
Theoretical Computer Science 65 (1989) 213-220 

North-Holland 

213 

FROM GEOMETRY TO EULER IDENTITIES 

M. MENDES FRANCE 

UER MathPmariques et Infiwmatique, Uniuercith L3ordeau.x 1, 351 Cows de la Lihe’ration, 32405 

Talencr Cede-x, France 

A.J. van der POORTEN* 

School I$ Mathematics, Pb~xics, C‘omputing and Electronks, Macyuarie Unimwity, North Ryde, 

Australia NSW2lOY 

Received September 1987 

Abstract. We study certain two-dimensional dynamical systems x,,+, = F(u,,, J’,, ); y,,+ I = Gb,,, y,, 1. 
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1. An exercise 

Exercise 7 on page 79 of Luc Moisotte’s 18.50 Exercices de Mathe’matiques [S] 

begins as follows (see Fig. 1): “Let P and Q be the orthogonal projections of M 

Fig. 1 
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on the axes and let M’=f’(M) be the orthogonal projection of M on the line PQ. 

Suppose that M (0) = M = M (x, _I-) is given in the first quadrant with x # I’. .” Thus, 

at first, we have just an exercise in elementary analytic geometry and in the solution 

of simultaneous equations. The diagonal PQ is given by X/x+ Y/y = 1 with slope 

-y/x, so the required orthogonal line through (x, JJ) is 

Y-y=qx-x). 
? 

Solving for the common point M’= M’(x’, y’) yields 

xI=L ,‘J 
,’ L 

x’+),” 1 = x2 + ).? 

Even this is mildly instructive; the initial irrelevance as to which is x and which is 

y of course entails the symmetry in the result. 

But now comes the point (see Fig. 2): “. . Show that the sequence of points 

M (“+” =f( ,(“I), n = 0, 1, 2, . always converges on the positive axes and compute 

its distance from the origin.” This is entertaining at a number of levels. One can 

study the limiting process without actually computing the limit, and, indeed, finding 

it requires a moment’s thought. It turns out to be convenient to set x > !: and then 

1’ (“’ = 1 so 0 < x = x”)’ < 1. Plainly, .x( i’ = 0 so M (x) is on the Y-axis and one finds that 

This result is of itself amusing. Viewing its denominator, .f’(,x) say, as a power series 

in x, one has f7x) = x,,G F x” with only those powers n of x appearing with n 

represented in base 3 using only the digits 0 and 2; ,f‘ is the Cantor series, E the set 

of Cantor integers. It happens to be known [l] (actually, already [4]) that ~9“: ’ is a 

transcendental number for every algebraic x with 0 < 1x1~ 1; say, in particular if 

Fig. 2 



x = l/10. Of course, it is well-known that almost every real number is transcendental 

but one also knows well that, mostly, it is extraordinarily difficult to prove any given 

number to be transcendental. In the survey FOLDS! [S] there is mention of and 

reference to the benefit of viewing a series such as .f(x) as a formal series over a 

finite field. Indeed, in characteristic 3 we have _Y~‘(x) = (1 +x’)“‘. 

Algebraic functions in positive characteristic have their coefficients generated by 

finite automata. Series such as ,f are hypertranscendental-they do not even satisfy 

an algebraic differential equation. Thus there is no pleasant curve containing all the 
R/I’“‘. 

2. A simplification 

Suppose our geometrical problem had yielded a simpler, yet similar, sequence 

defined by 

Then we see that it happens (as before, with Y”” = 1, 0 <x = x(“’ < 1) that 

Y’ - x’ Z y - .y = 1 - x”“; 

so, plainly (since x’X’ =O), Y’X)= 1 -x. Of course, we had x’/Y’ = (x/Y)’ and _v’/Y = 

(1 +x/Y))’ so we have, almost for free as it were, 

j,,(lra’,,)=(l-xy. 

This is Euler’s identity. This is easy enough to see by just multiplying by 1 -x, but 

it is noticeably more elegant to remark, recalling that (1 -x)~ ’ = Cz_-,, x”, that it 

expresses the fact that each nonnegative integer has a unique binary representation. 

Analogously, recall that 

5(s)= i n_’ =n (1 -pm’))’ (product over all primes p) 
n ~- I I’ 

expresses the fact that each positive integer has a unique factorization into primes. 

3. Extensions 

Inspired by this we try some other transformations. 

3.1. Example. Suppose 

1’? 
4” = : and x)= _x(x+2Y). 

x+Y x + y 
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Then 

3r,+x,=(3Y+.u)(.!-.u) J” -x’ = 
,j’-t2XJ~-tX~ 

x+,3 ’ .x +J’ 
= J’ + x; 

so, congenially, 

(31”+x’)(4”-_~‘)=(3~~+x)(~-x)=(3+x””)(1-x””) 

with, as above, J,“” = 1 and x = x(“‘. More generally, 

(39”’ +Ju’“‘)(y”“-.x”‘~) = (3+x)( 1 -Am). 

We have 

(1) 

:=-;(:+2) :-q(t) and $=&; 

hence, 

where cp’ = (p(‘p’-’ ) represents the kth iterate of q(x) = -.x+(.x+ 2). 

Now suppose x & I-3, 1[. Then ]qh(x)l 2 3 for all k 2 1, hence )““I vanishes as n 

increases to infinity. Equation (I) then implies 

-(.x”‘)~=(3+x)(l -x), (x’~‘)1=(x-l)(x+3); 

hence, 

x2 fl 1+ ( l 
2 

l+cp“(x) > 
=(x-1)(x+3). 

I, ~-0 

Finally, for all x G]-3, l[, 

3.2. Example. We now consider the transformation 

p 
f=L x’ = 

xy 

x+y (.x+_r)(2?“-.x’) 

With a little care (and foreknowledge) we readily see that 

J’ 
,2 ,t” - x’ z ?‘-x 1 -_x’(” 

-=?’ -=- _)“+ X’ Jl+x 1 +.u”“’ 

But 

$=2(1)‘_1:=9(:) and $=l+$; 
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so if xtv’ = 0, 
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with q(x) =2x’- 1. More elegantly, replacing x by l/x we obtain for all Ix/ > 1 

?I (1+&J=&. 
I, -0 

3.3. Example. Set 

x+Y y’z- 
x+v x2-3y’ 

Y x-y ’ 

x’=xA.P 
X-J Y’ 

and verify that 

,2 x’+Q_ z x+2y x”‘)+2 
I x’-2y’ Y -=- 

x-2.Y X(0) -2’ 

Now 

s=($-3($=:q($ and $=s 

Thus, if xCx’ = cc (e.g., 1x1> 2), 

x q”(x)+1 n =s, 
I\--0 P”(X) - 1 J- 

q(x) = x3 -3x. 

3.4. Example. With 

XSJ 
$- 

(xiy)(2y’-x7 
Y, X’ = 

X XY 

we see that 

, xi2 _ 4y” 2 xz--411* (x(()‘)z_4 
y’- (x,_y,)‘=y 7= 

(x-y)- (x”“-1)’ 

Hence, if q(x) = 2 -XI, 

jg1+&)) =g provided JxI> 2. 

3.5. Example. As a final example, take 

x+Y y ’ = J’ L x’ = 
(x+y)(x’+2xy-2112) 

x ’ XY 



218 M. Men&c Fruncr. A.J. WI,, der Poorten 

Then 

We easily conclude that for p(x) = (x+ l)‘-3 and x$ [-3, l] 

,II,, (I+& > 

Ix + 21 

=J(.u+3)(x-l). 

The principle we have just employed is one of stumbling upon a pleasant curve 

,f’(X, Y) =J’(x, 1) containing all the points M’“‘= (x’“‘, JI”“), thus making it an easy 

matter to compute either x’ y, or _v”’ by ,f(x“‘, J“‘) =,f’(x, 1) once one of them is 

known. In Example 3.1 we found ~5’~) = 0, while in Example 3.2, xc1 ’ = 0. In the 

three last examples, x( ‘ ) = a. 

The general pattern of computing the above products is described as follows. 

Consider the transformation 

,,‘I zz ‘H -y , 0 x’=xK ” 
I’ 0 ?’ 

and define p(t)= t K(t)/H(r). Then 

presuming both infinite products make sense. 

4. Ostrowski’s work 

Of course, our examples were not selected quite at random. They are taken from 

a work of Ostrowski [7] who studies the question of finding rational functions p(x) 

so that 

r,, (1 + cF”(.x)) = T’(-x) (2) 

is an algebraic function of x. In particular, Ostrowski determines all cp so that cp(.u) 

or ~(x -‘) is either a polynomial or the reciprocal of a polynomial; we have cited 

the more interesting examples. 

At first it seems surprising that, with p a rational function, P is necessarily the 

uth root of a rational function. But this is quite easy to see: Suppose that P is a 

zero of the irreducible polynomial 

J”‘+a,(.u)y’ ‘+. . .+a,(x) (3) 
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with rational functions U,(X) as coefficients. From (2) we notice that 

On replacing x by P(X) in (3), and multiplying by (1 tx)‘, we obtain 

,v’ia,(cp(x))(l +x)_r-‘+. . ‘+a~(cp(x))(l+x)‘. (4) 

But (4) is again a polynomial of degree Y with 9(x) as a zero. Thus it must coincide 

with (3). In particular, we have 

a,(x) 

a,(cp(x)) 
=(lfx)‘. 

Replacing x by P(X), multiplying, and iterating that procedure yields 

a,(x) = G((P(‘\ ‘(x))( P(x))‘. 

But cp’“‘(x) = 0 by hypothesis. It also follows that a,(O) # 0, indeed that a,(O) = -1 

since, evidently, _rr+ a,(x) is the polynomial we introduced above. 

It turns out that Ostrowski’s “interesting” examples are all with r = 2. He points 
out that our Example 3.2 (due to F. Engel [3)) yields a nice approximation 

Example 3.3 provides the very rapidly converging 

Evidently, in this case each truncation yields a convergent (in the sense of the theory 

of regular continued fractions) to 45. Example 3.4 provides 

f&=(1+$(1-$)(I-$)(1-&J-&). . . 
An example we omitted to mention: 

fi (I+&)=* withcp(x)=-2(x+1)’ 
II =” 

is easily obtained from Example 3.2 or, of course, directly by our approach. It yields 

J&2(1-$(1-&)(1-&) . . . 

Ostrowski remarks that Cantor [2] shows that each positive number has a unique 

representation as a product 

i (1+&J 
n =,I 
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tn postttve integers x,,~ 2 and p(x) 2 x2. Cantor noticed representations of certain 

quadratic irrationals if q(x) =2x’- 1 and suggested that all quadratic irrationals 

might arise in this way. Engel proved (as we have in Example 3.2) that only quadratic 

irrationals are produced. However, Example 3.5 proves that, contrary to Cantor, 

certain quadratic irrationals arise from q(x) = (x+ l)‘-3 which, with p”(x) > 1, 

has p”+‘(x) 3 ((p”(x))’ and is essentially different. 
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