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Abstract The cyclin-dependent kinase (CDK) inhibitor p27Kip1

(p27) is an important regulator of cell cycle progression control-
ling the transition from G to S-phase. Low p27 levels or acceler-
ated p27 degradation correlate with excessive cell proliferation
and poor prognosis in several forms of cancer. Phosphorylation
of p27 at Thr187 by cyclin E–CDK2 is required to initiate the
ubiquitination-proteasomal degradation of p27. Protecting p27
from ubiquitin-mediated proteasomal degradation may increase
its potential in cancer gene therapy. Here we constructed a
non-phosphorylatable, proteolysis-resistant p27 mutant contain-
ing a Thr187-to-Ala substitution (T187A) which is not degraded
by ubiquitin-mediated proteasome pathway, and compared its ef-
fects on cell growth, cell-cycle control, and apoptosis with those
of wild-type p27. In muristerone A-inducible cell lines over-
expressing wild-type or mutant p27, the p27 mutant was more
resistant to proteolysis in vivo and more potent in inducing
cell-cycle arrest and other growth-inhibitory effects such as apop-
tosis. Transduction of p27(T187A) in breast cancer cells with a
doxycycline-regulated adenovirus led to greater inhibition of pro-
liferation, more extensive apoptosis, with a markedly reduced
protein levels of cyclin E and increased accumulation of cyclin
D1, compared with wild-type p27. These findings support the po-
tential effectiveness of a degradation-resistant form of p27 in
breast cancer gene therapy.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The G1-S transition of the cell cycle in mammalian cells is

controlled by cyclins, cyclin-dependent kinases (CDKs), and

their inhibitors [1]. Disruption of cell-cycle control by deregu-

lation of CDK inhibitors is a common feature in tumor cells

[2].

p27, a member of the Kip/Cip family of CDK inhibitors, is a

putative tumor suppressor gene [3] that causes G1 arrest by
Abbreviations: CDK, cyclin-dependent kinase; FITC, fluorescein iso-
thiocyanate; Mur A, muristerone A; PARP, poly(ADP-ribose) poly-
merase
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inhibiting cyclin E–CDK2 [4,5]. p27 knockout mice develop

generalized hyperplasia and pituitary tumors [6–8]. Further-

more, mice that are haploinsufficient for p27 are more sensitive

to tumor development caused by radiation and chemical car-

cinogens [3]. The absence or reduction of p27 expression has

been associated with aggressive behavior in several types of

malignancies in humans, including breast, gastric, prostate, co-

lon, and lung carcinomas [9–14]. However, no homozygous

deletions and only rare point mutations have been found in

the human p27 gene [15].

Gene therapy approaches to restoring p27 expression using

adenoviral vectors [16–19] have been promising. These agents

have induced cell-cycle arrest and loss of cyclin E–CDK2 activ-

ity in cell lines and xenograft models and have triggered apop-

tosis in cancer cells [20–23,17,24]. The concentration of p27 is

thought to be regulated predominantly by the ubiquitin-depen-

dent proteolytic pathway [25]. Degradation of p27 is triggered

by its phosphorylation on Thr187 by the cyclin E-CDK2 com-

plex [26–28]. The phosphorylation of Thr187 is required for

the binding of p27 to Skp2, the F-box protein component of

an SCF ubiquitin ligase (E3) complex, and such interaction

in turn results in the polyubiquitylation and degradation of

p27 [28,25,29,30]. Reduction of p27 levels in various types of

malignant tumors results from accelerated proteolytic degra-

dation by this pathway [31].

In this study, our goal was to determine whether a non-

degradable p27 mutant containing a Thr187-to-Ala substitu-

tion (T187A), which is not influenced by ubiquitin-mediated

degradation would be a better therapeutic agent than wild-type

p27. We established two inducible systems to overexpress mu-

tant and wild-type p27 and compared their effects on inhibition

of cell growth and induction of apoptosis in breast cancer cells.
2. Materials and methods

2.1. Cell culture
The human embryonic kidney epithelial cell line HEK-293T (293T)

was maintained in Dulbecco�s modified Eagle medium supplemented
with 10% fetal bovine serum. The breast cancer cell lines MDA-MB-
468, BT-549 and MDA-MB-231, were maintained in RPMI 1640 sup-
plemented with 10% fetal bovine serum.

2.2. Plasmid construction, site-directed mutagenesis, and isolation of

stable clones
Human cDNAs encoding wild-type p27 (p27wt) or a non-phospho-

rylatable mutant with a threonine-to-alanine substitution at position
187 [p27(T187A)] were provided by M. Pagano (Department of
Pathology, New York University, New York, NY).
blished by Elsevier B.V. All rights reserved.
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For the transient expression experiments, HindIII and XbaI digests
from p27wt and p27(T187A) cDNAs were subcloned into the
pcDNA3.1/myc-His expression vector (Invitrogen, Carlsbad, CA).
A phosphomimetic mutation, T187E, was generated in the
pcDNA3.1-p27 plasmid by oligonucleotide-directed mutagenesis and
polymerase chain reaction using a QuickChange site-directed muta-
genesis kit (Stratagene, La Jolla, CA). The mutation was confirmed
by sequencing.
For the stable ecdysone-inducible system experiments, p27 digests

from the pcDNA3.1-p27wt and pcDNA3.1-p27(T187A) plasmids were
inserted into the HindIII/PreI sites of the pIND vector (Invitrogen).
To obtain tightly regulated p27 expression, we established an ecdy-

sone-inducible mammalian system in which expression of p27 trans-
genes containing ecdysone response elements was controlled by an
ecdysone analog such as muristerone A (Mur A), a homolog of the
ecdysone receptor ligand. First, 293T cells stably expressing the Dro-
sophila ecdysone receptor (EcR) were selected with Zeocin (Invitrogen)
and screened by immunoblotting. The DNA constructs pIND-p27wt-
Myc, pIND-p27(T187A)-Myc, and pIND were then transfected into
the cells, and clones were selected by dual selection using Zeocin and
puromycin for 2–3 weeks. Clones were screened by immunoblotting
with monoclonal anti-Myc antibodies (Invitrogen) for expression of
p27-Myc tagged proteins upon induction with 2 lg Mur A.
2.3. Pulse-chase and protein stability experiments
For the pulse-chase experiments, stable clones were synchronized by

serum starvation for 24 h, incubated in a methionine- and cysteine-free
medium for 2 h, and then metabolically labeled with 200 lCi/ml of
[35S]methionine and [35S]cysteine for 1 h. Proliferation was stimulated
by the addition of 10% serumfor a chase period of 0, 4, 8, or 12 h. Cells
were then lysed in radio-immunoprecipitation assay buffer and sub-
jected to immunoprecipitation with anti-Myc antibodies. Proteins were
separated by SDS–PAGE on a 10% gel, detected by autoradiography,
and subjected to quantitative analysis with a Bio-Rad FX Pro molec-
ular imager.
For the protein stability assay, cells were transfected with p27wt-

Myc or p27(T187A)-Myc for 36 h and then treated with 20 lg/ml
cycloheximide for the indicated times to inhibit new protein synthesis.
Cell lysates were subjected to anti-Myc western blotting to measure
their protein content. The 26S proteasome inhibitors, MG132 (Sig-
ma–Aldrich, St. Louis, MO) and LLnL (Bio Molecular Research,
Plymouth, PA) were dissolved in dimethyl sulfoxide.
2.4. In vitro ubiquitination and degradation assays
For the ubiquitination assay [32], 0.5 ll of 35S-labeled p27 (the sub-

strate) translated in vitro was incubated with 10 ll of ubiquitination
reaction mix (40 mM Tris–HCl [pH 7.6], 5 mM MgCl2 1 mM dithio-
threitol, 10% glycerol, 1 mg/ml methylated ubiquitin, 1 lM ubiquitin
aldehyde, 10 mM creatine phosphate, 100 lg/ml creatine phosphoki-
nase, and 0.5 mM ATP) along with 30 lg of extract from HeLa cells
that had been synchronized in S phase. After incubation at 30 �C for
60 min, ubiquitination was stopped with Laemmli sample buffer, and
the products were subjected to SDS–PAGE. Polyubiquitinated forms
of p27 were identified by autoradiography.
In vitro degradation assays were performed as described elsewhere

[32]. Briefly, the degradation reaction mix (20 ll) was the same as
the ubiquitination reaction mix except that the methylated ubiquitin
was omitted and 10 lg of purified recombinant cyclin E–CDK2, immo-
bilized on agarose beads, was added. The mixtures were incubated with
radiolabeled substrate at 30 �C for 0, 10, 30, or 60 min. Proteins were
resolved on 10% SDS–PAGE gels and detected by autoradiography.
2.5. Cell growth and colony formation assays, cell cycle analysis, and

annexin V staining
For the cell growth assay, 1 · 104 cells were seeded on six-well plates

overnight, incubated with Mur A, trypsinized, collected, and counted
every day for 6 days. Colony formation assays were performed using
standard methods [33]. Briefly, stable 293T clones were seeded in 60-
mm dishes in triplicate and cultured at 37 �C with or without Mur A
for 6 and 9 days. Colonies were then fixed and stained with 0.25% crys-
tal violet in 50% ethanol for 20–30 min, air-dried, and counted. Cell
cycle progression was analyzed using a FACScan apparatus (Thermo-
LabSystems, Helsinki, Finland) as described [34]. Apoptosis was as-
sessed using an annexin V–fluorescein isothiocyanate (FITC) staining
kit according to the manufacturer�s instructions (BD PharMingen,
San Diego, CA), and cells were analyzed by flow cytometry on an
EPICS XL-MCL (Beckman-Coulter, Fullerton, CA).
2.6. In vitro kinase assay
Stable 293T clones were induced to express p27wt or mutant p27 by

Mur A for 24 or 48 h, and whole-cell extracts were prepared as previ-
ously described [34]. Briefly, endogenous cyclin E was precipitated
from 200 lg of cell lysate with anti-cyclin E antibodies (Santa Cruz
Biotechnology, Santa Cruz, CA, USA) and protein A–agarose beads
for 2 h at 4 �C. The immunoprecipitates were washed twice in lysis buf-
fer and twice in kinase buffer and processed for the kinase assay as pre-
viously described [34]. The activity of cyclin E-CDK2 was measured
using 1 lg of histone H1 as the substrate. Samples were analyzed by
SDS–PAGE and PhosphorImager (BioRad, Hercules, CA).
2.7. Construction of recombinant adenovirus vectors, Infection, and

Immunoblot analysis
To overexpress p27 in breast carcinoma cells, a recombinant adeno-

virus vector expressing a doxycycline-regulated (Tet-Off system) form
of p27 was constructed according to the manufacturer�s recommenda-
tions (Clontech, Palo Alto, CA). We amplified human p27wt and
p27(T187A) cDNAs from the pcDNA3.1-Myc constructs described
above using polymerase chain reaction with a pair of primers contain-
ing a BamHI restriction site at the 5 0 end and an AflII restriction site at
the 3 0 end. The amplified products were subcloned into the BamHI/
AflII site of the adenoviral vector and transfected into HEK-293 cells
to produce the recombinant virus. Recipient breast cancer cells were
then transduced with the doxycycline-regulatory virus and either
Myc-Ad-p27wt or Myc-Ad-p27(T187A) at a multiplicity of infection
of 50. The cells were incubated in the presence or absence of the tetra-
cycline analog doxycycline (1 lg/ml) in a tetracycline-free serum med-
ium for 48 h and then harvested. All immunoblottings were performed
following standard biochemical techniques.
3. Results

3.1. p27(T187A) is resistant to proteasome-mediated

degradation

To determine whether phosphorylation of p27 at T187 af-

fected its stability, we performed pulse-chase analysis by tran-

siently transfecting p27wt, the non-phosphorylatable mutant

p27(T187A), and the phosphomimetic mutant p27(T187E) sep-

arately into 293T cells. The half-lives of the three proteins were

4.5 ± 0.7, 11 ± 0.8, and 3.8 ± 0.8 h, respectively (Fig. 1A and B),

indicating that p27(T187A) was much more stable than p27wt.

We next assessed the degradation and ubiquitination of p27

in S-phase HeLa cell extracts. In the in vitro degradation as-

say, the cell extracts rapidly degraded p27wt, with most of

the protein being proteolyzed within 60 min (Fig. 1C). The

proteolytic degradation of p27wt was completely inhibited by

addition of the 26S proteasome inhibitor MG132 (Fig. 1C).

In contrast, the p27(T187A) mutant showed substantial resis-

tance to degradation, even at 60 min. The in vitro p27 ubiqui-

tination assay [28] showed that p27 was not ubiquitinated in

the absence of cyclin E–CDK2 or/and ATP (Fig. 1D). The

addition of ATP and recombinant cyclin E–CDK2 restored

ubiquitination of p27wt but not p27(T187A), indicating that

the proteolytic degradation of p27 was stimulated by its phos-

phorylation at T187. The p27(T187E) mutant was ubiquiti-

nated and proteolyzed in our in vitro extract system to the

same extent as p27wt (data not shown), confirming that

T187E is a mimetic of phosphorylated p27. These results sug-

gested that the activity of cyclin E-CDK2 and the presence of



Fig. 1. Effects of T187A mutation on stability and ubiquitination of p27. (A) Pulse-chase analysis of 293T cells transfected with Myc-tagged p27wt or
its T187A and T187E mutants. The T187A mutation stabilized p27 and increased its half-life. (B) The intensities of the bands shown in (A) were
quantified and expressed as percentages of labeled p27. Data shown are representative of two independent experiments with similar results. (C) In
vitro proteolysis assay of p27wt and p27(T187A) in S-phase HeLa cell extracts. The proteasome inhibitor MG132 was used as a control. (D) In vitro
ubiquitination assay of p27wt and p27(T187A) in S-phase HeLa cell extracts, with purified recombinant cyclin E–CDK2 complex and ATP added as
indicated. Reactions were stopped at the indicated times. The bracket at left indicates ladder bands larger than 27 kDa corresponding to
polyubiquitinated p27 [p27-(Ub)n].
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T187 were essential for the ubiquitination and subsequent deg-

radation of p27 in vivo.

3.2. p27(T187A) is a more potent inhibitor of cell growth than

p27wt

Several independent clones stably expressing Mur A-induc-

ible p27 transgenes were selected and screened by immunoblot-

ting. Much of the subsequent work was done with p27wt-Myc

clones 11 and 14 and p27(T187A)-Myc clones 5 and 14 because

of their high and equal expression of the p27-Myc fusion pro-

tein (Fig. 2A).

We used this system to evaluate the effects of p27wt and

p27(T187A) on proliferation in a cell growth assay. Two

days after induction with Mur A, cell growth was no differ-

ent between control cells and the p27-expressing cells. How-

ever, by 4–6 days, the p27-overexpressing cells showed

apoptotic morphology (data not shown), and their prolifera-

tion was markedly inhibited compared with that of control

cells (P < 0.01). This growth suppression was greater in the

p27(T187A)-expressing cells than in the p27wt-expressing

cells (Fig. 2B). Colony formation of p27-overexpressing

293T cells was also substantially inhibited (Fig. 2C). Flow

cytometric analysis confirmed that the proportion of cells

in G1 arrest increased and the proportion of cells in S phase

decreased 48 h after induction of p27 expression (Fig. 2D).

p27(T187A) clones showed more extensive G1 arrest

(44–59% and 47–56% in p27wt clones 11 and 14, respec-

tively, and 41–62% and 41–64% in p27 mutant clones 5
and 14, respectively). These findings suggest that

p27(T187A) was a more powerful CDK inhibitor, although

both the wild-type and mutant forms of p27 were effective.

3.3. Both p27wt and p27(T187A) inhibit cyclin E–CDK2 kinase

activity

An in vitro kinase assay showed that both p27wt and

p27(T187A) inhibited cyclin E-associated kinase activity

(Fig. 2E). p27wt reduced kinase activity up to 3.9-fold at 2

and 4 days after induction with Mur A, and p27(T187A) re-

duced kinase activity by 7.1-fold 4 days after induction. Nei-

ther total cyclin E nor CDK2 protein levels changed after

induction of p27, but the decrease in CDK2-associated kinase

activity was associated with an increased amount of p27 bound

to cyclin E-CDK2 complexes (Fig. 2F). These results indicate

that the decrease in cyclin E-CDK2 activities contributed to

the G1 arrest induced by mutant p27.
3.4. p27(T187A) induces apoptosis more effectively than does

p27wt

Overexpression of p27 has been shown to trigger apoptosis

in mammalian cells [20,23]. We evaluated the pattern and ex-

tent of apoptotic events induced by overexpression of p27wt

and p27(T187A). Flow cytometry showed that 2 days after

induction by Mur A, the percentage of cells in sub-G1 phase

increased from 2.1% to 5.1% with p27wt overexpression and

from 2.8% to 10% with p27(T187A) overexpression. By 4 days



Fig. 2. Growth inhibition and cell-cycle arrest induced by p27wt and p27(T187A). (A)Anti-Myc immunoblotting of total protein lysates from stable
clones expressing p27wt-Myc (C11, C14) or p27(T187A)-Myc (C5, C14) with (+) or without (�) Mur A. b-Actin was used as a loading control. (B)
Growth curves for the above clones. Total cells were counted for 6 days. Results shown are averages of three independent experiments. (C) Colony
formation assay for the above clones, seeded at the same density in triplicate with or without Mur A for 6 or 9 days. Results represent three
independent experiments. (D) Flow cytometric analysis of cell-cycle distribution. Results are means from three independent experiments. (E)
Inhibition of CDK2 activity by induction of wild-type or mutant p27. Lysates of cells seeded with or without Mur A were immunoprecipitated with
anti-CDK2 and anti-cyclin E antibodies to assess histone H1 (HH1) phosphorylation by cyclin E–CDK2. (F) Analysis of CDK2 bound to wild-type
or mutant p27. Equal amounts of proteins were directly immunoprecipitated (IP) and immunoblotted (IB) with the indicated antibodies.
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after induction, the percentage of apoptotic cells increased

from 6.1% to 10% for p27wt and from 8.6% to 23.3% for

p27(T187A). These findings were confirmed by an annexin V

assay in which both forms of p27 induced apoptosis, but

p27(T187A) was more potent than p27wt [61.6% with p27wt

and 71.5% with p27(T187A) (Fig. 3B and C)].

3.5. p27 stability in breast cancer cells is regulated by the

ubiquitin–proteasome system

Low expression of p27 protein is associated with excessive

cell proliferation and has been linked to many types of hu-

man tumors, including breast cancers [35]. We screened a

number of breast cancer cells and found that most of them

had very low expression of p27. Treatment of breast carci-

noma cell lines MDA-MB-468, BT-549 and MDA-MB-231

with two specific proteasome inhibitors, LLnL and MG132

resulted in a significant increase in total p27 levels (Fig.

4A), suggesting that p27 is primarily regulated by ubiquitin-

mediated proteasomal degradation in vivo. Using cyclohexi-

mide chase assays, we determined the half-lives of both forms

of p27 and found that the mutant was considerably more sta-
ble than the wild-type form (Fig. 4B). The half-life of p27wt

was 10 h, whereas only 20% of p27(T187A) was degraded by

that time (Fig. 4B).

3.6. Transduction with Ad-p27wt or Ad-p27(T187A) causes cell

growth arrest and apoptosis

To further investigate the use of p27(T187A) as a means of

stabilizing p27 protein level, we generated a doxycycline-regu-

lated adenovirus vector to overexpress p27wt and p27(T187A)

in two breast cancer cell lines. Ad-p27(T187A)-Myc had a

longer half-life and increased the relative percentages of cells

in G0/G1 more than Ad-p27wt-Myc (data not shown). Aden-

oviral transduction of MDA-MB-468 and BT-549 cells with

either form of p27 in the absence of doxycycline increased

the percentage of apoptotic cells, as detected by annexin V

staining (Fig. 5A). To confirm that transduction of p27 in-

duced apoptosis in breast carcinoma cells, we analyzed poly-

(ADP-ribose) polymerase (PARP) cleavage. Adenoviral

transduction with either form of p27 resulted in the appear-

ance of the PARP cleavage products p85 and p25 from the in-

tact form (p112), but no efficient cleavage was observed in the



Fig. 3. The degradation-resistant p27(T187A) mutant induces apop-
tosis more effectively than does p27wt. (A) Stable clones (C14) were
induced to express p27wt and p27(T187A) upon addition of A (+) for 2
and 4 days. Percentage of apoptotic cells (Sub-G1 fraction) was
calculated at the indicated times by using propidium iodide (PI)
staining followed by FACS analysis. (B) flow cytometry analysis of
apoptosis by Annexin V and propidium iodide staining. Same
treatment of the cells as in (A), stable clones were induced by Mur
A to express p27wt and p27(T187A), labeled with propidium iodide
(PI) and annexin V–FITC. (C) Quantitative analysis of apoptotic cells
from (B). The average percentages distribution of FITC-positive cells,
corresponding to late (D2) and early (D4) apoptosis, are shown from
three independent experiments.

Fig. 4. Degradation of p27 in breast cancer cells is regulated by the
ubiquitin–proteasome system. (A) The proteasome inhibitors MG132
and LLnL increase basal p27 levels in the breast cancer cell lines
MDA-MB-468, BT-549, and MDA-MB-231. Total cell lysates were
immunoblotted with anti-p27 antibody. Dimethyl sulfoxide (DMSO)
was used as a control. b-Actin was used as a loading control. (B) The
stability of p27wt and p27(T187A) was analyzed using cycloheximide
(CHX) chase experiments of BT-549 cells transfected with p27wt-Myc
or p27(T187A)-Myc. Cell lysates were analyzed by western blotting
with anti-Myc antibody. Band intensities were quantified by image
analysis and expressed as percentages of the corresponding value from
time zero.
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cells transduced with p27wt (Fig. 5B). Thus, the inducible

expression of p27 by adenoviral vectors arrested breast carci-

noma cells in G1 and led to apoptosis, while the mutant

Ad-p27(T187A)-Myc had the strongest effect.

3.7. Expression of cancer biomarkers after transduction of

Ad-p27wt and Ad-p27(T187A) in breast cancer cells

We further determined the effects of p27wt and p27(T187A)

on the levels of the cancer biomarkers cyclin E, cyclin D1, and

Skp2. The products of these genes are considered to be onco-

proteins [9,36,37]. High levels of cyclin E correlate strongly

with poor outcome in patients with breast cancer [9,38]. Cyclin

D1 binds to p27 and sequesters it from inhibiting cyclin



Fig. 5. Doxycycline-regulatable adenovirus-mediated overexpression of p27(T187A) induces apoptosis more effectively than does p27wt in breast
carcinoma cells. (A) Flow cytometric analysis of MDA-MB-468 and BT-549 breast cancer cells transduced with Ad-p27wt-Myc or Ad-p27(T187A)-
Myc with (+) or without (�) doxycycline (Doxy). Apoptotic cells were identified by dual staining for propidium iodide (PI) and annexin V–FITC.
Numbers indicate the percentage distributions of FITC-positive cells in late and early apoptosis. Similar results were seen in three independent
experiments. (B) Total proteins were extracted from MDA-MB-468 and BT-549 cells transduced with Ad-p27wt-Myc and Ad-p27(T187A)-Myc and
immunoblotted with antibodies against PARP, Myc, and b-actin.
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E/CDK2 activity, which thereby contributes indirectly to

the promotion of cell cycle progression. Skp2 is specifically

involved in ubiquitin pathway-mediated degradation of p27

as an E3 ligase. We observed that overexpression of

p27(T187A) significantly reduced cyclin E levels in all three

breast cancer cell lines (MDA-MB-468, BT-549, and MDA-

MB-231) compared with p27wt. Accumulation of cyclin D1

caused by overexpression of p27wt or the mutant form was

present in all three cell lines. However, expression of the p27
Fig. 6. Expression levels of oncoproteins in p27wt and p27(T187A)-overexpr
231, breast cancer cell lines were transduced with Ad-p27wt-Myc or Ad-p27(T
Total cell lysates were prepared and expression levels of cyclin E, cyclin D1,
mutant resulted in greater accumulation of cyclin D1 (Fig.

6). Levels of Skp2 decreased when both p27wt and

p27(T187A) were transduced and overexpressed in these three

cell lines. High expression levels of p27(T187A) were associ-

ated with greater reductions in Skp2 than high expression of

p27wt in MDA-MB-468 and MDA-MB-231 cells. Further-

more, overexpression of p27 resulted in a reduction of retino-

blastoma protein (pRb) phosphorylation in BT-549 and

MDA-MB-231 cells, which was not seen in the pRb-null cell
essing breast cancer cells. The MDA-MB-468, BT-549 and MDA-MB-
187A)-Myc in the presence (+) or absence (�) of doxycycline for 48 h.
and Skp2 were analyzed by immunoblotting.
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line MDA-MB-468 (data not shown). These results suggest

that a reduction in pRb phosphorylation is not the only path-

way involved in p27-mediated cell cycle arrest and apoptosis in

breast cancer cells.
4. Discussion

In this study, we constructed two inducible systems to over-

express a p27 mutant in which a T187A substitution prevented

ubiquitin-mediated degradation. We showed that this non-

phosphorylatable p27 mutant was less prone to degradation

in pulse-chase experiments and was resistant to proteolysis in

an in vitro degradation assay. We also confirmed that the mu-

tant was significantly more resistant to ubiquitination and sub-

sequent degradation than wild-type p27 was (Figs. 1 and 4).

The growth of stable transfectants of the p27 mutant was more

strongly suppressed than that of p27wt was (Fig. 2). The role

of the CDK inhibitor for both forms of p27 was confirmed

by its suppression of CDK2 activity. Finally, we demonstrated

that overexpression of the degradation-resistant mutant en-

coded by the Ad-p27(T187A) vector caused greater inhibition

of cell growth and stronger induction of apoptosis than did

overexpression wildtype p27, as confirmed by annexin V and

PARP cleavage assays (Fig. 5).

Loss of cell-cycle control is important in carcinogenesis.

Although genetic alterations of the cell-cycle regulator p27

have rarely been found in cancer, downregulation of p27 is fre-

quently observed in human cancers and has been associated

with increased cell proliferation and tumor aggressiveness

[14,11,10,13]. In several studies, intratumoral injections of

Ad-p27wt has been shown to partially suppress tumor forma-

tion in animal models [23,24,16,39]. In other experiments,

Ad-p27 was the most potent of several cyclin kinase inhibitors

in terms of inducing cell-cycle arrest and apoptosis and inhibit-

ing tumorigenesis [21,20,22,23,16,39,17]. Our recombinant ade-

novirus expressing mutant p27 may be useful against breast

carcinoma, although the possible antitumor effects of

p27(T187A) must be confirmed by in vivo tumorigenesis assays

in mice.

In line with these findings, other studies have shown that the

p27(T187A) mutant is not ubiquitinated [28] and that transient

expression of a p27(T187A) plasmid causes a G1 block that is

resistant to cyclin E and is not modulated by cyclin E–CDK2

[26,27]. We found that stable expression and adenoviral trans-

duction of either p27wt or p27(T187A) inhibited cell growth

and induced G1 arrest in both 293T and breast cancer cells.

However, overexpression of p27(T187A) induced growth inhi-

bition and apoptosis to a greater extent than did overexpres-

sion of p27wt, regardless of the expression system used.

These findings are consistent with those of another study in

which Ad-p27(T187A) had a greater effect on cell-cycle arrest

and apoptosis induction, because of its resistance to degrada-

tion, and suppressed the growth of established lung cancer

xenografts [24]. These findings support our hypothesis that sta-

bilizing p27 expression may be an effective strategy for inhibit-

ing cancer cell growth.

The relationship between p27 and induction of apoptosis is

still unclear. p27 may be indirectly associated with apoptosis

(e.g., through CDK inhibition), and may be able to regulate

the cell cycle or apoptosis to protect cells from over-growth

and apoptosis-inducing stimulation. Naruse et al. [17] and
Katayose et al. [22] have suggested that the growth-inhibitory

effect of and apoptosis induction by overexpression of p27 re-

quires expression of pRb. The pRb-regulated checkpoint in G1

is an important apoptotic checkpoint. Cyclin E-CDK2 is the

primary complex that phosphorylates pRb, which prevents

interactions of it with the E2F transcription factor.

We also found that levels of the cancer biomarkers cyclin

D1, cyclin E, and Skp2 changed in response to overexpression

of p27wt and p27(T187A). Specifically, we observed that ecto-

pic p27wt and p27(T187A) led to accumulation or stabilization

of cyclin D1 but that transduction of the mutant form of p27

led to more pronounced reduction of cyclin E levels. Skp2 lev-

els were also reduced in p27wt- and p27(T187A)-overexpress-

ing breast cancer cells. In some circumstances, p27 is thought

to inhibit cyclin D-CDK4/6 complexes [4,5]. In other circum-

stances, p27 does not inhibit the activity of the complex but

rather acts as an assembly factor [40]; in other words, p27

may not be inhibitory when bound to cyclin D1/CDK4,

whereas p27 is inhibitory of cyclin E-CDK2 activity. All three

oncoproteins are subject to cell-cycle regulation [41,42]. Cyclin

D1 expression is induced primarily during G2 and remains con-

stant through G1, where it is required for the cell to commit to

another round of replication (reviewed in [43]). As cells enter S

phase, cyclin D1 levels decline (reviewed in [43]). Our results

indicate that expression of p27wt and p27(T187A) lead to G1

and sub-G1 arrest (data not shown), which would explain an

increase in cyclin D1 levels (Fig. 6). Overexpression of p27 in

either mutant or wt form reduced cyclin E levels. Cyclin E is

an unstable protein degraded by two distinct pathways involv-

ing the ubiquitin–proteosome system (reviewed in [44]). Dur-

ing normal cell cycle, cyclin E levels are low during G1 and

increase during the transition from G1 to S. The finding that

p27 mutant was a more potent inducer of apoptosis than

was p27wt in breast cancer cell lines MDA-MB-468, BT-549,

and MDA-MB-231 may explain the dramatic reduction in cy-

clin E levels observed in cells transduced with the mutant p27.

Skp2, also a cell cycle–regulated protein, is present at low lev-

els in G1 and in late mitosis [42]. We showed that overexpres-

sion of p27wt or the p27(T187A) mutant in breast cancer cell

lines greatly reduced Skp2 levels. Whether this observation is

the cause or the consequence of overexpression of p27 is un-

clear. Skp2 degradation may result from accumulation of a

CDK inhibitor that leads to G1 arrest. A recent report has

shown that the degradation of the SCF component Skp2 dur-

ing G1 is controlled by APC/Ccdh1 ubiquitin ligase [45]. The

correlation between overexpression of p27 and APC/Ccdh1

ubiquitin pathway, if any, needs further investigation.

The control of p27 protein levels is affected by ubiquitin-

dependent degradation [31,26,27,29,25], in a ubiquitin- and

Skp2-independent manner at G1 [42,46], and by JAB1-depen-

dent degradation [47]. The effect of p27 on the cell cycle is reg-

ulated mainly by its stability [48,49], but recent studies have

shown that the function of p27 is also associated with its sub-

cellular localization [50,51]. Besides Thr187, there are three

phosphorylation sites Ser10, Thr157, and Thr198 that are in-

volved in cellular localization [52,53]. Phosphorylation at

Ser10 stabilizes p27 protein in G1 [53]. Phosphorylation at

Thr157 by protein kinase B/Akt impairs the nuclear import

of p27 but does not affect its stability in breast cancer and

other cells [50,51]. Mutations in these phosphorylation sites

may result in a more potent induction of apoptosis and inhibi-

tion of cell growth for breast cancer gene therapy.
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