents of the principal optically active components (OAC) i.e. coloured
dissolved organic matter (CDOM), suspended particulate matter (SPM) and
chlorophyll a, in the waters of 15 lakes in Polish Pomerania in 2007–2010. It
presents numerous spectra of the total absorption a(λ) and scattering b(λ)≈ bp(λ)
of light in the visible band (400–700 nm) for surface waters, and separately,
spectra of absorption by CDOM aCDOM(λ) and spectra of the mass-specific

coefficients of absorption a
∗(SPM)
p (λ) and scattering b

∗(SPM)
p (λ) by SPM. The

properties of these lake waters are highly diverse, but all of them can be
classified as Case 2 waters (according to the optical classification by Morel
& Prieur 1977) and they all have a relatively high OAC content. The lakes
were conventionally divided into three types: Type I lakes have the lowest
OAC concentrations (chlorophyll concentration Ca = (8.76± 7.4) mg m−3 and
CDOM absorption coefficients aCDOM(440)= (0.57± 0.22) m

−1 (i.e. mean and
standard deviation), and optical properties (including spectra ofRrs(λ)) resembling
those of Baltic waters. Type II waters have exceptionally high contents of
CDOM (aCDOM(440)= (15.37± 1.54) m

−1), and hence appear brown in daylight
and have very low reflectances Rrs(λ) (of the order of 0.001 sr−1). Type III
waters are highly eutrophic and contain large amounts of suspended matter,
including phytoplankton (CSPM = (47.0± 39.4) g m−3, Ca = (86.6± 61.5) mg m−3;
aCDOM(440)= (2.77± 0.86) m

−1). Hence the reflectances Rrs(λ) of these type of
waters are on average one order of magnitude higher than those of the other natural
waters, reaching maximum values of 0.03 sr−1 in λ bands 560–580 nm and 690–
720 nm (see Ficek et al. 2011). The article provides a number of empirical formulas
approximating the relationships between the properties of these lake waters.

1. Introduction

Pomerania lies in northern Poland and borders on the southern Baltic
coastline. In this region there are 3381 lakes with an area of more than 1 ha;
their total area is 104 197.3 ha (ca 1042 km2), and maximum water depths
range from less than 1 m (e.g. Lake Czerwica) to 68 m (Lake Wdzydze)
(Jańczak 1997, Choiński 2006). The bio-optical properties of 15 lakes in
central Pomerania were investigated by Ficek and co-workers in 2007–2010.
These investigations are extensively described in a dissertation by Ficek
(2012 in press, in Polish). The remote sensing reflectance Rrs(λ) spectra
of these lake waters were presented and discussed by Ficek et al. (2011).
In this paper we describe the basic inherent optical properties (IOPs) of
these lake waters, i.e. spectra of light absorption a(λ) and scattering b(λ)
and some of their components. We also give a more detailed description
of the remote sensing reflectance spectra Rrs(λ). The waters of these
lakes are highly diverse, containing variable and extreme concentrations of
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coloured dissolved organic matter (CDOM), organic and mineral suspended
particulate matter (SPM) and phytoplankton pigments.

The aim of this paper is to give readers an overview of the optical
properties of a recently investigated group of lakes.

2. Material and methods

Comprehensive measurements of light absorption a(λ), light attenuation
c(λ), total scattering b(λ) and backscattering bb(λ), downward irradiance
Ed(λ) and upward radiance Lu(λ) spectra were made in 15 lakes from on
board a small motor boat. These optical measurements were carried out
in situ in vertical profiles, at 2–3 sites representative of the open waters of
each lake, 3–10 times in each lake in different seasons, mainly in 2007–2010.
At the same time water samples were taken from different depths of the
euphotic zone to be analysed for their content of optically active components
OAC (i.e. CSPM, Ca, aCDOM) and some of their properties. The samples
were filtered and analysed on the same day; some of the filters to be analysed
for their pigment content were stored in liquid nitrogen and some, to be
analysed for the dry mass of SPM, were stored in a desiccator. The number
of stations and the number of measurements on each lake differ, depending
on the size of the lake and its seasonal changes, including a lack of data
from winter when a given lake was completely frozen over. The numbers of
measurements from each lake are given in Table 1. In view of these different
numbers of measurements, some comparisons of lake water properties were
drawn on the basis of the mean values of the relevant magnitudes recorded
in the surface waters of each lake. Obviously, the vertical profiles recorded
certain differences in measured values – for the details of these, see Ficek
(2012).
The coefficients of absorption a(z,λ) and light attenuation c(z,λ) were

measured in situ at various depths in the lakes using a Wet Labs ac 9
spectrophotometer for 9 wavelengths: 412, 440, 488, 510, 532, 555, 650,
676 and 715 nm. The total scattering coefficient b(z,λ) was determined
from the difference c(z,λ) – a(z,λ)= b(z,λ); the backscattering coefficient
bb(z,λ) was measured in situ for one wavelength λ= 532 nm with the
aid of a backscattering meter (ECO VSF – Wet Labs). Accurate spectral
distributions (every 1 nm) of light absorption in the water samples were
determined as the sum of absorption by SPM in the water ap(λ), absorption
by CDOM in the water aCDOM(λ) and absorption by pure water aw(λ).
The absorptions by the SPM collected on the filter were measured with
a UNICAM UV4-100 spectrophotometer, equipped with a 66 mm diameter
integrating sphere. A slightly modified Transmission-Reflectance (T-R)
filter-pad technique was used (Tassan & Ferrari 1995). The integrating
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Table 1. The periods and number of bio-optical measurements carried out in
Pomeranian lakes during the growing seasons in 2004–2010

Name of lake Symbol Period of Total number Total number of
investigation of expeditions measured profiles

Łebsko L 2007–2010 30 111
Gardno G 2006–2010 45 88
Pyszne P 2006–2010 28 29
Rybiec R 2009–2010 10 10
Niezabyszewskie N 2008 9 9
Głębokie Gl 2008–2010 15 15
Chotkowskie Ch 2006–2010 28 29
Dobra D 2008–2010 11 7
Czarne Cz 2008–2010 15 15
Obłęże O 2007–2010 25 27
Jasień Południowy JS 2007–2010 25 30
Jasień Północny JN 2007–2010 22 29
Marszewskie M 2008–2010 10 10
Boruja Mała B 2004–2010 24 26
Jeleń J 2004–2010 34 61

sphere was used to measure the optical density of the particles collected
on the Whatman GF/F filters and on clean reference filters. It was assumed

that the transmittance through each filter +SPM was the same, regardless
of whether the light beam impinged on the filter frontally or laterally. This

substantially simplified the calculation of the optical density, equivalent

to the inherent absorption of the particles accumulated on the filter
ODf (λ). Since the optical path of the light becomes shorter, one applies

the optical path length amplification factor β, which converts ODf (λ)

into the optical density of particles in suspension ODsus(λ). Here, the
formula ODsus(λ)= 0.592[ODf (λ)]2 + 0.4ODf (λ), derived by Kaczmarek

et al. (2003), was used (see also Stramska et al. 2003). This formula

was derived on the basis of experiments with various mineral-particle-
rich phytoplankton cultures, and with solutions and natural suspensions

of particles from marine basins. The spectra of light absorption by SPM in

the water ap(λ) was then determined.

In contrast, absorption spectra aCDOM(λ) were determined in samples

of lake water from the difference between the spectra of light attenuation

in a sample of pure water (twice distilled) and in a sample of lake water
passed first through a Whatman GF/F glass-fiber filter (0.7 µm pore size),

and then through a Sartorius ACN membrane filter (0.2 µm pore size). The
absorption spectra of these water samples were measured with a Hitachi U

2810 UV-VIS spectrophotometer. The absorption by pure water aw(λ) was
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based on the data of various authors gathered in the monograph by Woźniak
& Dera (2007).
For determining the reflectance Rrs(λ), the vertical profiles of the

downward irradiance Ed(z, λ) and the upward radiance Lu(z, λ) were
measured with a Satlantic Hyper Spectral Radiometer HyperPro in 136
channels in the 350–800 nm spectral range. The data were usually recorded
at 10 cm intervals in the 0.1–2 m depth range. The reflectance was calculated
as the ratio of the water-leaving upward radiance Lu(0+, λ) and the
downward irradiance Ed(0

+, λ) just above the water surface:

Rrs(λ) = Lu(0+, λ)/Ed(0
+, λ) , (1)

where

Lu(0+, λ) = 0.544 Lu(0−, λ) (2)

(see e.g. Darecki et al. 2005, Tzortziou et al. 2007); the radiance just below
the water surface Lu(0−, λ) was extrapolated from the Lu(z, λ) vertical
profile (see the detailed description in Ficek 2012).
The SPM concentration (CSPM) was determined by measuring the dry

mass collected on a filter from a given volume of water. From 0.2 to 2 dm3

water were filtered, depending on the SPM concentration of this matter.
The sediment collected from the first filtering of the water sample through
a Whatman GF/F glass-fiber filter (47 mm, 0.7 µm pore size) was used for
measuring the dry mass of SPM, as recommended in the standard protocols
for measuring SPM (Van der Linde 1998).
The concentration of chlorophyll a was determined using several meth-

ods: in situ using a Pump Probe immersion fluorometer (PrimProd-
EcoMonitor, Russia, in accordance with the methodology developed by
Falkowski & Kiefer 1985, Falkowski et al. 1986; see also Ostrowska 2001,
Matorin et al. 2004); in samples of lake water using HPLC (Stoń-Egiert
& Kosakowska 2005), and the standard spectrophotometric technique (e.g.
Jeffrey & Humphrey 1975) (for details, see Ficek 2012).

235 sets of data points obtained from simultaneous measurements of
the reflectance spectra Rrs(λ), chlorophyll a concentrations Ca, suspended
particulate matter concentrations CSPM, and absorption spectra aCDOM(λ)
were used in the analysis and interpretation of the remote sensing reflectance
spectra Rrs(λ) described in Ficek et al. (2011) and in the present paper.

3. Results and discussion

The waters of the Pomeranian lakes investigated in this study differ
widely in their contents of optically active components (OAC); consequently,
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their spectral optical properties are also different. As in most inland and
coastal sea waters, the OAC they contain consist of suspended particulate
matter (SPM) and coloured dissolved organic matter (CDOM), usually in
large concentrations. On the basis of numerous empirical investigations (to
be presented below), these waters can be conventionally classified into three
types differing in their optical properties, although this distinction is not
a sharp one – waters with properties intermediate between these types have
also been recorded. In waters of Type I OAC concentrations are relatively
low: SPM (including phytoplankton1) is dominant and the concentration of
CDOM2 is relatively low (Table 2). The optical properties of these waters
are similar to those of Baltic waters (see e.g. Kowalczuk et al. 1999, Ficek
et al. 2011).

Table 2.Mean concentrations of the optically active components (OAC) and some
optical properties of the three types of surface waters in Pomeranian lakes∗

Quantity and units Type I waters Type II waters Type III waters

(mean values ± (mean values ± (mean values ±

standard deviation) standard deviation) standard deviation)

CSPM [g m
−3] 2.78± 1.93 3.83± 1.75 47.0± 39.4

aCDOM(440) [m
−1] 0.57± 0.22 15.37± 1.54 2.77± 0.86

SCDOM(λ) [nm
−1]∗∗ 0.018± 0.003 0.015± 0.001 0.017± 0.001

Ca [mg m
−3] 8.76± 7.4 19.8± 16.0 86.6± 61.5

560–580 high 560–580 high
waveband of

650 weak 690–710 weak 650 weak
max Rrs(λ) [nm]

690 weak 690–720 high

∗Lakes Chotkowskie and Czarne are not included in this table as they do not lend
themselves to such classification (see curves Ch and Cz on Figure 1b),

∗∗S – mean slope of the absorption spectra.

The waters we designated as Type II (humic lakes3) have a very high
CDOM concentration, so high that the light attenuation coefficient and
other properties of such waters are completely dominated by the light
absorption aCDOM in practically the whole spectral range of visible light.

1In this paper the phytoplankton concentration is taken to be the measured chloro-
phyll a concentration Ca.

2The concentration of Coloured Dissolved Organic Matter (CDOM) is taken to be the
measured coefficient of light absorption in the 440 nm band, aCDOM(440).

3These are usually small lakes with brown water – they are common in the study area.
In this work they are represented only by Lake Pyszne, as access to other such lakes with
boats and measuring gear was too difficult.
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Our Type III lake waters are supereutrophic, in which the OAC is dom-

inated by phytoplankton; for practical purposes the absorption/scattering

properties of this phytoplankton determine the optical properties of such

waters (see Table 2).

3.1. Light absorption

Figures 1 to 4 illustrate light absorption spectra in the surface waters of

the lakes investigated. Figures 1a and b emphasize above all the very great

differentiation in the absorption properties of these waters due to the large

differences in OAC concentrations in them. The various types of waters are

also distinguishable in these figures, especially Type I with low absorption

(low CDOM concentration) and Type II with very high absorption (high

levels of CDOM), although it is hard to precisely define the criterion for

such a division, because not all the waters of the lakes we studied lend

themselves to such classification. The absorption spectra aCDOM(λ) of

these three types of water are better illustrated in Figure 2, which shows

spectra from some of the lakes that have distinctive absorption properties.

There are clear differences between Types I and II, as regards both the

value and the course of the absorption spectra. These differences are due

mainly to CDOM, especially to its concentration (indicated among other

things by the extremely different absorption coefficients a(440 nm)) and the

qualitative composition of the individual substances in CDOM (indicated

Figure 1. Light absorption spectra a(λ) recorded in surface waters of Pomeranian
lakes: a) for all types of lake, b) averaged for particular lakes on the basis of all
the recorded spectra. The abbreviations for the names of the lakes are explained
in Table 1
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Figure 2. Spectra of coefficients of light absorption by CDOM aCDOM(λ),
recorded in three types of water in Pomeranian lakes: Type I (Lakes Jeleń,
Boruja Mała, Jasień), a(440 nm)= 0.57 m−1, S = 0.018 nm−1; Type II (Lake
Pyszne), a(440 nm)= 15.0 m−1, S = 0.015; Type III (Lakes Łebsko, Gardno,
Rybiec), a(440 nm)= 2.77 m−1, S = 0.017 nm−1. The vertical dashed line shows
the wavelength of 440 nm, the absorption coefficient of which aCDOM(440) is used
here as the indicator of CDOM concentration

by the different slopes of the absorption spectra S – see e.g. Haltrin 2006,
Woźniak & Dera 2007). In intermediate, strongly eutrophic waters, which
we have classified as Type III, besides absorption by CDOM of wavelengths
from the short-wave end of the light spectrum, there are distinct pigment
absorption bands, including that of chlorophyll a in the red region.

The evident minimum absorption in the 550 nm region for Type I lake
waters coincides with the distinct broad maximum reflectance Rrs(λ), as
shown in Figure 6.

Figures 2 and 3 respectively illustrate absorption by CDOM and by
SPM. Figure 2 shows spectra of the coefficients of light absorption by
CDOM aCDOM(λ) recorded in all three types of lake water. This shows
the evident differences in absorption, i.e. the differences in the positions
of the spectra on the plot, for the three types of water, dependent on the
CDOM concentration as given by aCDOM(440 nm). It also shows certain
differences in the mean slopes of the spectra S in the 350–450 nm wave
band, the values of which are given beneath Figure 2. These differences in
the mean spectral slopes testify to the different compositions of CDOM in
these waters (Haltrin 2006, Woźniak & Dera 2007).

Figure 3a illustrates plots of spectra of light absorption by only
SPM ap(λ), recorded in all the lakes. The position of these spectra on
the plot depends to a large degree on the SPM content of a given water
(see Figure 3b), but the spectra of the mass-specific coefficients of light
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Figure 3. Light absorption by particles of suspended matter in Pomeranian lakes:
a) spectra of light absorption ap(λ), recorded in the surface waters of all the
lakes (blue lines – Type I waters, red – Type II, green – Type III); b) empirical
dependence of the absorption coefficient ap(440 nm) on the concentration of dry
mass of suspended matter CSPM; c) dependence of constants A and B and the
coefficient of determination R2 on wavelength λ, obtained from the approximate
empirical relationship of ap(λ) versus CSPM in formula (3); d) spectra of the mass-

specific coefficients of light absorption by particles of SPM a
∗(SPM)
p (λ), recorded

in the surface waters of all the lakes. The thick black line represents their

average value < a
∗(SPM)
p (λ) > determined for the set of all spectra, and the

whiskers indicate the standard deviations from the mean values for selected light
wavelengths

absorption a
∗(SPM)
p (λ) by that SPM (i.e. converted to per unit dry mass of

SPM, Figure 3d) take values over a wide range (for 440 nm from ca 0.08
to 0.7 m2 g−1). This is an indicator of the highly differentiated qualitative
composition of the various types of lake, and in particular of the various
ratios of organic SPM (including phytoplankton) to inorganic SPM. In
Figure 3a the absorption spectra ap(λ) for Type I waters lie lowest on the
plot, which is indicative of the low level of SPM in such waters. The spectra
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Figure 4. Spectra of light scattering by suspended particulate matter, recorded
in the surface water of Pomeranian lakes: a) all recorded spectra of
bp(λ): points – measurement data, lines – simple interpolation; blue lines
– Type I waters, red lines – Type II waters, green lines – Type III
waters; b) spectra of the mass-specific coefficients of light scattering by SPM

b
∗(SPM)
p (λ): points – mean values from measurements, lines interpolated as

in (a); the thick black line represents the average value < b
∗(SPM)
p (λ) >

determined for the set of all spectra, and the whiskers show the standard
deviations

of ap(λ), lying higher up on this plot, refer to waters with a greater SPM
concentration and visualize the evident selectivity of absorption in respect
of light wavelengths – absorption by numerous coloured suspended organic
matter and phytoplankton pigments, including chlorophyll a in the 670–
680 nm band.

With the results of our many measurements we were able, among other
things, to establish an approximate empirical relationship between the
spectra of visible light absorption by particles of suspended matter ap(λ)
and the concentration of these particles CSPM in the waters under study.
This relationship can be written as follows:

ap(λ) = A(λ)(CSPM)−B(λ) , (3)

where ap(λ) is expressed in [m−1] and CSPM in [g m
−3] (i.e. grams of dry

mass of material suspended in 1 m3 of water); the values of the constants
A and B, and the coefficient of determination R2 are given in Table 3 for
selected light wavelengths and plotted for the entire visible light spectrum
in Figure 3c. This formula gives the best approximation, with a coefficient
of determination of R2 = 0.86, for light wavelengths in the ca 440 nm band;
this is also illustrated by the plots in Figures 3b and 3c.
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Table 3. Values of the constants A, B and the coefficient of determination R2 for
formula (3)

λ [nm] A B R2 λ [nm] A B R2

400 0.379 0.740 0.83 550 0.112 0.728 0.78
425 0.347 0.752 0.85 575 0.094 0.746 0.78
440 0.318 0.762 0.86 600 0.083 0.776 0.78
450 0.279 0.758 0.85 625 0.084 0.793 0.80
475 0.213 0.758 0.84 650 0.081 0.802 0.80
500 0.172 0.758 0.83 675 0.111 0.832 0.83
525 0.135 0.740 0.80 700 0.051 0.806 0.70

3.2. Light scattering

Let us now turn to light scattering in these lake waters. Here, the
molecular scattering of light, i.e. scattering by molecules of water and the
substances dissolved in it, can be practically ignored in view of the many
times stronger scattering from the large amounts of various kinds of SPM
present. Plots of light scattering in the waters of the lakes are illustrated
in Figure 4. Figure 4a shows all the recorded spectra of bp(λ), with the
three types of water highlighted in different colours. Here again, as in the
case of absorption, the scattering spectra for Type I waters lie the lowest on
the plot, but the scattering spectra of Type II waters lie at a very similarly
low level, which is indicative of relatively low concentrations of SPM in
these waters (see above in Table 2). The figure also shows the very limited
selectivity of scattering relative to wavelength, which very generally testifies
to the dominance of scattering from suspended particles much larger than
the wavelengths of visible light (e.g. Dera 1992).
The spectral distributions of light scattering from SPM, free of the effect

of the concentration of this matter in the water, that is, calculated per
unit dry mass of suspended particles, are called the mass-specific scattering

coefficients of particles b
∗(SPM)
p (λ). Spectra of these coefficients for the lake

waters are illustrated in Figure 4b: they show that in the visible region these
coefficients range from ca 0.2 to 2 m2 g−1, that is, in an interval higher and
slightly wider than the one for coastal and open sea waters described by
Babin et al. (2003) and the papers cited therein.
The spectra of the coefficients of scattering by SPM in the visible region

decline only slightly and monotonically in the direction of long waves and
do not exhibit any significant maxima. These spectra can be approximated
by the relationship:

bp(λ) = bp(λ0)

(

λ0

λ

)γ

, (4)
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where γ is called the Ångstrom exponent describing the spectral shape
(Haltrin 2006). The value of γ determined for the lakes under investigation
is 0.551 (SD= 0.397). The scattering coefficients bp(λ) in the visible light
region depend largely on SPM concentration (see Figure 5). This minimal
selectivity of scattering with respect to light wavelength has a significant
influence on the spectra of the remote sensing reflectance Rrs(λ) of these
lakes.

Figure 5. Empirical relationships between the coefficients of light scattering
bp(555) and the concentration of dry mass of SPM CSPM (a) and the chlorophyll a
concentration Ca (b) in the surface layer of Pomeranian lakes. The lines and
equations on the graph show the regression curves corresponding to the points
shown

The correlations of the scattering coefficient bp(555) with concentrations
of dry mass of SPM CSPM and with concentrations of chlorophyll a Ca in
these waters are best in the ca 555 nm band. These correlations and the
relevant regression equations are shown in Figure 5.

3.3. Remote sensing reflectance

Given the only slight dependence of scattering at SPM on the wavelength
of the scattered light, spectral maxima of the reflectance Rrs(λ) are observed
only in those wavelength bands with minima of the overall light absorption
and/or fluorescence of the constituents of the lake waters. In Type I waters
the overall light absorption usually drops to a distinct minimum in the 560–
580 nm band: in this band absorption by CDOM is weak (Figure 1 – Lakes
J, B, JN, Ob, and Type I in Figure 2) and, moreover, only phycobilins
among the many phytoplankton pigments absorb light to a measureable
extent (Woźniak & Dera 2007). It is for these reasons that the remote
sensing reflectance Rrs(λ) in these waters reaches a distinct maximum in
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this 560–580 nm band (Figure 6, Type I, Ficek et al. 2011). The height and
width of this maximum depends not only on the concentration of scattering
SPM in this type of water but also on its other light-absorbing constituents.
In the waters of humic lakes, i.e. Type II, with their very high CDOM
concentration (average aCDOM(440 nm)≈ 15 m

−1), the light absorption
spectrum, dominated as it is by CDOM absorption, has its minimum shifted
towards the long wavelengths (690–710 nm) and takes conspicuously high
values over the entire spectral region (Figure 1 – Lake P and Type II in
Figure 2). This absorption strongly reduces the intensity of backscattered
light. Hence the reflectance Rrs(λ) displays a weak maximum only in the
red region of the 690–710 nm band, that is, between absorption by CDOM
increasing towards the short wavelengths and absorption by water increasing
towards wavelengths longer than those in this band. This weak reflectance
maximum is probably reinforced by the natural fluorescence of chlorophyll a
(see Type II in Figure 6).

Figure 6. Recorded remote sensing reflectance spectra of selected Pomeranian
lakes, clearly fitting the three types of water (Type I, blue lines – Lakes Jeleń,
Boruja Mała, Jasień Północny, Jasień Południowy; Type II, red lines – Lake Pyszne;
Type III, green lines – Lakes Łebsko, Rybiec, Gardno)

The third group of lake waters studied, Type III, are supereutrophic,
with CDOM concentrations slightly higher than in Type I waters but
distinctly lower than the waters in humic lakes, as indicated by the values
of the absorption coefficients aCDOM (average aCDOM(440 nm≈ 2.77 m−1;
see Table 1, Type III in Figure 1a and Lakes Ga, L, R in Figure 1b).
The chlorophyll a levels in these waters are exceptionally high (average
Ca ≈ 87 mg m

−3, up to 336 mg m−3 recorded once in Lake Gardno). Total
SPM concentrations are equally high in in Type III waters (see Table 2),
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whereas the ratio of the concentration of chlorophyll a to that of the dry
mass of SPM is here on average only 0.21 (± 0.09)%; in comparison, this
ratio is 0.40 (± 0.27)% in Type I waters and 0.60 (± 0.38)% in Type II.
Consequently, in Type III lakes we observe two broad maxima of the

reflectance spectrum Rrs(λ) in the 560–580 nm and 690–720 nm bands,
due to the dominance of backscattering over absorption in these bands for
the reasons given earlier. A third local reflectance maximum in the ca
650 nm band is also well in evidence in this third group of waters, though
only scarcely perceptible in the other two groups. This must also be a result

of the relevant relations between the total absorption and the scattering of
light in this band.

The three types of reflectance spectra Rrs are illustrated in Figure 6;

omitted are a few other recorded spectra – indirect, atypical ones, of the
kind that inevitably emerge from any conventional classification of nature
(see also Ficek et al. 2011).

The Type I reflectance spectra are very similar to the reflectance spectra
typical of the open waters of the Baltic (see Darecki et al. 1995, Kowalczuk
et al. 1999, Darecki et al. 2003, Ficek et al. 2011). Table 2 lists the positions
of the reflectance maxima Rrs(λ) along with other selected properties of the
three groups of lakes.

The empirical dependence of absorption aCDOM(440 nm) on the spectral
reflectance band ratio x = Rrs(570 nm)/Rrs(655 nm) was approximated for

the waters of these lakes by the expression (Ficek et al. 2011):

aCDOM(440 nm) = 3.65x−1.93 (5)

with a coefficient of determination of R2 = 0.85. Here we found an ap-
propriate empirical relationship between the coefficient of light absorption
by SPM ap(440 nm) and the reflectance Rrs(800 nm), but only for lake
waters of Types I and III in our classification. We present this relationship
on Figure 7, described by regression equation 6, with a coefficient of

determination of R2 = 0.86.

ap(440 nm) = 235x0.745 , (6)

where ap(440 nm) – coefficient of light absorption by SPM, measured in
[m−1], x ≡ Rrs(800 nm) – the remote sensing reflectance measured in [sr

−1].

For the same lake waters of Types I and III we also established, on the
basis of the form of the dependence in Woźniak et al. (2011), the empirical
dependence of the total volume absorption coefficient a(440) in these waters
for a light wavelength of λ = 440 nm on the spectral reflectance band ratio at
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Figure 7. The empirical dependence of the coefficient of light absorption by
SPM ap(440 nm) on the remote sensing reflectance (where x ≡ Rrs(800 nm)),
established for Type I and II lakes. The black rectangles indicate the points
obtained from measurements in the Type II lake, which were not used in calculating
this dependence

selected wavelengths Rrs(490)/Rrs(655) (equation (7) and Figure 8), with
a coefficient of determination of R2 = 0.90:

a(440 nm) = 100.554(log x)2−1.380 log x+0.161 , (7)

where x = Rrs(490 nm)/Rrs(665 nm).

Likewise on Figure 8 the dashed line represents the dependence for Baltic
waters taken from Woźniak et al. (2011): this shows that these dependences
are similar for low values of absorption a(440), typical of Type I lake
waters.

The empirical dependence of the scattering coefficient on scattering b
and the reflectance Rrs was also determined for selected wavelengths in
Type I and III lake waters. The scattering coefficient has without doubt
a significant influence on values of Rrs, but the relationship is an involved

one. Determining this coefficient required the well-known dependence

Rrs(λ) ∼
bb(λ)

a(λ) + bb(λ)
(Gordon & Morel 1983) and formula (7) (derived

in this work) describing the relationship between the light absorption
coefficient a and the reflectance Rrs to be taken into consideration. It
was additionally assumed that the scattering coefficient b is associated
with the backscattering coefficient bb and the SPM concentration, the
latter being highly correlated with ca Rrs(800 nm) (see Ficek et al.
2011).
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Figure 8. The empirical dependence of the total coefficient of absorption
a(440 nm) in lake waters of Types I and III on the spectral reflectance band ratio
at selected wavelengths Rrs(490 nm)/Rrs(655 nm). Points – measurement data,
continuous line – regression curve, dashed line – regression curve for Baltic waters,
described by the formula a(440 nm) = 100.096−0.965 log x. This formula was taken
from Woźniak et al. (2011) for a slightly different wavelength of the reflectance
band ratio x = Rrs(490 nm)/Rrs(665 nm), i.e. 665 nm for the Baltic; for Types I
and III the correlation turned out to be better for 655 nm. The black rectangles
indicate the measurement points from the Type II lake, which were not taken into
consideration in the derivation of this dependence

The relationship obtained is shown in Figure 9 and expressed by
formula (8):

b(440 nm) = 15.59 × Rrs(800 nm)0.282
× 100.554(log x)2−1.380 log x+0.161, (8)

where x = Rrs(490 nm)/Rrs(665 nm).

Having established the empirical relationships between the absorption
and scattering of light of particular wavelengths, we can determine approx-
imate values of these selected inherent optical properties of Type I and III
lake waters for any wavelength from the PAR range from measurements of
remote reflectance spectra Rrs(λ). We obtain the spectrum of the coefficient
of light absorption by SPM by first determining the value of this coefficient
for λ= 440 nm from equation (6) and then using equation (3) and Table 3 to
determine its value for other wavelengths. The spectrum of light absorption
by CDOM is also determined in two stages. In the first stage we determine
aCDOM(440 nm) from equation (5); then, using the relationship aCDOM(λ) =
aCDOM(440 nm)exp[−S(λ− 440 nm)] we obtain the value of this coefficient
for waves of different lengths. The parameter S appearing in this equation
varies from 0.015 to 0.018 nm−1 and depends on the type of lake (see the
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Figure 9. Dependence between the scattering coefficient b (440 nm) measured in
lake waters of Types I and III and determined from remote reflectances spectra
at wavelengths Rrs(490 nm), Rrs(665 nm) and Rrs(800 nm) on the basis of
formula (8). The black rectangles indicate the measurement points from the Type II
lake, which were not taken into consideration in the derivation of this dependence

caption to Figure 2). We obtain the total absorption spectrum by summing
the coefficients of absorption by SPM ap(λ), dissolved substances aCDOM(λ)
and the water itself aw(λ). Values of the last-mentioned component can be
found in e.g. Woźniak & Dera (2007).

We obtain the spectrum of the light scattering coefficient by first
determining this factor for light of wavelength 440 nm, and then its values
for other wavelengths using equation (4). In these calculations we could
also take the values for water molecules into account. But since scattering
by water is negligible compared to that by SPM (see e.g. Haltrin 2006), it
makes no significant difference to the final result of the calculations.

The great complexity of the results presented in this work precludes the
precise definition of the errors of measurements and analyses, even though
we took the greatest care with the measurement procedures stated in the
Introduction. These procedures and the measuring apparatus they require
govern the accuracy of these studies, in which we estimated the measurement
errors of different magnitudes to be from 3 to 10% and more, e.g. with
respect to the remote sensing reflectance Rrs and the scattering coefficients.
On the other hand it is relatively easy to calculate the variously

defined errors of the formulas approximating the absorption and scattering
coefficients, which we give below in Table 4 along with the definitions below
Table 4. These errors can hardly be treated as insignificant, but such is the
nature of the object of these studies and at this stage in the research we
have to accept them as they are.
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Table 4. The relative errors in the approximations

Arithmetic statistics Logarithmic statistics

Models Systematic Statistical Systematic Standard Statistical
error error error error factor error

< ε > [%] σε [%] < ε >g [%] x σ− [%] σ+ [%]

ap(440) (eq. (5), Figure 7) 7.59 44.3 −0.19 1.47 −32.0 47.0

a(440) (eq. (6), Figure 8) 3.74 27.1 0.08 1.31 −24.1 31.8

b(400) (eq. (7), Figure 9) 9.08 49.1 −0.29 1.52 −34.6 52.9

Relative mean error (systematic): < ε >= N−1 ∑

i

εi (where εi = (Xi, C − Xi, M )/Xi, M )

Standard deviation (statistical error) of ε : σε =

√

1

N

(

∑

(εi− < ε >)2
)

Mean logarithmic error: < ε >g= 10[<log(Xi, C/Xi, M )>] − 1

Standard error factor: x = 10σlog

Statistical logarithmic errors: σ+ = x − 1, σ− =
1

x
− 1,

where Xi, M – measured values, Xi, C – estimated values (subscript M stands for
‘measured’, C for ‘calculated’);

< log(Xi, C/Xi, M ) > – mean of log(Xi, C/Xi, M );

σlog – standard deviation of the set log(Xi, C/Xi, M ).

4. Conclusions

The properties of the waters of the Pomeranian lakes investigated in

this study are highly diverse: all the waters can be classified as Case 2
according to the optical classification of Morel & Prieur (1977). They can

be conventionally subdivided into 3 types. Type I lakes have the lowest

concentrations of OAC and optical properties (including the reflectance

spectra Rrs(λ)) similar to those of Baltic Sea waters (see e.g. Darecki
et al. 2003, Woźniak S.B. 2011). The waters of Type II lakes (humic lakes)

have extremely high levels of CDOM, hence their brown colour in daylight

and very low reflectances Rrs(λ) (of the order of 0.001 sr−1). Type III
waters are highly eutrophic, containing large amounts of SPM, including

phytoplankton (see Table 2). Hence the reflectances Rrs(λ) of these Type III

waters are on average one order of magnitude higher than those of the other

waters, reaching maximum values of 0.03 sr−1 in λ bands 560–580 nm and
690–720 nm; see Figure 6 and Ficek et al. (2011). The empirical relations

obtained between selected inherent optical properties (IOPs) of Type I and

III lake waters and the characteristics of the reflectance Rrs(λ) make it
possible to utilize the latter for an approximate determination of these

IOPs.
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