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ABSTRACT We propose a novel and flexible derivation scheme of statistical, database-derived, potentials, which allows one to
take simultaneously into account specific correlations between several sequence and structure descriptors. This scheme leads
to the decomposition of the total folding free energy of a protein into a sum of lower order terms, thereby giving the possibility to
analyze independently each contribution and clarify its significance and importance, to avoid overcounting certain contributions,
and to deal more efficiently with the limited size of the database. In addition, this derivation scheme appears as quite general, for
many previously developed potentials can be expressed as particular cases of our formalism. We use this formalism as a
framework to generate different residue-based energy functions, whose performances are assessed on the basis of their ability to
discriminate genuine proteins from decoy models. The optimal potential is generated as a combination of several coupling terms,
measuring correlations between residue types, backbone torsion angles, solvent accessibilities, relative positions along the
sequence, and interresidue distances. This potential outperforms all tested residue-based potentials, and even several atom-
based potentials. Its incorporation in algorithms aiming at predicting protein structure and stability should therefore substantially
improve their performances.

INTRODUCTION

Somewhere between the time-consuming semiempirical

force fields (1–3) and the oversimplified G�oo-like potentials

(4–7), statistical energy functions, extracted from databases

of known protein structures, are prime tools for the in silico

study of proteins (8–12). They present the advantage of

being easily adaptable to any level of simplification of

protein representation, and have been successfully used in

many applications, ranging from structure prediction to

sequence design. Though there has been a considerable in-

crease in the number of resolved protein structures since

the first approaches of this type were described, no major

improvement in predictive power could be drawn from the

larger size of the databases (13–15). Indeed, increasing the

database size beyond a few hundred proteins appears to yield

no significant advantage in the case of the simple potentials

that are still very commonly used nowadays, which are based

on a limited number of sequence and structure descriptors.

In the last few years, a number of more complex potentials

have been designed with the aim of exploiting more ef-

ficiently the large amount of available structural data and

dealing with couplings between different structural features.

Among those, let us cite distance or contact potentials that

depend on the solvent accessibility of the residues (16,17),

on the conformation of their main chain (18), or on the

relative orientation of their side chains (19–21). On the other

hand, potentials describing the propensities of the different

amino acid types to adopt certain backbone conformations,

which simultaneously take into account the nature and/or

conformation of several neighboring residues, have also

been developed (16,22,23). A major difficulty that frequently

arises in such studies is related to the fact that the number of

proteins in the database becomes rapidly too small when

increasing the complexity of a potential. One faces a deli-

cate choice: the use of a more complex potential can be quite

advantageous for common values of the sequence and

structure descriptors (e.g., Ala-Ala pair associated with

a-helical conformations), and pretty disastrous in other cases

(e.g., Trp-Trp pair associated with some rare turn confor-

mations). The usual answer to this dilemma consists in

drastic limitations of the description of the conformational

space, for example by restricting the backbone to three pos-

sible conformations, the solvent accessibility to two different

bins, or by deriving contact potentials rather than distance-

dependent ones.

We present here a general derivation scheme that allows

one to bypass this issue, and to build statistical energy

functions based simultaneously on several sequence and

structure descriptors without altering the efficiency of the

elementary contributions when the values taken by these

descriptors are not frequent enough in the database of known

protein structures. We apply our procedure to generate

statistical potentials based on the correlations among amino

acid types, backbone conformations, and solvent accessibil-

ities of residues close to each other in the sequence and/or in

space. The resulting energy function displays a strongly

improved ability to discriminate genuine proteins from decoy

models. All potentials presented in this article are freely

available at http://babylone.ulb.ac.be/StatPots.

METHODS

Sequence and structure descriptors

The backbone conformation of the residue at position i, ti, is defined by the

values of the torsion angles (f,u,v). These values are grouped in seven
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domains corresponding to distinct regions on the Ramachandran map

(22,24). The solvent accessibility of the residue at position i, ai, is defined

as the ratio of its solvent-accessible surface in the considered structure

(as computed by DSSP (25)) and in an extended tripeptide Gly-X-Gly (26).

These values are grouped in five discrete domains: ai # 5%, 5% , ai #

15%, 15%, ai # 30%, 30%, ai # 50%, and 50%, ai . The interresidue

distance dij is computed between the average side-chain centroids, noted Cm,

of the residues at positions i and j. The Cm corresponds to the geometric

center of heavy side-chain atoms of a given amino acid type, averaged over

all side-chain conformations in a data set of known structures (16). The

distances dij between 3 Å and 8 Å are grouped into 25 bins of 0.2 Å width;

two additional bins describe distances smaller than 3 Å and larger than 8 Å,

respectively. Finally, the sequence descriptor si corresponds to the nature

(1 of 20 amino acids) of the residue at position i.

Protein structure data set

An initial set of 1522 high-resolution (#2 Å) x-ray structures of protein

chains with,20% pairwise sequence identity was extracted in October 2003

from the website ‘‘Culling the PDB by Resolution and Sequence Identity’’

(27) (http://dunbrack.fccc.edu/Guoli/pisces_download.php). All structures

containing more than 5% heteroatoms or nonnatural residues were excluded.

This led to a final set of 1403 protein chains. Furthermore, to ensure that the

data set used to derive the potentials includes the proper, active, quaternary

conformations of the selected proteins, the coordinates were taken from the

‘‘Protein Quaternary Structure’’ server (28) (http://pqs.ebi.ac.uk).

Correction for sparse data

All database-derived potentials and coupling terms presented here can be

generically written as DW ¼ �kT ln (nobs/nexp), where nobs is the number of

observations of a given association of sequence and structure descriptors in

the data set of known protein structures, and nexp is the corresponding

number expected in a reference state. To deal with the limited size of the data

set, a correction for sparse data (29) is applied: (nobs/nexp) / ((s 1 nobs)/
(s 1 nexp)), where s is an adjustable parameter, taken equal to 20 for local

potentials, and 10 for distance potentials (see Results for the definition of

local and distance potentials). This correction ensures that the potentials tend

to 0 when the number of observations in the data set is too small.

Decoy sets

To assess the performances of the potentials, we evaluate their ability of

singling out correct sequence-structure matches out of sets of decoy models.

Three groups of decoys sets are considered. The first, noted D1
str , includes 25

proteins (30,31), each associated with hundreds of alternative structures

generated by different modeling methods (4state_reduced (32): 1ctf, 1r69,

1sn3, 2cro, 4pti and 4rxn ; fisa (33): 1fc2-c, 1hdd-c, 2cro ; fisa_casp3 (33):

1bg8-a, 1bl0, 1jwe ; lattice-ssfit (31): 1ctf, 1dkt-a, 1fca, 1nlk, 1pgb, 1trl-a ;

lmds (34): 1ctf, 1dtk, 1fc2-c, 1igd, 1shf-a, 2cro, 2ovo). The second group,

notedD2
str; includes 25 proteins (35), each associated with;2000 alternative

structures generated by the Rosetta structure prediction method (1a32, 1ail,

1am3, 1cc5, 1cei, 1hyp, 1flb, 1mzm, 1r69, 1utg, 1ctf, 1dol, 1orc, 1pgx, 1ptq,

1tif, 1vcc, 2fxb, 5icb, 1bq9, 1csp, 1msi, 1tuc, 1vif, 5pti). The third group,

noted Dseq, includes 50 proteins (1ptq, 1d0d, 2igd, 1g2b, 1orc, 1hz6, 1i27,

1hoe, 1luz, 1ugi, 1aba, 1cy5, 1lpl, 1mk0, 1h7m, 1bm8, 1l8r, 1lyq, 1o13,

1gmx, 1cew, 1hxi, 1nyc, 1by2, 1lsl, 1o7i, 1gnu, 1fc3, 1mai, 1dzo, 1lwb,

1huf, 1nwz, 3nul, 1cuo, 1jf8, 1p0z, 1mdc, 1vsr, 1gmi, 1eca, 1j9b, 1kmt,

1mzg, 1oz9, 1h6h, 1l2h, 1srv, 2hbg, 1amx), each associated with 1000

decoys obtained by maintaining the structure and randomizing the amino

acid sequence with fixed amino acid composition. To render the test more

challenging, only a fraction of the sequence was modified. This fraction was

chosen randomly between 25% and 100%, independently for each decoy.

To avoid any bias toward the native structure or wild-type sequence that

might result from the presence of similar proteins in the data set, an extended

jackknife procedure is applied: we remove the target protein, as well as all

proteins sharing more than 20% sequence identity with the target, from

the database before deriving the potentials.

Performance measures

We use five different measures to evaluate the ability of the potentials

to discriminate the native structure from the decoys:

1. The success rate S1 is the percentage of proteins, in each group of

decoys, for which the free energy of the correct sequence-structure as-

sociation is smaller than the free energies computed for all decoys.

2. ÆZæ is the average Z-score, over all proteins in a group of decoys. The

Z-score is defined as Z ¼ (DWc � ÆDWæ)/sDW, where DWc is the free

energy of the correct sequence-structure association, ÆDWæ is the aver-

age free energy of all sequence-structure associations, and sDW is the

associated standard deviation. Energy functions discriminating well the

genuine protein from the decoys are characterized by a very negative

Z-score.

3. S�1 is the percentage of proteins with a Z-score lower than �1 (19).

This measure may be more useful than S1 when the test is challenging,

for instance when the decoys and the native structures or sequences are

very similar.

4. ÆZxæ evaluates the ability of the potentials to select the decoys that are

closest from the native among the complete decoy set. Zx is defined as

(ÆDWæ5% � ÆDWæ)/sDW, where ÆDWæ5% is the average free energy

computed on a subset including 5% of the decoys (19). This subset

contains the decoys with the lowest root mean-square deviation from the

native structure, or the decoys with the largest sequence identity with the

wild-type in the case of decoys generated by sequence randomization.

5. Sx�1 is equal to the percentage of proteins for which Zx is lower than

�1 (19).

RESULTS

General derivation scheme

A form commonly used for statistical potentials derived from

a set of protein structures is

DWðc1; c2Þ ¼ �kT log
Pðc1; c2Þ
Pðc1ÞPðc2Þ; (1)

where c1 is an amino acid type and c2 a structure descriptor
(e.g., a torsion angle or solvent accessibility domain) of the

same or a neighboring residue, and P are their relative fre-

quencies of occurrence in the structure data set. Similarly, con-

sidering two sequence descriptors c1 and c2 and one structure
descriptor c3, we have

DWðc1; c2; c3Þ ¼ �kT log
Pðc1; c2; c3Þ

Pðc1ÞPðc2ÞPðc3Þ; (2)

where, for example, c1 and c2 are amino acid types at posi-

tions i and j along the sequence and c3 is the spatial distance
between them.

This form can easily be generalized. First, c1, c2, and c3
can be any sequence or structure descriptor. For example, all

three can correspond to torsion angle domains, or c1 can

correspond to an amino acid type, c2 to a solvent accessi-

bility domain, and c3 to a torsion angle domain. A second

way to generalize this form is to consider higher order

potentials involving n sequence and structure descriptors.

We then get

New Statistical Potentials for Proteins 4011

Biophysical Journal 90(11) 4010–4017



DWðc1; c2; . . . ; cnÞ ¼ �kT log
Pðc1; c2; . . . ; cnÞ

Pðc1ÞPðc2Þ . . .PðcnÞ: (3)

Increasing n reduces the number of observations of each

combination of the ci’s in the data set and the statistical

significance of the frequencies P(c1,c2,. . .,cn). When the

number of observations is too small, the correction for sparse

data (see Methods) becomes important and the potential

tends to zero, leading to a complete loss of information. A

straightforward solution to this problem involves decom-

posing the potential into different coupling terms DW̃, and

applying the correction for sparse data to each of them

separately. In particular, for n ¼ 3:

DWðc1; c2; c3Þ ¼ DW̃ðc1; c2Þ1DW̃ðc2; c3Þ1DW̃ðc3; c1Þ
1DW̃ðc1; c2; c3Þ; (4)

where the n ¼ 2 coupling terms coincide with the ordinary

potentials DW̃(c1,c2) ¼ DW(c1,c2), and the n ¼ 3 coupling

term is defined as

DW̃ðc1; c2; c3Þ ¼ �kT log
Pðc1; c2; c3Þ Pðc1ÞPðc2ÞPðc3Þ
Pðc1; c2ÞPðc2; c3ÞPðc3; c1Þ :

(5)

This n ¼ 3 coupling term measures the correlation between

the three sequence and structure descriptors c1, c2, and c3,
independently of the correlations between c1 and c2, c2 and
c3, and c3 and c1. More generally, we can define n-potentials
DW in terms of all k # n coupling terms DW̃:

DWðc1; c2; . . . ; cnÞ ¼ +
n

k¼2

+
n

i1 ;...ik¼1

i1 , ..., ik

DW̃ðci1 ; ci2 ; . . . ; cikÞ;

(6)

where the n-coupling terms describing correlations between

n descriptors are defined as

DW̃ðc1; c2; . . . ; cnÞ ¼

� kT log
Y

k¼n;n�2;n�4;...

Qn

i1 ;...;ik¼1

i1 , ..., ik

Pðci1 ; ci2 ; . . . ; cikÞ
Qn

i1 ;...;ik�1¼1

i1 , ..., ik�1

Pðci1 ; ci2 ; . . . ; cik�1
Þ
: (7)

To ensure that each contribution is counted only once, the

total free energy of a protein of sequence S and structure C,
DW(C,S), is defined as the sum of the total contributions of

all coupling terms of order k # n:

DWðC; SÞ ¼ +
n

k¼2

+
n

i1 ;...ik¼1

i1 , ..., ik

+
ðci1 ;ci2 ;...;cik Þ�ðC;SÞ

DW̃ðci1 ; ci2 ; . . . ; cikÞ;

(8)

where the third sum goes over all combinations of the

(ci1,ci2,. . .,cik) descriptors present in the protein. The value

chosen for n depends on the structural descriptors and the

level of detail that one wishes to take into account, and also

on the limitations arising from the finite size of the database.

Note that it is not always necessary or advantageous to

fully decompose the potential functions like in Eqs. 4 and 6.

In particular, the coupling terms of the type DW̃(s1,s2), with
s1 and s2 being single residues, may reasonably be over-

looked. For example, a relevant and commonly used distance

potential DW9 (s1,s2,d12) may be defined as

DW9ðs1; s2; d12Þ ¼ DWðs1; s2; d12Þ � DW̃ðs1; s2Þ

¼ �kT log
Pðs1; s2; d12Þ

Pðs1; s2ÞPðd12Þ: (9)

More generally, we denote by DW9 potentials comprising

only some of the couplings included in DW.

Local potentials and couplings

A first application of our general derivation scheme consists

in defining local potentials reflecting the correlations among

characteristics of residues that are close to each other along

the sequence. We focus here on three different residue

characteristics: its type s, its backbone conformation t, and its
solvent accessibility a (see Methods).

Among the local n ¼ 2 coupling terms of the type

DW̃(c1,c2) defined in Eqs. 1 and 7, let us consider first

DW̃ts(ti,sj), where c1 is taken to be the backbone conforma-

tion of the residue at position i (ti) and c2 the type of the

residue at position j (sj). We assume that this effective energy

depends only on the relative positions of the residues along

the sequence (i–j), and not on the precise positions i and j.
The total free energy of a given sequence S in a structure

C, according to this potential, is computed by summing

DW̃ts(ti,sj) over all pairs of positions i and j in S that satisfy

the condition ji–jj # FLOC, where FLOC is an adjustable

parameter taken here equal to 2. This energy function is

similar to previously described backbone torsion potentials

(16,22,23,36). We also compute all other n ¼ 2 coupling

terms (except DW̃ss(si,sj), which depends only on the se-

quence), i.e., DW̃as(ai,sj), DW̃at(ai,tj), DW̃aa(ai,aj) and DWtt(ti,tj).
Note that when c1 and c2 correspond to the same structure or

sequence descriptor, the condition ji–jj # FLOC becomes

1 # i–j # FLOC.

We would like to stress that summing the energy

contributions of all pairs (c1,c2) yields only an approximation

of the total free energy of a protein. Indeed, the contributions

DW̃ts(ti,sj) and DW̃ts(ti,sk) are in general not independent.

Moreover, using simultaneously DW̃ts(ti,sj) and DW̃as(ai,sj)
can be advantageous but introduces some redundancy since

the solvent accessibility of a residue is related to its backbone

conformation. To overcome these dependencies, we must

add the n ¼ 3 coupling terms DW̃tts(ti,tj,sk), DW̃tss(ti,sj,sk),
DW̃ttt(ti,tj,tk), DW̃aas(ai,aj,sk), DW̃ass(ai,sj,sk), DW̃aaa(ai,aj,ak),
DW̃aat(ai,aj,tk), DW̃att(ai,tj,tk) and DW̃ats(ai,tj,sk). They are

defined on the basis of Eq. 5 so as to be additive to, and
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exclusive of, the lower order coupling terms (Eq. 4). The

interdependence of the different n¼ 3 coupling terms can, in

turn, be corrected by the use of n ¼ 4 coupling terms.

We assessed the predictive power of the different n ¼
(2,3,4) coupling terms, independently and in combination,

on the three groups of decoy sets described in Methods. The

performance measures obtained are given in Table 1 for the

basic potentials DW̃ts and DW̃as and for the most efficient

linear combination of the local coupling terms, named

DW9LOC:

DW9LOC ¼DW̃ts1DW̃tts1DW̃tss1DW̃ttts1DW̃as1DW̃aas

1DW̃ass1DW̃aaas1DW̃ats1
1

2
ðDW̃at1DW̃aat1DW̃att1DW̃aaat

1DW̃aatt1DW̃attt1DW̃tt1DW̃ttt1DW̃aaaÞ: (10)

Overall, the predictive power of DW9LOC is quite impressive:

each performance measure indicates a markedly better

discrimination of the correct sequence-structure association

than with the basic potentials. The only exception is Sx�1;
which slightly decreases in the Dseq set.

Strikingly, DW9LOC includes almost all n ¼ 2 and n ¼ 3

coupling terms. The only exception is DW̃aa, which system-

atically drags down the predictive power when included in a

combination of coupling terms. This follows from the fact

that DW̃aa strongly favors situations in which residues close

to each other in the sequence have similar solvent accessi-

bilities, and therefore awards very negative energies to

(partially) unfolded proteins. The best combination incorpo-

rates also several n ¼ 4 coupling terms: DW̃ttts, DW̃aaas,

DW̃attt, DW̃aatt, and DW̃aaat. The other n ¼ 4 coupling terms

have a negative impact on the predictive power. This is most

probably due to the limited size of the data set, which does

not allow one to compute precisely enough the probabilities

of observing simultaneously four sequence and/or structure

descriptors. Also note that there are 20 types of sequence

elements (s), whereas only 7 torsion (t) and 5 accessibility (a)
domains. Coupling terms involving several sequence ele-

ments, such as DW̃tsss or DW̃asss, do not appear in DW9LOC as

they require larger data sets to extract reliable statistics.

In principle, our derivation scheme does not give any

reason to under- or overweight some coupling terms with

respect to others. However, some contributions may be less/

not relevant and should therefore not be included, for

example because of the limited size of the data set (e.g.,

DW̃tsss, DW̃asss,. . .), the overstabilization of the unfolded

state (e.g.,DW̃aa), or the uselessness of purely sequence terms

(e.g., DW̃ss). Furthermore, sequence-independent terms can

be expected to yield interesting results when discriminating

among nonprotein-like structures, and to be quite useless in

applications such as threading experiments. Testing the

potentials on decoy sets can reasonably well be considered as

an intermediate case, which probably explainswhywe observed

that underweighting these contributions by a ½ factor, in Eq.

10, is advantageous in terms of predictive power.

Distance potentials and couplings

A very popular category of statistical potentials is derived

from the spatial distance distribution between residue types

(e.g., 16,17,29,37). They are complementary to the local

potentials presented above. It has been previously noted that

such potentials do not represent the ‘‘true’’ energy of

interaction between two residues (or two atoms) as if they

where in a vacuum, but rather an effective energy including

the influence of a mean protein and solvent environment

(38,39). As a consequence, these potentials may depend on

some characteristics of the proteins from which they are

derived, such as their size (40–42) or their content in

secondary structures (14,42–44). The idea of being more

precise on the definition of the environment that is actually

‘‘felt’’ by the two interacting residues is not new (16–18),

and can have a positive impact on the performances of the

potentials. We show that the formalism presented in this

article can be applied to define residue pair distance

potentials that take appropriately into account the influence

of the specific environment in which the two residues are

located. This environment is here represented by backbone

conformations and solvent accessibilities.

The n ¼ 2 coupling term DW̃sd(si,dij) is a ‘‘one-body’’

distance potential that reflects the preferences of each type of

residue to be located more or less close to other residues,

whatever their type, and is therefore dominated by the

TABLE 1 Performances of local and distance potentials

and couplings

Potential ÆZæ S1 S�1 ÆZxæ Sx�1

D1
str DW̃ts �2.69 40% 80% �0.34 4%

DW̃as �2.40 44% 80% �0.45 16%

DW̃ts 1 DW̃as �3.44 64% 88% �0.53 24%

DW9LOC �4.16 76% 92% �0.57 28%

DW̃sd 1 DW̃sds �3.27 72% 84% �0.66 28%

DW9DIST �4.65 80% 88% �0.73 28%

DW9LOC 1 DW9DIST �5.25 84% 88% �0.79 36%

D2
str DW̃ts �1.45 8% 68% �0.27 0%

DW̃as �0.60 0% 44% �0.26 0%

DW̃ts 1 DW̃as �1.84 20% 72% �0.41 0%

DW9LOC �2.06 20% 88% �0.49 12%

DW̃sd 1 DW̃sds �1.80 16% 76% �0.33 0%

DW9DIST �2.32 28% 88% �0.50 12%

DW9LOC 1 DW9DIST �2.65 36% 92% �0.59 24%

Dseq DW̃ts �2.21 22% 100% �1.54 100%

DW̃as �2.29 50% 100% �1.58 96%

DW̃ts 1 DW̃as �2.22 26% 100% �1.54 100%

DW9LOC �2.57 80% 100% �1.71 98%

DW̃sd 1 DW̃sds �2.75 64% 100% �1.90 100%

DW9DIST �2.64 48% 100% �1.81 100%

DW9LOC 1 DW9DIST �2.74 84% 100% �1.87 100%

The predictive power of the basic potentials and of the different combina-

tions of coupling terms is evaluated on three groups of decoy sets, with five

different measures (see Methods). The sequence-independent terms are not

taken into account when Dseq is considered.
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hydrophobic effect. For residues close to each other along

the sequence, i.e., ji–jj # FDIS (taken here equal to 8), the

frequencies and potentials are computed separately, whereas

they are merged in a single class when ji–jj. FDIS. The total

contribution to the free energy of a given sequence S in a

structureC is computed by summingDW̃sd(si,dij) over all pairs
of positions i and j in S that satisfy the condition ji–jj . 1.

On its own, DW̃sds(si,dij,sj) is a two-body distance

potential that excludes the one-body contributions reflecting

the individual preferences of the two amino acids si and sj.
Such a potential has been presented previously and shown to

describe more accurately the electrostatic interactions (42).

In this case, by reason of symmetry, the condition ji–jj .
1 becomes i–j. 1 when computing the total free energy of a

protein. Coupling DW̃sd(si,dij) with DW̃sds(si,dij,sj) yields the
common distance potential given in Eq. 9.

In a similar way, it is possible to define sequence-

independent distance potentials involving the backbone

torsion angles, DW̃td and DW̃tdt, or the solvent accessibilities,

DW̃ad and DW̃ada. The concomitant use of these three types of

potentials is hazardous since the backbone conformation and

solvent accessibility of a residue are clearly dependent on its

amino acid type, and some contributions are therefore

overcounted. To deal with this problem, we have to define

higher order coupling terms. The highest order coupling term

is in this case the n ¼ 7 term DW̃atsdats(ai,ti,si,dij,aj,tj,sj).
Considering all the lower level coupling terms would lead to a

very large number of energetic functions and hamper any

intuitive understanding of their significance. Among these,

we choose to disregard all distance-independent terms, as they

are redundant with the local potentials defined in the previous

section for ji–jj# FLOC, and the contributions for other i and
j may reasonably be assumed to be negligible. Moreover, to

avoid overloading the notations, two-body asymmetrical

terms, such as DW̃ads(ai,dij,sj) or DW̃asds(ai,si,dij,sj), are not

considered independently but grouped with the closest

symmetrical coupling term, here DW̃asdas(ai,si,dij,aj,sj). We

thus define DŴasdas(ai,si,dij,aj,sj) as the sum of DW̃asdas(ai,si,
dij,aj,sj) and all the lower order asymmetrical two-body terms.

Note finally that, given the limited size of the database,

DW̃atsd(ai,ti,si,dij) and DŴatsdats(ai,ti,si,dij,aj,tj,sj) are com-

puted as contact potentials, where dij takes only two possible
values: lower or larger than 8 Å.

Overall, according to our performance test on the three

groups of decoy sets, the best combination of distance po-

tentials and coupling terms is DW9DIST, defined as

DW9DIST ¼DW̃sd1DW̃sds1DW̃td1DW̃tdt1DW̃adðSRÞ

1DW̃tsd1DŴtsdts1DW̃asdðSRÞ1DŴasdas

1DW̃atd1DŴatdat1DW̃atsd; (11)

where the terms DW̃ad and DW̃asd are only included for short-

range interactions (SR), that is, when the considered residues

are separated by no more than FDIST positions along the

sequence. As shown in Table 1, the improvement of the

predictive power with respect to the basic distance potential

DW̃sd 1 DW̃sds is substantial in the two decoy sets based on

structural modifications (D1
str and D2

str). However, it appears

that DW̃sd 1 DW̃sds performs slightly better than DW9DIST
in the third decoy set. Since these decoys are obtained by

modifications of the sequence, the sequence-independent

terms (DW̃td, DW̃tdt, DW̃ad,. . .) are not taken into account in

the evaluation of the energies, which may limit the necessity

of using coupling terms such as DW̃tsd, DW̃asd, or DW̃tsdts.

Interestingly, as with DW9LOC, almost all coupling terms

are included in the best performing combination, DW9DIST.
This provides a strong support to the legitimacy of our

derivation procedure. The only exceptions are DW̃ada and

DŴatsdats. The former strongly favors situations where

residues close in space have similar solvent accessibilities,

which is a characteristic of both folded and unfolded states.

The relevance of the latter is obviously compromised by the

limited size of the data set. On the other hand, the terms

DW̃ad and DW̃asd are only included for short-range interac-

tions. Indeed, for long-range interactions, the separation in

sequence is not explicitly taken into account, and DW̃ad

merely reflects a trivial correlation: residues with a higher

solvent accessibility have fewer contacts with other residues.

For those residue pairs that do not benefit from the DW̃ad

term, it also appears that DW̃asd is unnecessary, as its aim

is to uncouple DW̃ad and DW̃sd.

Combination of local and distance potentials

The combination of the best performing local and distance

potentials, DW9LOC and DW9DIST, improves their individual

scores, as seen in Table 1. We did not address explicitly the

issue of possible redundancies between these two types of

potentials. However, in itself, the use of distance coupling

terms significantly limits this problem. For example, a re-

latively strong correlation is observed between DW̃as and

DW̃sd, but DW̃as and (DW̃sd 1 DW̃asd) are only weakly

correlated. Overall, the performances of the combination

DW9LOC 1 DW9DIST are very impressive, as exemplified by

average Z-scores of �5.25, �2.65, and �2.74, on the three

groups of decoy sets.

Comparison with other statistical potentials

A large number of knowledge-based potentials reflecting the

preferences of the different amino acids (or of short stretches

of amino acids) to adopt particular local conformations

(16,22,23,36), to be more or less accessible to the solvent

(16,17,45,46), or to be separated by a given spatial distance

(16,17,29,30,37) have been described in the literature.

However, to our knowledge, our approach is the first to

integrate all these different types of contributions in a sin-

gle energetic function while taking special care of their

couplings. Moreover, on the local level, the nonadditivity of

contributions related to pairs of residues, such as DW̃ts(ti,sj)
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and DW̃ts(ti,sk), is taken care of by the use of higher order

coupling terms (DW̃tss(ti,sj,sk), DW̃tts(ti,tj,sk),. . .).
Among the local potentials based on backbone torsion

angles that have been described earlier, let us cite the residue-

to-torsion (22) and the torsion-to-residue (16) potentials,

developed by one of us. As seen in Table 2, (a) and (b), both

potentials can be expressed as simple combinations of the

coupling terms DW̃ts, DW̃tss, and DW̃tts. Miyazawa and

Jernigan designed a more complex torsion potential (23),

based on a reference state that is quite different from ours and

on different values of the structural descriptors. A rigorous

comparison of the two approaches is therefore difficult.

However, a common feature is the expression of the energetic

function as a sum of basic potentials and of higher order

coupling terms defined so as to exclude the more basic con-

tributions. In this sense, their potential can be compared to the

combination of coupling terms DW̃ given in Table 2 (c).

Most commonly used distance and contact potentials

(16,29,37) can be written as a simple sum of DW̃ coupling

terms as described in Eq. 9, sometimes with a different

reference state. In addition, more sophisticated distance

potentials that take into account the solvent accessibilities or

the conformations of the residues also appear as particular

cases of our formalism. A first example is the ‘‘Cm-Cm core/

surface’’ potential of Kocher et al. (16), which is derived

separately for residue pairs that are buried or on the surface

of the protein (Table 2 (d)). In the same line of thought, the

energy function presented by Simons et al. (17) is composed

of an environment term, comparable toDW̃as (with FLOC¼ 0),

and a pair term based on the spatial distance separating two

residues in specific environments and designed to avoid

redundancy with the environment term. This energy function

is equivalent to the combination given in Table 2 (e), where

DW̃ass and DW̃asas are distance-independent contributions

included in the distance potential, which do not correspond

to local potentials since the sequence separation i–j is not

taken into account. Furthermore, Zhang and Kim estimated

contact energies between residue pairs, depending on the

conformations of their main chain (ERCE: Environment-

Independent Residue Contact Energies) (18). To do this, they

combined the 20 amino acid types with 3 structural states

(a-helix, b-sheet, and turn) to define an extended 60-residue

alphabet. This approach can easily be translated into a

combination of DW̃ coupling terms, as described in Table 2

(f). Finally, several authors derived distance potentials from

data sets containing only a- or only b-proteins (14,42–44).

The basic potential defined in Eq. 9, when derived separately

on a subset of the database (a- or b-proteins), becomes –kT
ln(P(si,sj,dijjti,tj)/P(si,sjjti,tj)P(dijjti,tj)), where (ti,tj) refers to

the global secondary structure content of the protein. With

such a definition, this distance potential is equivalent to the

combination given in Table 2 (g).

Regarding the increase in performances provided by our

new derivation scheme, the results summarized in Table 1 are

unambiguous: DW9LOC, DW9DIST, and especially DW9LOC 1
DW9DIST are superior to common distance and local poten-

tials such as DW̃sd 1 DW̃sds, DW̃as, and DW̃ts. This compar-

ison can be considered as fair, given that all these potentials

are derived from the same data set, using the same type of

reference state, structural descriptors, and adjustable param-

eters. Another way to assess the performances of the po-

tentials is to look at previously published tests on the same

groups of decoy sets. This comparison has nevertheless the

drawback that the effects of derivation scheme, reference

state, and other parameters are mixed.

Several potentials have been tested on the group of decoy

sets D1
str (30,47); the results are summarized in Table 3.

According to this test, our distance potential DW9DIST is clearly
superior to every other residue-based distance or contact

potential given in Table 3, as indicated by all available

measures except S�1 in the case of TE-13 and DFIRE-B.

This difference is even more manifest when we consider the

combination DW9LOC 1 DW9DIST. Table 3 also suggests that

atom-based potentials perform on the average better than

potentials considering only one interaction center per res-

idue. Even so, the residue-based combination DW9DIST ap-

pears markedly more efficient than the RAPDF and KBP

potentials. The good performances of the potentials DFIRE-

A and DFIRE-B seem to result from the use of a particular

reference state, defined in such a way that the effective

energy associated to a pair of atoms (or residues) tends to

zero when the distance separating them approaches 15 Å

(47). Let us also note that another statistical potential, based

on a detailed (atomic) representation of protein structures

and designed to describe H-bonds as precisely as possible,

has been recently tested on the D2
str group of decoy sets (19).

The results were slightly better than with our potentials

(ÆZæ ¼ �3.34 and S�1 ¼ 92%, whereas ÆZæ ¼ �2.65 and

TABLE 2 Correspondence with other statistical potentials

Potential

Corresponding combination

of our coupling terms

(a) Residue-to-torsion (22) DW̃ts 1 DW̃tss/(2 FLOC 1 1)

(b) Torsion-to-residue (16) DW̃ts 1 DW̃tts/(2 FLOC 1 1)

(c) Esec (23) DW̃ts 1 DW̃tt 1DW̃tts 1 DW̃ttt 1
DW̃ttts

(d) Cm-Cm core/surface (16) DW̃sd 1 DW̃asd 1 DW̃sds 1 DŴasdas

(e) �log (P(sequencejstructure)/
P(sequence)) (17)

DW̃as 1 DW̃ass 1 DW̃asas 1 DW̃sds 1
DW̃asds 1 DW̃asdas

(f) ERCE (18) DW̃sd 1 DW̃td 1 DW̃tsd 1 DW̃sds 1
DW̃tdt 1 DŴtsdts

(g) Distance potentials

(only a- or only b-subsets)

(14,42–44)

DW̃sd 1 DW̃tsd 1 DW̃sds 1 DŴtsdts

The generality of our approach is demonstrated by the fact that several

previously described potentials can be expressed as a linear combination of

some of our coupling terms. Note that, in some cases, the values taken by

the structural descriptors and the formalism used to define the reference

state are quite different from ours. As a consequence, these potentials are

generally not identical to the corresponding combination of our coupling

terms, but rather describe the same contributions in a slightly different way.
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S�1 ¼ 92% are obtained with DW9LOC 1 DW9DIST). It

is not surprising that better predictive capabilities can be

obtained with potentials based on a more detailed structural

representation, but it should be stressed that a higher level

of detail inevitably induces drastic limitations of the appli-

cation possibilities.

DISCUSSION

The most exciting result of this study is the definition of a

general derivation scheme that allows one to define statistical

potentials taking into account the interdependence of

correlations among several different sequence or structure

descriptors. To demonstrate its interest, we applied this

formalism and generated combinations of local and distance

potentials that perform strikingly well in discriminating

genuine proteins from decoy models.

Our derivation scheme is mainly based on the decompo-

sition of a complex potential into a sum of lower order terms,

through the expression of products of probabilities. This

decomposition gives the possibility to analyze independently

each contribution and clarify its significance and importance.

It also offers several valuable advantages in termsof predictive

power. First of all, according to the choice of the sequence/

structuredescriptors, the decompositionmaybeabsolutelynec-

essary to avoid overcounting certain contributions. To clarify

this point, let us focus on the correlations between one residue

type, s, and two backbone conformations, t. The correct

contribution to the total free energy of a protein is given byEq.

8, in this particular case: DW̃tts(C,S) ¼ Si,j DW̃ts(ti,sj) 1 Si,j

DW̃tt(ti,tj) 1 Si,j,kDW̃tts(ti,tj,sk). In contrast, if the potential

function DW̃tts(ti,tj,sk) was not decomposed and was summed

over all triplets of positions (i,j,k), each DW̃ts and DW̃tt

contribution would be counted several times.

Secondly, the decomposition we propose allows one to

deal much more efficiently with the limited size of the

database since the correction for sparse data (see Methods) is

applied to each coupling term rather than on the whole en-

ergy function. For example, the distance potential DWatsdats

(ai,ti,si,dij,aj,tj,sj) can be expressed as a sum of many

n-coupling terms, ranging from n ¼ 2 to n ¼ 7, or computed

directly from Eq. 3. If the database is large enough, these two

possibilities are equivalent. But if the number of observa-

tions of a given combination of values of (ai,ti,si,dij,aj,tj,sj) is
too small, the correction for sparse data will make DW̃atsdats

(ai,ti,si,dij,aj,tj,sj) tend to zero, but not DWatsdats(ai,ti,si,
dij,aj,tj,sj) unless it is computed directly through Eq. 3. In

the latter case, the fact that the database is too small to

reliably extract the higher order couplings actually leads to a

consequent loss of valuable information about the lower

order contributions. Finally, the decomposition makes it

possible to modulate the reference state, by excluding some

contributions (such as DW̃aa, DW̃ada,. . .) that do not appear to
be relevant and decrease the overall predictive power.

The comparison with other potentials described in the

literature underlines the generality of our approach, for pre-

vious potentials based on several sequence or structure

descriptors can be expressed as particular cases of our for-

malism. This comparison also shows that we significantly

raised the expectations regarding the predictive power of

residue-based potentials. Indeed, our energetic functions even

outperform some potentials that are based on a more detailed

representation of protein structures at the atomic level.

Several improvements may still be envisaged. Indeed, our

derivation scheme can easily be adapted to develop energy

functions dealing with a more detailed representation of

protein structures, or based on another, possibly more rele-

vant, reference state. It is also straightforward to include

additional structural descriptors, reflecting, for example, the

relative orientations of interacting side chains or the relative

positions of triplets of residues.
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