
International Journal of Solids and Structures 43 (2006) 2110–2125

www.elsevier.com/locate/ijsolstr
Selection of prestress for optimal
dynamic/control performance of tensegrity structures

Milenko Masic *, Robert E. Skelton

Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, 9500

Gilman Drive, CA 92093-0411, United States

Received 15 December 2004; received in revised form 14 June 2005
Available online 24 August 2005
Abstract

This paper concerns prestress optimization of a tensegrity structure for its optimal LQR performance. A linearized
dynamic model of the structure is derived in which the force-density variables that parameterize the prestress of the
structure appear linearly. A feasible region for these parameters is defined in terms of the extreme directions of the pre-
stress cone. A numerical method for computing this basis for a structure prestress cone is proposed. The problem is
solved using a gradient method that provides a monotonic decrease of the objective function inside the feasible region.
A numerical example of a cantilevered planar tensegrity beam is shown.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A tensegrity structure is a prestressable, stable, truss-like system involving string elements. No torque
can be applied on its elements since the admissible connections between the elements are ball joints and
external loads can only act at the joints. Increased interest in tensegrity structures is a result of several
favorable properties resulting from the usage of the strings as structural elements. The presence of these
controllable elements makes tensegrity structures suitable for applications that require reconfigurability
and large shape changes. Structural efficiency is another reason. Similarly to more traditional composite
materials, utilization of materials specialized for tensile loads in tensegrity structures yields lightweight
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designs. This is because these materials usually have superior mechanical properties over materials available
for compressive elements.

Although tensegrity structures posses a clear potential, all of their desirable properties are attainable at a
certain cost. A reduced size of the domain of feasible configurations because of specific stability (rigidity)
issues is one of them. A significant amount of research has been invested in the study of the related form-
finding and rigidity problems that can both be characterized as static problems associated with tensegrity
structures, e.g. Pellegrino (1992), Connelly and Whiteley (1996), Vasart Motro (1999), Tibert and Pellegrino
(2003), Micheletti (2003),Williamson et al. (2003) and Masic et al. (2005a). A method for optimal mass-to-
stiffness ratio design of tensegrity structures have been recently proposed in the work of Masic and Skelton
(2004) and Masic et al. (2005b). The present state of the tensegrity research is also characterized by the
existence of dynamic models derived by Skelton et al. (2001) and Murakami (2001), and control strategies
studied by Sultan et al. (2002), Kanchanasaratool and Williamson (2002) and Masic and Skelton (2005).

This paper investigates the optimal distribution of the prestress in a controlled tensegrity structure by
jointly designing the structure and its control. Traditionally, the structure and the control designs have been
two separate engineering tasks. Designing a structure first and solving its control problem later is not an
effective way of achieving a good performance. This is because the structure design usually completely dis-
regards its future control performance measured by the amount of required control energy, yielding struc-
tures with severe limitations on the attainable performance. For certain applications, this is not a critical
issue, but for some applications, a simultaneous structure and control design is the only way of achieving
very restrictive performance requirements. Although the approach of designing a structure and its control
jointly has a clear advantage, mathematical tools for solving this problem are of a limited scope because of
the non-convex nature of the problem. The available methods for joint structure and control optimization
provide at most a convergence to a local minimum. These include results of Skelton et al. (1992), Skelton
(1995), Lu and Skelton (2000), Camino et al. (2002, 2003). Alkire (2003) studies numerical issues related to
linear matrix inequality (LMI) problems similar to those for joint structure and control design in the above
references, and to control problems in general, Boyd et al. (1994). Adeli and Saleh (1998) and Saleh and
Adeli (1994) offer more insight into computational challenges of their approach and the approach of related
references, e.g. Khot (1998), to joint structure and control design problems.

In this paper, we propose an optimization algorithm which seeks the distribution of prestress variables of
a tensegrity structure yielding the optimal combined dynamic and control performance (LQR) of the sys-
tem for a given nodal configuration, support conditions and load scenario. The solution algorithm iterates
on a sequence of LQR problems involving algebraic Riccati equation.

The paper is outlined as follows. In Section 2, a nonlinear model of a tensegrity structure is derived. A
linearized model is computed in Section 3, along with the definition of the feasible set of the design param-
eters. Section 4 defines the problem and the solution algorithm. A numerical example is given Section 5.
2. A lumped mass dynamic model of a tensegrity structure

Tensegrity structures can be regarded as a special class of truss structures. Different nonlinear dynamic
models of these prestressable structures are available in the literature, e.g. Murakami (2001) and Skelton
et al. (2001). Although linear dynamic models of truss structures, and prestressed trusses are well docu-
mented, e.g. Hughes (1987) and Murakami (2001), we derive a lumped-mass model here for a few reasons.
First, this derivation introduces several useful notions related to tensegrity structures, and it results in a
simple and compact representation of the model that clearly display its structure and the structure of
the related matrices. This greatly simplifies the subsequent computations of the gradients of performance
measures with respect to structural parameters. The entire analysis is performed in global coordinates of
an assembled structure. We bypass modelling dynamics of elements in local coordinates and eliminate
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the need for the transformation to global coordinates and later assembly which may obscure the algebraic
structure of the model.

Let the set N of nn nodes of a tensegrity structure be given, and let the node mj 2 N be located at the
position defined by the nodal vector pj 2 R3. Denote the set of all nodal vectors P. Let Rn

m denote the vector
space of vectors x that have the following structure:
x 2 Rn
m ) xT ¼ xT

1 xT
2 . . . xT

n

� �
; xi 2 Rm; Rm ¼ Rm

1 . ð1Þ
Then, the set of nodal vectors can be represented with the vector of nodal positions p 2 Rnn
3 .

Let the set E of ne elements of the structure be given, and let Es and Eb denote its partitions into the sets
of ns strings and nb bars respectively. The definition of the element ei ¼ f½mj; mk�; zig 2 E of the structure con-
tains the nodes mj and mk that it connects, and the scalar identifier, zi, of the type of the element
zi ¼
1; ei 2 Es;

�1; ei 2 Eb.

�
ð2Þ
Define element mass vector, m 2 Rne , by associating its typical element, mi 2 Rþ, with every element ei. As-
sume that the distribution of the mass of the structure is such that it is concentrated at the nodes, so that
one half of the mass, mi, of each element is lumped at each of the nodes that it connects. We define the
nodal mass vector mn 2 Rnn with the entries mn

i 2 Rþ associated with every node mi. Newton�s law represents
a starting point for deriving a dynamic model of the structure approximated by a system of material points
connected with the elements. Let fnðp; _pÞ; feðp; _pÞ and fcðp; _pÞ represent contributions of internal element
forces, external forces, and nonworking constraint forces to the total force at each of the nodes, respec-
tively. The dynamics of the system of material points can be defined by the following collection of
equations:
mn
i €pi ¼ fni ðp; _pÞ þ fei ðp; _pÞ þ fci ðp; _pÞ; mi 2 N. ð3Þ
Clearly, both elastic and dumping components of the element forces in fnðp; _pÞ are collinear with the ele-
ments of the structure. If the element vector gi 2 R3 of the element ei = {[mj,mk],zi} is defined as
gi ¼ pj � pk; kgik2 ¼ li;
then the vector of element vectors g 2 R3
ne
can be written in the compact form
g ¼ MðEÞp ð4Þ

and the element force vector fji 2 R3, that represents the contribution of the internal force of the element ei,
to the total force at the node mj, can be expressed as
fji ¼ cjiðki þ kdi Þgi; with f i ¼ ðki þ kdi Þkgik ¼ ðki þ kdi Þli; ð5Þ

where the element elastic, and damping force densities ki, and kdi , are scalars. Obviously, scalars cji in (5)
that we define as typical elements of the node-element incidence matrix CðEÞ 2 Rnn�ne , have one of the three
possible values, cji = ±1, or cji = 0. One can verify that the nodal mass vector may be written now as
mn ¼ 0.5absðCÞm; ð6Þ

where abs denotes the absolute value operator, which in case of a matrix operates on its entries.

Define the linear operator ~� acting on the vector x 2 Rn
m as follows:
~x :¼ blockdiagfx1; . . . ; xi; . . . ; xng 2 Rmn�n; xi 2 Rm
and the linear operator ð̂�Þ acting on the vector x 2 Rn by the following Kronecker product:
x̂ :¼ ~x� I3 2 R3n�3n. ð7Þ
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By defining the matrix C = C � I3, lumping all internal element forces at the nodes can be written in a com-
pact form that defines the total nodal force vector
fnðp; _pÞ ¼ C~gðpÞðkðpÞ þ kdðp; _pÞÞ. ð8Þ

An equivalent form of this relationship can be obtained using the properties of the related vector operators
fnðp; _pÞ ¼ Cðk̂ðpÞ þ k̂
dðp; _pÞÞgðpÞ. ð9Þ
It is possible to show that the matrices M and C satisfy the following relationship, CT ¼ �ẑM. For more
details on definitions of these matrices and vectors defined so far consult Masic et al. (2005a).

The relationship between the elastic and damping force-density variables, k 2 Rne and kd 2 Rne , and dif-
ferent structural parameters depends on a particular material model. Let cross-sectional areas, Young�s
modulus, rest-lengths, and viscous damping coefficients of the elements be given in the following vectors:
a; y; l0; l 2 Rne . In the case of a linear elastic material, the relationship between the elastic force-density vari-
ables, and the structure parameters is given by the Hooke�s law
kiðp; l0Þ ¼
zi

yiai
liðpÞl0i

ðliðpÞ � l0iÞ;

0; if ei 2 Es and liðpÞ 6 l0i .

8<
: ð10Þ
Assume that the elements of the structure are subject to a viscous damping, and that the magnitude of the
damping force in the element ei, is proportional to the rate of change of its length, _li. We define the damping
force-density variables as the magnitudes of the element damping forces per unit length of the correspond-
ing elements, that is
kdi ðp; _pÞ ¼
zi

1

liðpÞ
li
_liðp; _pÞ;

0; if ei 2 Es and liðpÞ 6 l0i .

8<
: ð11Þ
The non-smooth nonlinear relationships in (10) and (11) reflect the fact that the string elements can only
transmit a tensional load.

Finally, (3), (8), (10) and (11) define the nonlinear lumped mass model of a tensegrity structure.
3. A linearized dynamic model of the structure

A linearized dynamic model of the structure in the neighborhood of an equilibrium configuration is com-
puted in this section. Assume that the structure is stationary in the equilibrium configuration, p, so that
_p ¼ 0. Assume further that all strings are taut and that they remain taut if the structure undergoes a
small change of configuration, dp. With these assumptions, (10) and (11) can be written in the compact forms
kðp; l0Þ ¼ ~z~l
�1~l

�1

0 ~y~aðlðpÞ � l0Þ; ð12Þ

kdðp; _pÞ ¼ ~z~l
�1
~l_lðp; _pÞ. ð13Þ
In the absence of the external and constraint forces, so that feðp; _pÞ ¼ 0, and fcðp; _pÞ ¼ 0, the equations in
(3) reduce to the following equilibrium conditions:
C~gðpÞkðp; l0Þ ¼ 0;

ki P 0; ei 2 Es.
ð14Þ
In order to linearize the nonlinear dynamic model around this equilibrium, assume that the structure
undergoes an infinitesimal nodal displacement dp from the equilibrium configuration p, and that the nodal
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velocities change by an infinitesimal amount, d _p. Assume further that element rest-lengths change by an
infinitesimal amount from l0 to l0 + dl0, while all other geometric and structural parameters remain unal-
tered. The resulting variation of the total nodal forces is
dfn ¼ ofn

op
dpþ ofn

o _p
d _pþ ofn

ol0
dl0 ð15Þ
and we define the stiffness matrix of the structure as, K ¼ �ofn=op, the damping matrix as D ¼ �ofn=o _p,
and the matrix of sensitivities of nodal forces to rest-length variations as, Bl0 ¼ ofn=ol0. Using (8), and
already established relationships, we have that
dfn ¼ ofn

og

og

op
þ ofn

ok

ok

op
þ ofn

okd
okd

op

� �
dpþ ofn

okd
okd

o _p
d _pþ ofn

ok

ok

ol0
dl0. ð16Þ
From Eq. (8), we have that
ofn

ok
¼ ofn

okd
¼ C~gðpÞ. ð17Þ
Also, from (4), it follows that og/op =M which we use to establish a relationship facilitating computation
of the derivatives appearing in (16). We write the element length vector, l, in the equivalent quadratic form
~ll ¼ ~gTg ð18Þ

and, differentiating the left-, and the righthand side of this equation, we have that
2~l
dl
dp

¼ 2~gT
dg
dp

¼ 2~gTM ð19Þ
and
dl
dp

¼ ~l
�1
~gT

dg
dp

¼ ~l
�1
~gTM. ð20Þ
The rate of changing element lengths _l can now be computed as
_l ¼ dl
dp

dp
dt

¼ dl
dp

_p ¼ ~l
�1
~gTM _p; ð21Þ
yielding,
o_l

o _p
¼ ~l

�1
~gTM. ð22Þ
From (21) it is obvious that in the stationary equilibrium of interest we have that _lj _p¼0 ¼ 0, and, conse-
quently, from the equation in (13) that
kdj _p¼0 ¼ 0;
okd

op

����
_p¼0

¼ 0. ð23Þ
The relationship in (9) gives that ofn=og ¼ Cðk̂þ kdÞ which in the stationary equilibrium of interest, using
(23), reduces to ofn=og ¼ Ck̂. The derivation of the stiffness matrix is now completed by computing ok/op
from (12), and its final form is
Kðk; p; y; aÞ ¼ C~g~y~a~l
�3
~gTCT � Ck̂M. ð24Þ
For more detailed derivation of the stiffness matrix consult Masic et al. (2005a).
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The derivations of the damping matrix, and matrix Bl0 ¼ ofn=ol0 involve computing okd=o _p and ok/ol0
respectively. The equation in (13), using (22) yields
okd

o _p
¼ ~z~l~l

�1 o_l

o _p
¼ ~z~l~l

�1~l
�1
~gTM ¼ �~l~l

�2
~gTCT; ð25Þ
so that the damping matrix D can finally be written as
D ¼ C~g~l
�2
~l~gTCT. ð26Þ
Similarly, (12) gives that
ok

ol0
¼ �~z~y~a~l�2

0 ; ð27Þ
so that finally,
Bl0 ¼ �C~g~z~y~a~l
�2

0 . ð28Þ

Assume that variations of the variables are small so that the finite variation, Dfn, of the total nodal force
can be approximated with the first order approximation
Dfn ¼
X
i

ofn

oxi
Dxi; xi ¼ fp; _p; l0g. ð29Þ
We further assume that the external forces that are applied to the structure are independent from a current
configuration of the structure, that is ofe/op = 0, and ofe=o _p ¼ 0, and we use the following notation,
fe = w(t).

Finally, for an unconstrained equilibrium tensegrity structure with fc = 0, the linearized dynamic model,
can be written as
M€uþD _uþKðk; p; y; aÞu ¼ Bl0Dl0 þ w; ð30Þ

Kðk; p; y; aÞ ¼ C~g~y~a~l
�3
~gTCT � Ck̂M; ð31Þ

D ¼ C~g~l
�2
~l~gTCT; ð32Þ

M ¼ m̂n; mn ¼ 0.5absðCÞm; ð33Þ

Bl0 ¼ �C~g~z~y~a~l
�2

0 ; ð34Þ
where u, and Dl0 denote the finite variations of the variables p, l0 respectively.
The initial assumptions on the distribution of mass of the structure resulted in a diagonal form of the

mass matrix. If needed, this model can be modified by adopting a different lumped or consistent mass ma-
trix approximations available in the literature.

3.1. Treatment of boundary conditions

The only constraint on structure displacements u that will be considered here is the consequence of
attaching the nodes of the structure to fixed linear supports. In that case, the admissible nodal displace-
ments must satisfy the following linear constraint:
Cuu ¼ 0 ð35Þ

and consequently,
Cu _u ¼ 0; Cu€u ¼ 0; ð36Þ
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where the structure of the constraint matrix Cu 2 Rnc�3nn depends on particular support conditions. It can
be shown that the constraint forces, fc(u), are the vectors in the left range space of the matrix Cu in any
configuration u. Hence, fc(u) can be expressed as
fcðuÞ ¼ CT
u k

cðuÞ ð37Þ

for some choice of the Lagrange multipliers kc 2 Rnc . Assume that only nc independent boundary conditions
are defined so that matrix Cu has a full row rank. Let the singular value decomposition of the matrix Cu be
given as
Cu ¼ URV T ¼ U R1 0½ � V T
1

V T
2

" #
¼ UR1V T

1 ; CT
u ¼ V 1R1UT;

UUT ¼ UTU ¼ I ; VV T ¼ V TV ¼ I .
The relationships in (35) and (36) imply that the admissible nodal displacements and their derivatives must
lie in the null space of the matrix Cu, so that
u ¼ V 2u; _u ¼ V 2 _u; €u ¼ V 2€u. ð38Þ

Adding the additional term to the linearized dynamic model (30) to account for the presence of the con-
straint forces given in (37), gives
M€uþD _uþKðk; p; y; aÞu ¼ Bl0Dl0 þ wþ CT
u k

cðuÞ. ð39Þ

Multiplication of both sides of (39) from the left with the orthonormal full rank matrix VT, and applying
the change of variables in (38) yields
V T
1

V T
2

" #
ðMV 2€uþDV 2 _uþKðk; p; y; aÞV 2uÞ ¼

V T
1

V T
2

" #
Bl0Dl0 þ

V T
1

V T
2

" #
wþ R1UT

0

" #
kcðpÞ. ð40Þ
It is clear from (40), that the solution of the problem can be split into two parts. Lagrange multipliers kc do
not appear as the variable in the first set of equations, so that
V T
2MV 2€uþ V T

2DV 2 _uþ V T
2Kðk; p; y; aÞV 2u ¼ V T

2Bl0Dl0 þ V T
2w; ð41Þ
while the second set of equations provides the solution for the Lagrange multipliers, and the constraint
forces. The minimal representation of the dynamic model is given in terms of the constrained mass, damp-
ing and stiffness matrices,
M€uþD _uþKðk; p; y; aÞu ¼ V T
2Bl0Dl0 þ V T

2w. ð42Þ
3.2. State space model of the system

We identify nodal displacements u and nodal velocities _u as the state variables of the system, and w as
exogenous inputs. Control inputs denoted by Dk are defined as follows:
Dk ¼ ok

ol0
Dl0 ð43Þ
and they are dimensionally equivalent to variations of elastic element force-densities. Observe that for a
given value of the control variable Dk the necessary changes of element rest-lengths to produce these vari-
ations of scaled element forces can be recovered as Dl0 = (ok/ol0)

�1Dk since ok/ol0, given in (27), is an
invertible static linear mapping.
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A parameterized model of the linearized dynamics of the structure may be put in the following state
space form:
_x ¼ AðkÞxþ BDkþ Bww;

A ¼
0 I

�M�1Kðk; p; y; aÞ �M�1D

� �
;

B ¼
0

M�1V T
2C~g

� �
; Bw ¼

0

M�1V T
2

� �
.

ð44Þ
3.2.1. Identifying the structure design freedom

It is important to emphasize the fundamental difference between the prestress parameters k and the con-
trol variables Dk. Recall that the prestress parameters, k, of the model in (44), represent equilibrium force
densities, and any freedom in the model must comply with this constraint. On the other hand, control vari-
ables in Dk are completely independent from each other and from the equilibrium prestress k. Variations of
these control variables that can be generated by modifying element rest-lengths, as shown here, induce addi-
tional element forces that are in general non-equilibrium forces for the overall structure.

Consider an equilibrium tensegrity structure that in the equilibrium configuration p has a multidimen-
sional prestress cone with a non-unique basis K(p), defined in Masic et al. (2005a). The prestress cone of
a tensegrity structure represents an intersection of two convex sets, k ¼ NullðC~gðpÞÞ, and the positive cone
characterized by ki P 0, ei 2 Es. Hence, feasible force-densities for a given configuration of a tensegrity
structure belong to a polyhedral convex cone. In this study, we use a particular basis, denoted KE(p), for
the polyhedral prestress cone of the structure. This basis is particular in that its columns represent the ex-
treme directions of the polyhedral prestress cone, so that every feasible force-density vector, k 2 KE(p), can
be written as k = KE(p)k, for some choice of k with ki P 0. The basis for the prestress cone with this prop-
erty can be computed applying an algorithm that is derived from an implementation of the simplex method
for linear programming. This algorithm seeks and identifies all vertices of the linear constraint NxP 0.
Fig. 2 depicts an application of the algorithm on identifying the extreme directions of the prestress cone
of the structure of Fig. 1 that has three prestress modes.

The preceding geometric analysis of the set of feasible prestresses of tensegrity structures assumes that no
material or cross-sectional properties are associated with its elements. If such properties are predefined, one
must additionally constrain the prestress parameters k to ensure that the actual elements of the structure
can be built after defining its prestress. If the cross-sectional area of the elements, denoted a, is given,
and the material of the structure is fixed, by fixing its Young�s modulus y, this constraint must guarantee
that the resulting element rest-lengths are feasible, that is l0i > 0. Hence, from (12), force-density variables
must satisfy
kili < yiai; ei 2 Eb. ð45Þ
0 1 2 3 4 5 6 7 8 9

0

0.5

1

Fig. 1. Tensegrity structure with three prestress modes.



mode 2 

mode 3 

mode 1 + mode 2 

mode 2 + mode 3 

Fig. 2. Left: Extreme directions of the prestress cone of the structure in Fig. 1; Right: Combinations of the prestress modes of the
structure; Only elements with nonzero prestress are shown.
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Imposing a similar but a more restrictive constraint,
ki < �i
yiai
li

; for some 0 < �i < 1; ð46Þ
on all elements of the structure ensures that the prestress of the elements does not exceed their yield stress,
and constrains the structure from this mode of failure.
4. Selection of prestress for optimal LQR performance

4.1. Formulation of the problem

Let all parameters defining the model (44) of the structure in Fig. 1 be defined, except its feasible pre-
stress k. We seek the distribution of the prestress, and the state feedback control law Dk(t) = Gx(t) of
the structure that is subjected to independent zero mean stochastic excitations w(t), with variance W, so
that the performance index
Jðx;DkÞ ¼ lim
t!1

EfxTðtÞQxðtÞ þ DkðtÞTRDkðtÞg ð47Þ
is minimized. E{ Æ } denotes the expectation operator, and positive definite matrix R � 0 and positive semi-
definite matrix Q � 0, are given control and output variance penalty matrices. Kwakernaak and Sivan
(1972), Skelton (1988) and Zhou and Doyle (1998) offer more details on the LQR problem, including
the conditions for the existence of this closed-loop performance index for the system (44).

Assuming that the existence conditions are satisfied, and using properties of the matrix trace operator
Tr[ Æ ], it is possible to show that the performance index in (47) has an equivalent algebraic form
Jðx;DkÞ ¼ Jðx;GxÞ ¼ lim
t!1

EfTr½xTðtÞðQþ GTRGÞxðtÞ�g ¼ lim
t!1

EfTr½ðQþ GTRGÞxðtÞxTðtÞ�g

¼ Tr½ðQþ GTRGÞ lim
t!1

EfxðtÞxTðtÞg� ¼ Tr½ðQþ GTRGÞX �; ð48Þ
where X = limt!1E{x(t)xT(t)} can be computed from the following Lyapunov equation:
ðAþ BGÞX þ X ðAþ BGÞT þ BwWBT
w ¼ 0; X � 0. ð49Þ
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Using the relationship between prestress and the structure dynamics that are already established in
(44), and the definition of the feasible set of the prestress, a modified formulation of the LQR
problem accommodating a simultaneous selection of the optimal feasible prestress can be cast in the follow-
ing form:
min
k;G

Tr½ðGTRGþ QÞX �

s:t: ðAðkÞ þ BGÞX þ X ðAðkÞ þ BGÞT þ BwWBT
w ¼ 0; X � 0; k P 0;

ki 6 �
aiyi
li

; where k ¼ KEk. ð50Þ
We assume that only bar elements are used for controlling a structure resulting in the following reduction of
the number of control variables in (44):
Dk ¼
0ns�nb

Inb

� �
Dkb. ð51Þ
This and the fact that the bars can sustain both compression and tension eliminate the need for imposing
additional saturation constraints on the control variables Dkb.

4.2. An algorithm for designing the structure for optimal LQR performance

The following algorithm provides a monotonic decrease of the cost function of the problem (50) if an
initial guess for k yields a stable matrix A(k).

Step 1. Pick feasible k, A(k).
Step 2. Solve the LQR problem for X and G ignoring the constraint on feasible k.
Step 3. Compute the gradient grad of (GTRG + Q)X with respect to k.
Step 4. Compute the projected gradient gradproj with respect to constraint on k.
Step 5. Update k and A(k) using the line search parameter a that yields a sufficient decrease of the objective,

and satisfies that k � a gradproj remains feasible.
Step 6. Repeat Steps 2–5 until optimality conditions are satisfied.

4.2.1. Computing the gradient of the problem objective function

A well-known result from the constrained optimization theory is used for the gradient computation.
Consult Fiacco (1983) for more details related to the following lemma.

Lemma 1. The sensitivity of(x*(y))/oy of the following optimization problem:
x�ðyÞ ¼ argmin
x

f ðxÞ

s.t. cðx; yÞ ¼ 0
is
of ðx�ðyÞÞ
oy

¼ oL
oy

����
x¼x�;t¼t�

¼ t�T
ocðx; yÞ

oy

����
x¼x�

; ð52Þ
where t�T is the vector of Lagrange multipliers at the optimal point x*.
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Proof. Lagrangian of the problem, defied as
Lðx; y; tÞ ¼ f ðxÞ þ tTcðx; yÞ

must satisfy the condition that
Lðx�ðyÞ; y; t�ðyÞÞ ¼ f ðx�ðyÞÞ þ t�TðyÞcðx�ðyÞ; yÞ ¼ f ðx�ðyÞÞ;

at any optimal point x*, t*. Differentiating the Lagrangian at the optimal point, x*, t*, yields
of ðx�ðyÞÞ
oy

¼ oLðx�ðyÞ; y; t�ðyÞÞ
oy

¼ oL
ox

����
x¼x�;t¼t�

ox�ðyÞ
oy

þ oL
ot

����
x¼x�;t¼t�

ot�ðyÞ
oy

þ oL
oy

����
x¼x�;t¼t�

;

which, using the first order optimality conditions: oL
ox

��
x¼x�;t¼t�

¼ 0 and oL
ot

��
x¼x�;t¼t�

¼ 0, gives
of ðx�ðyÞÞ
oy

¼ oL
oy

����
x¼x�;t¼t�

¼ t�T
ocðx; yÞ

oy

����
x¼x�

. �
Lemma 1 suggests a method for computing the gradient of the objective function. From the equation in
(52), computation of the gradient involves the dual variables t*. The dual problem associated with the Step
2. of the solution algorithm is
min
k;G

Tr½BwWBT
wT �

s:t: ðAðkÞ þ BGÞTT þ T ðAðkÞ þ BGÞ þ GTRGþ Q ¼ 0; T � 0;
so that, after finishing the execution of the Step 2, the dual variables T = TT � 0 can be recovered by solv-
ing the Lyapunov equation,
ðAðkÞ þ BGÞTT þ T ðAðkÞ þ BGÞ þ GTRGþ Q ¼ 0.
An equivalent form of the Lemma 1 for the problems involving matrices results in the following:
of ðG�ðkÞÞ
ok

¼ oL�

ok
;

where
L� ¼ Tr½ðGTRGþ QÞX � þ Tr½T ððAðkÞ þ BGÞX þ X ðAðkÞ þ BGÞT þ BwWBT
wÞ�.
Grouping the terms that depend on k, and using the fact that Tr[AB] = Tr[BA] = Tr[BTAT] for compatible
matrices yields
oL�

ok
¼ o

ok
Tr½2TAðkÞX � ¼ 2

o

ok
Tr½XTAðkÞ�.
From (44), it is clear that k appears only in the [A(k)]2,1 block of the matrix A(k), so that
oL�

ok
¼ 2

o

ok
Tr½½XT �1;2½AðkÞ�2;1� ¼ 2

o

ok
Tr½½XT �1;2M�1V T

2Ck̂MV 2� ¼ 2
o

ok
Tr½MV 2½XT �1;2M�1V T

2Ck̂�.
If the ith of npm columns of the prestress basis KE is denoted KE
i , then,
oL�

ok
¼ 2

o

ok
Tr MV 2½XT �1;2M�1V T

2C
X

K̂
E

i ki

h i
¼ 2

o

ok

X
k
i
Tr½MV 2½XT �1;2M�1V T

2CK̂
E

i �.
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Finally, the gradient of the objective function can be written as
Fig. 3.
are no
grad ¼ oL�

ok
¼ 2

Tr½MV 2½XT �1;2M�1V T
2CK̂

E

1 �

Tr½MV 2½XT �1;2M�1V T
2CK̂

E

2 �

..

.

Tr½MV 2½XT �1;2M�1V T
2CK̂

E

npm
�

2
6666664

3
7777775
. ð53Þ
4.3. Example

The planar tensegrity structure depicted in Fig. 3 is optimized. The structure is supported at the two left-
most nodes yielding a stable structure for any feasible choice of the prestress variables k. A vertical
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zero-mean white noise disturbance of a unit variance acts at the top rightmost node. The initial distribution
of the prestress is uniform, kT ¼ ½0.1 0.1 0.1�T, as depicted in the upper structure of Fig. 3. The output of
interest is the vertical displacement of the top rightmost node, so that, Q = diag{0, . . . , 1, . . . , 0}, and we
select the control penalty matrix R = I. The element and node numbering schemes are shown in Fig. 3,
as well as the nodal position vector p. The values of the remaining parameters of the problem are, Fig. 4
Fig. 5.
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The optimal distribution of the prestress is not uniform, kT ¼ ½0 1.7544 0�T, and it is shown in the lower
structure of Fig. 3. The optimal prestress of the two bars closer to the supports is on its upper bound, while
the remaining two bars are not prestressed. The effect of the optimal prestress on the open-loop plant is
depicted in Fig. 5. This figure shows the vertical displacement of the top right node under a vertical impul-
sive disturbance of unit intensity acting at the same node. It is obvious that the optimal distribution of the
prestress stiffens the plant. The closed-loop behavior of the system is shown in Fig. 6 depicting vertical dis-
placement of the top right node. It is clear that the L2 norm of the plant output is reduced compared to the
initial plant for this particular choice of the penalty matrices R and Q. The same holds true for the control
energy, although these are not general rules independent from the choice of the matrices Q and R. Fig. 7
shows the control action of the controlled bar that is attached to the top right node. Clearly, the optimal
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LQR controller for the optimized plant requires less control energy than the initial optimal controller for
the suboptimal plant.

Our studies have shown that the optimal distribution of prestress is not independent from the formula-
tion of the objective function. For example, penalizing positions of all free nodes using Q = blockdiag{I, 0}
yields the following optimal prestress, kT ¼ ½1.7544 1.754 0�T, for the same set of input parameters. The
optimal prestress of all bars is on its upper bound in this case.
5. Conclusions

Structure and control designs have traditionally been two separate processes that can yield significant
performance limitations when performed independently. This paper addresses specifics of integrated plant
and control design of tensegrity structures and demonstrates a method for their prestress optimization. A
gradient based algorithm is proposed for solving the prestress selection problem. Because of the non-convex
nature of the problem, there is no guarantee that a solution is a global optimum. Nonetheless, this
algorithm guaranties a monotonic improvement of the performance index, and therefore can be considered
as a legitimate design tool.

The presented derivation of the dynamic model of tensegrity structures (trusses) is performed using glo-
bal coordinates of an assembled structure, and it results in a compact model with a clearly displayed alge-
braic structure. This derivation bypasses modelling dynamics of elements in local coordinates and does not
require transformations to global coordinates, and the subsequent assembly, which all together may ob-
scure the algebraic structure of the model. This is particularly important for studies that involve rank
analysis of related matrices, and computations of performance gradients similar to those presented in this
paper. One of the novelties introduced by this paper is a demonstration of the decomposition of the
structure prestress into the extreme directions of the prestress cone.
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