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Abstract 

The current low-cost process for mineral carbonation involves the direct carbonation of a slurry of magnesium or calcium silicate 

mineral with supercritical CO2. The process is currently limited by the slow reaction kinetics of the carbonation reactions, and in 

particular the slow dissolution rates of the silicates in weakly acidic conditions.  Enhancing the dissolution rate in weakly acidic 

conditions has been identified as one of the main opportunities for lowering the costs of a direct mineral carbonation process.

Serpentine has been identified by its reactivity and abundance as a potential mineral for use in a mineral carbonation process. In 

this paper we discuss the results of dissolution experiments in which ground serpentine was reacted in weakly acidic aqueous 

systems containing NH4Cl, NaCl,, sodium citrate, sodium EDTA, sodium oxalate, and sodium acetate. All experiments are 

carried out at 120ºC and under 20 bars of CO2 in a batch autoclave.  It was found that the sodium salts of citrate, oxalate, and

EDTA significantly enhance the dissolution of serpentine under weakly acidic conditions. 
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1. Introduction 

Mineral carbon dioxide sequestration is a proposed greenhouse gas mitigation technology whereby CO2 is 

disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium 

carbonate product.   The technology has its origins in the 1990's with the initial idea credited to Seifritz [1] and 

initial development by Lackner et. al at Los Alamos National Laboratory [2]. 

The technology offers virtually unlimited capacity to permanently store CO2 in an environmentally benign form 

via a process that takes little effort to either verify or monitor.  These characteristics are unique among greenhouse 

gas disposal technologies.  Energy consumption for initial processes developed, however, is relatively high and it is 

not currently considered competitive when compared to other sequestration technologies.   

Energy consumption associated with the grinding of reactant minerals to fine grain sizes make up 75% of the 

total energy costs of the process. This is also the main contributor to high cost estimates, a factor of 3-10 times 

higher than costs associated with the underground injection of CO2 [3-5].  Increasing the reaction kinetics will allow 

Corresponding author. Tel.: +1-212-365-8058 

E-mail address: sck69@columbia.edu

Available online at www.sciencedirect.com

c© 2009 Elsevier Ltd.

Energy Procedia 1 (2009) 4867–4871
www.elsevier.com/locate/procedia

doi:10.1016/j.egypro.2009.02.315

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81925019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.egypro.2009.02.315
http://creativecommons.org/licenses/by-nc-nd/3.0/


2 Author name / Energy Procedia 00 (2008) 000–000 

for the use of coarser-grained materials (or the achievement of higher carbonation yields at a given grain size), 

thereby mitigating the demand on grinding and decreasing the overall energy costs per amount of CO2 sequestered. 

2. Background and Motivation 

For reasons of mineral availability, cation concentration, and reactivity, the focus of mineral carbonation research 

has been on rocks rich in the magnesium silicate minerals olivine and serpentine, or the calcium silicate 

wollastonite.  

The reacting of these minerals in aqueous media has received the most attention from researchers. It has been 

theorized by many that the aqueous carbonation process follows two steps: (1) Dissolution of cations into solution 

followed by (2) nucleation and growth of carbonate precipitate [6-9].  Most of the evidence for the theory comes 

from SEM images showing the formation of magnesite and calcite crystals independent of the silicate minerals. At 

least one study has observed with imaging and EDS analysis that carbonate nanoparticles can form within the 

silicate mineral, but they do not make up a significant amount of the precipitated carbonate  [6]. 

The dissolution of silicate minerals and the nucleation and growth of carbonate minerals are both pH dependent. 

On the dissolution side, the solubility of basic silicates such as serpentine and olivine increases as the acidity of the 

solution is increased. In addition, under currently developed aqueous processes, dissolution is proton-promoted and 

thus the kinetics of dissolution increases with increasing acidity of the system [10].  

On the nucleation and growth side of the process, however, acidity decreases the concentration of carbonate ion 

in solution, rendering it impossible to precipitate carbonate minerals in an acidic system.  Once magnesium and 

carbonate ion levels are such that a particular level of supersaturation is reached, however, precipitation kinetics do 

not appear to be limiting [11].  

These constraints must be taken into account for the development of a viable process.  If silicate dissolution is to 

take place in an acidic system, conditions must be altered before the formation of solid carbonates can take place.  

This has led to the research of various “two-stage” or “pH-swing” processes [12, 13].   

If dissolution and precipitation are to take place simultaneously, conditions must be such that the system is both 

undersaturated with respect to the silicate mineral but supersaturated with respect to the carbonate phase.  

Researchers at NETL (formerly the Albany Research Center) have long been involved in the development of this 

type of “1-stage” process.  They have found that adding sodium bicarbonate to their reacting system significantly 

enhances the overall carbonate yield as a result of the buffering activity that maintains conditions under which 

magnesium carbonate species may become supersaturated [3]. As the pH of this system is near neutral, the proton-

promoted dissolution is necessarily slow and thus the dissolution of the mineral under these conditions is rate 

limiting.   

As a result of the slow dissolution kinetics under these conditions, pulverization of the reactant mineral is 

required, consuming energy that constitutes upwards of 75% of the total energy used in the process.  Holding all else 

constant, enhancing dissolution kinetics would allow for the use of coarser grained mineral reactants, which would 

lead to reduced energy consumption of the mineral grinding stage.  A process that could utilize material ground to 

less than 75 mm, for example, could have a 90% lower energy costs for the grinding stage.  

3. Experimental Work on Enhancing the Dissolution of Serpentine in Weakly Acidic Environments 

Experimental work described in this study has focused on enhancing the dissolution of serpentine in weakly-

acidic solutions. Specifically, serpentine has been reacted in solutions with dissolved salts at varying concentrations 

under a CO2 atmosphere and at 120ºC. “Neutral” salts were chosen, such that the pH of the system is minimally 

affected by their presence. 
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Figure 1. Solubility diagrams for antigorite serpentine (left) and magnesite  (MgCO3, right) as a function of pH and magnesium ion activity in 

solution.  Modelled using Geochemist Workbench software.  Systems modelled at 120ºC under 20 atmospheres of CO2 fugacity. Solution of the 

antigorite system is in equilibrium with solid amorphous silica. 

3.1. Materials and Methods 

Starting material was raw antigorite serpentine from Belvidere Mountain in Vermont, ground to 90% below 75 

microns in diameter but otherwise untreated. Analysis for major oxide content was performed by SGS Mineral 

Services using X-ray fluorescence and is given in Table 1.   

About 3 grams of serpentine is reacted in 1 liter of fluid with dissolved NaCl, NH4Cl, sodium citrate, sodium 

oxalate, sodium EDTA, or sodium acetate in a Parr 4520 batch autoclave with temperature, pressure, and stirring 

control.   Experiments have been performed under 20 bars of pressure, at 120ºC with a carbon dioxide atmosphere.  

Salts are dissolved fully in solution, after which time the serpentine sample is added and the clock started. The 

reactor is closed and pressurized with CO2 from a gas cylinder. Heating is also initiated, taking about 45 minutes to 

reach 120ºC.  Experiments last from 6 to 24 hours and samples are drawn periodically during the experiment 

through a dip tube with a stainless steel .2 mm filter on the submerged end.  The first sample is taken as the system 

reaches the steady-state temperature. Samples were weighed to maintain a mass balance on the solution.  Each 

sample results in a solution loss of about 5 grams and no more than 10% of the solution is drawn throughout any 

given experiment.  

Samples are analyzed for magnesium content using a Buck Instruments AA flame spectrophotometer. 

Major Oxide Weight Percentage 

SiO2 37.9 

Al2O3 1.02 

CaO 0.53 

MgO 39.1 

Na2O 0.05 

K2O 0.01 
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Fe2O3* 7.78 

* All Fe as Fe2O3 

 

3.2. Experimental Results 

In experiments with no salts in solution, but 20 bars of CO2 pressure, there is an initial rapid dissolution of about 

6% of the material, followed by a reduced dissolution rate. In experiments with 1M NaCl, 1M NH4Cl, or 0.5M 

sodium acetate, there is a rapid initial phase of dissolution followed by a dissolution rate too slow for detection with 

our experimental procedure. The extent of the initial rapid phase of dissolution is dependent on the salt being used, 

with NH4Cl leading to more dissolution than NaCl, but it is not clear that the rate is affected. There is no detectable 

difference in dissolution rate after the initial rapid dissolution stage.  These results mirror results obtained by Bales 

and Morgan [14], although in that study serpentine is dissolved for hundreds of hours so that a dissolution rate in the 

latter slow stage can be observed.   

In experiments with 0.1M citrate, EDTA, or oxalate in solution, dissolution proceeds rapidly achieving greater 

than 60% dissolution within 2 hours and greater than 80% in 7 hours. Near 100% dissolution is achieved sometime 

between 10 and 20 hours.  Dissolution rate in the citrate solution is unaffected by the presence of .5M NH4Cl. There 

is no discernible difference in rate between solutions with these three organic salts. 

 

Figure 2. Dissolution experiment results. Fraction of magnesium leached from mineral into solution is shown as a function of time for dissolution 

experiments of antigorite serpentine in inorganic salts and sodium acetate (left), as well as sodium salts of citrate, EDTA, and oxalate (right). 

4. Discussion 

While it is clear from the dissolution experiments in inorganic and acetate salt solutions that the presence of these 

salts has an effect on the initial stage of dissolution, the cause of the effect is not clear. At the high concentrations of 

salts being used, the pH of the solutions is slightly affected, and may in turn be affecting the initial dissolution. It has 

also been postulated in mineral dissolution literature that the surface structure of ground minerals is altered relative 
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to the bulk particles, and may contain cations more easily dissolved than the interior ‘unaltered’ structure.  In any 

case, because of low overall dissolution yields resulting from an inability to affect the latter slow stage of 

dissolution, dissolution of serpentine in these systems is of little interest for an industrial scale mineral carbon 

sequestration process.  

Enhanced dissolution in citrate solutions has been previously observed for silicate minerals [10]. In addition, 

studies have been performed showing that the citrate ion enhances dissolution kinetics for silica by lowering the 

activation energy to dissolution [15, 16].  It is clear from this experimental work that the dissolution rate 

enhancement that the citrate, oxalate, and EDTA provide is comprehensive, leading eventually to 100% dissolution 

of the minerals.  Furthermore, the sodium salts of citrate, oxalate, and EDTA, as with the inorganic salts, have a 

small impact on the overall pH of the system and thus should be compatible for use with the direct carbonation 

process.  Indeed, the studies showing the catalytic effect of citrate on silica dissolution have found that the 

enhancement is most pronounced at neutral to weakly basic conditions, also optimal for the precipitation of 

carbonate minerals 

Further work is being performed to derive the organic ion promoted dissolution rate laws as a function of ion 

concentration and pressure. In addition, work has begun on understanding the conditions under which carbonate 

mineral will precipitate from solutions containing these dissolved organic salts.  
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