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a b s t r a c t

Two-dimensionalHaarwavelets are applied for solution of thepartial differential equations
(PDEs). The proposed method is mathematically simple and fast. To demonstrate the
efficiency of the method, two test problems (solution of the diffusion and Poisson
equations) are discussed. Computer simulation showed that the method guarantees the
necessary exactness already for a small number of grid points.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Wavelet methods have been applied for solving partial differential equations (PDE-s) from beginning of the early 1990s
[1,2]. In the last two decades this problem has attracted great attention and numerous papers about this topics have been
published. Due to this fact we must confine somewhat our analysis; in the following only PDEs of mathematical physics
(elliptic, parabolic and hyperbolic equations) and of elastostatics are considered. From the first field of investigation the
papers [3–8] can be cited. As to the elasticity problems we refer to the papers [9–15]. In all these papers different wavelet
families have been applied.

In most cases the wavelet coefficients were calculated by the Galerkin or collocation method, by it we have to evaluate
integrals of some combinations of the wavelet functions (called also connection coefficients). This is quite a complicated
problem, since for most wavelet families an explicit expression is missing. For the Daubechies wavelets formulas for
calculation the connection coefficients are derived [16], but only in approximation form and for the first and second order.
Connection coefficients for some other families (Shannon and harmonic wavelets) are obtained by Cattani [17] in a finite
form and for any power.

Among all the wavelet families the Haar wavelets deserve special attention. They are made up of pairs of piecewise
constant functions and are therefore mathematically the simplest of all the wavelet families. A good feature of the Haar
wavelets is also the possibility to integrate these wavelets analytically in arbitrary times. A drawback of these wavelets is
their discontinuity; since the derivatives do not exist in the breaking points it is not possible to apply thesewavelets directly
for solving PDEs.

There are two ways for getting out of this situation. One possibility is to regularize the Haar wavelets with interpolating
splines (e.g. B-splines or Deslauer–Dubuc splines). This approach was realized by Cattano [17] and by some other
researchers [1,15]. Anothermethod of solutionwas proposed by Chen andHsiao [18] in 1997. They recommended to expand
into the Haar series not the function, but its highest derivative appearing in the differential equation; other derivatives and
the function itself are obtained through integration. All these ingredients are then integrated into the whole system, which
is discretized by the Galerkin’s or collocation method. In this way we can get finite formulas for calculating the integrals of
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wavelets and for the connection coefficients. We have applied this technique for solving different 1-D problems [19–22].
The method is fast and with low error.

For calculating the wavelet coefficients we have to solve a linear system of algebraic equations. In the case of a great
number of calculation points this system may be nearly singular and difficulties for calculating the inverse matrix appear.
To overcome this problem Majak et al. [14] recommended to use a weak formulation based solution, which to some extent
improves the stability of the system.

As to the 2-D problems then in some cases it is possible to reduce them to the 1-D problems. This can be done e.g. for the
evolution problems, where the governing equation has the form

∂u
∂t

= f

t, x,

∂u
∂x
,
∂2u
∂x2

, . . .


. (1)

For integrating this equation the derivative on the left side is discretized by some finite differences type approximation;
integration with regard to the spacial coordinate x is carried out by the wavelet method. This technique is applied for
solving different PDEs such as diffusion equation [1,2,4,22], Helmholz equation [3], Burgers equation [2,14,22], Sine–Gordon
equation [22], and Fisher’s equation [7] (this list is not complete).

The aim of the present paper is to develop a 2-D Haar wavelet method for solving PDEs, which is fast, mathematically
simple and guarantees the necessary accuracy for a relatively small number of grid points. The paper is organized as follows.
In Section 2 formulas for calculating the Haar wavelets and their integrals are reported. The method of solution is described
in Section 3. In Sections 4 and 5 two test problems — integration of the diffusion and Poisson equations — are solved.
Conclusions and possible further directions of research are offered in Section 6.

2. Haar wavelets

Tomake the paper self-contained some results of [19] are referred in this Section. Consider the interval x ∈ [A, B], where
A and B are given constants. We shall define the quantity M = 2J , where J is the maximal level of resolution. The interval
[A, B] is participated into 2M subintervals of equal length; the length of each subinterval is1x = (B − A)/(2M). Next two
parameters are introduced: the dilatation parameter j = 0, 1, . . . , J and the translation parameter k = 0, 1, . . . ,m − 1
(here the notationm = 2j is introduced). The wavelet number i is identified as i = m + k + 1.

The i-th Haar wavelet is defined as

hi(x) =

1 for x ∈ [ξ1(i), ξ2(i)],
−1 for x ∈ [ξ2(i), ξ3(i)],
0 elsewhere,

(2)

where

ξ1(i) = A + 2kµ1x, ξ2(i) = A + (2k + 1)µ1x,
ξ3(i) = A + 2(k + 1)µ1x, µ = M/m.

(3)

The case i = 1 corresponds to the scaling function: h1(x) = 1 for x ∈ [A, B] and h1(x) = 0 elsewhere.
If we want to solve a n-th order PDE we need the integrals

pα,i(x) =

∫ x

A

∫ x

A
· · ·

∫ x

A  
α-times

hi(t)dtα =
1

(α − 1)!

∫ x

A
(x − t)α−1hi(t)dt α = 1, 2, . . . , n, i = 1, 2, . . . , 2M. (4)

The case α = 0 corresponds to function hi(t).
Taking account of (2) these integrals can be calculated analytically; by doing it we obtain

pα,i(x) =



0 for x < ξ1(i),
1
α!

[x − ξ1(i)]α for x ∈ [ξ1(i), ξ2(i)],

1
α!

{[x − ξ1(i)]α − 2[x − ξ2(i)]α} for x ∈ [ξ2(i), ξ3(i)],

1
α!

{[x − ξ1(i)]α − 2[x − ξ2(i)]α + [x − ξ3(i)]α} for x > ξ3(i).

(5)

These formulas hold for i > 1. In the case i = 1 we have ξ1 = A, ξ2 = ξ3 = B and

pα,1(x) =
1
α!
(x − A)α. (6)
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For solving boundary value problems we need the values pα,i(B), which can be calculated from (5). In special cases α = 1 or
α = 2 we find

q1(i) = p1,i(B) =


B − A for i = 1
0 for i ≠ 1 (7)

and

q2(i) = p2,i(B) =

0.5(B − A)2 for i = 1

0.25
(B − A)2

m2
for i ≠ 1.

(8)

In the present paper the collocationmethod for solving the PDEs is applied. The collocation points are xl = 0.5[x̃l−1 + x̃l],
l = 1, 2, . . . , 2M: the symbol x̃l denotes the l-th grid point x̃l = A + l1x, l = 1, 2, . . . , 2M .

Eqs. (2) and (5) are discretized by replacing x → xl. It is convenient to introduce the Haar matrices H(i, l) = hi(xl),
Pν(i, l) = pν,i(xl). In the following Sections computer simulations were carried out with the aid of the Matlab programs for
which the matrix representation is effective.

3. Problem statement and method of solution

Consider the linear PDE
Γ−
γ=0

Λ−
λ=0

Dγ λ
∂ (γ+λ)u
∂xγ ∂yλ

= f (x, y), (9)

where Γ ,Λ are given constants and Dγ λ, f are prescribed functions. The independent variables x, y belong to a domainΣ ,
which has the boundary σ . We have to calculate the function u(x, y), which satisfies the required boundary conditions. For
simplicity sake we confine ourselves to problems, where the domain Σ is a rectangle x ∈ [0, L1], y ∈ [0, L2] and it divides
the intervals [0, L1], [0, L2] into 2M1 and 2M2 parts of equal length, respectively. According to the Haar wavelet method the
solution is sought in the form

∂ (Γ+Λ)u
∂xΓ ∂yΛ

=

2M1−
i=1

2M2−
l=1

ailhi(x)hl(y), (10)

where ail are the wavelet coefficients and hi(x), hl(y) the Haar functions. By multiple integrating (10) the lower order
derivatives and the function u itself are calculated. In this procedure unknown functions ϕ1(x), ϕ2(x), . . . , ϕΓ−1(x), ψ1(y),
ψ2(y), . . . , ψΛ−1(y) appear; they are calculated from the boundary conditions. We satisfy (10) in the collocation points
xr , ys, where r ∈ [1, 2M1], , s ∈ [1, 2M2]. By doing this we get the following system of linear equations

2M1−
i=1

2M2−
l=1

Rilrs = f (xr , ys), (11)

from which the wavelet coefficients ail can be calculated. Since we do not possess algorithms for dealing with the fourth-
order matrices we must transform the system into a form, where only second-order matrices appear. This can be done by
introducing new indices

α = 2M1(i − 1)+ l, β = 2M2(r − 1)+ s. (12)
Now (11) obtains the form

2M1−
α=1

2M2−
β=1

b(α)S(α, β) = F(β). (13)

Here b and F are 2M1 ∗ 2M2 dimensional row vectors and S is a (2M1)
2
∗ (2M2)

2 dimensional matrix. It is expedient to put
(14) into the matrix form

bS = F . (14)
After evaluating the coefficients b(α) from (14) it is not difficult to restore the original matrix of the wavelet coefficient
matrix ail. According to (12) we have α/(2M1) = i − 1 + l/(2M1). The integer part of this expression gives i − 1, the
remainder of this division—the index l.

By integrating (10) Γ -times in regard to x andΛ-times in regard to y, we obtain

u(x, y) =

2M1−
i=1

2M2−
l=1

ai lpΓ (x)pΛ(y)+ Ψ (x, y). (15)

In this formula the integrals pΓ (x) and pΛ(y) are calculated according to (5) the function Ψ (x, y) incorporates the functions
ϕ1(x), ϕ2(x), . . . , ψ1(y), ψ2(y), . . . appearing in the course of integration of (10). Details of this method are explained by
solving two problems in Sections 4 and 5.
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4. Diffusion equation

Solve the equation

∂u
∂t

= A
∂2u
∂x2

, (x, t) ∈ [0, 1] (16)

for the initial condition u(x, 0) = g(x) and boundary conditions u(0, t) = u(1, t) = 0.
Let us confine to the caseM1 = M2 = M . The wavelet solution is sought in the form

∂3u
∂t∂x2

=

2M−
i=1

2M−
l=1

ailhi(x)hl(t). (17)

By multiple integration and considering the initial condition we find

∂2u
∂x2

=

−
i

−
l

ailhi(x)p1l(t)+
∂2g
∂x2

∂u
∂t

=

−
i

−
l

ailp2i(x)hl(t)+ x
∂2u
∂t∂x

|x=0 +
∂u
∂t

|x=0 .

(18)

For simplicity’s sake here and in the following the limits of summation are notwritten out. In viewof the boundary conditions
we have

∂u
∂t

|x=0 =
∂u
∂t

|x=1 = 0. (19)

It follows for x = 1 from (18)

∂2u
∂t∂x

|x=0 = −

−
i

−
l

ailq2(i)hl(t). (20)

Replacing this result back into (18) we obtain

∂u
∂t

=

−
i

−
l

ail[p2i(x)− xq2(i)]hl(t). (21)

These results are substituted into (16); satisfying the obtained equation in the collocation points xr , ys we get the system−
i

−
l

ai lRilrs = g ′′(x), (22)

where

Rilrs = [P2(i, r)− xrq2(i)]H(l, s)− A H(i, l)P1(r, s). (23)

Introducing the indices α, β according to (12) this result obtains the form (13) or (14). The wavelet coefficients aij are
calculated in the way indicated in Section 3. For evaluating the function u(x, y)we integrate (21) with regard to t and obtain

u(x, t) =

−
i

−
l

ai l[p2 i(x)− xq2(i)]p1 l(t)+ g(x). (24)

Example 1. Computer simulation was carried out for A = 0.2 and g(x) = x(1 − x). For J the values 2, 3, 4 were taken. The
solution for J = 3 is plotted in Fig. 1.

It is interesting to compare our solution with other results. A solution based on a Fourier transform is [21]:

u(x, t) =

−
n

dn exp(−π2n2At) sin(nπx), (25)

where dn = [2/(nπ)]3, n = 1, 3, 5, . . . .
These two solutions were compared in the collocation point [x(M), y(M)]. The difference of u[x(M), y(M)] was 5.4E−4

for J = 2, 1.4E−4 for J = 3 and 3.5E−5 for J = 4. So we state that already for J = 2 (64 collocation points) the accuracy of
the Haar wavelet solution is rather good.
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Fig. 1. Solution of the diffusion equation for J = 3.

5. Poisson equation

Consider the Poisson equation

∂2u
∂x2

+
∂2u
∂y2

= f (x, y) (26)

on a square x ∈ [0, 1], y ∈ [0, 1] with the boundary conditions u(x, 0) = u(0, y) = u(x, 1) = 0, u(1, y) = g(y).
The solution is started by assuming

∂4u
∂x2∂y2

=

−
i

−
l

ailhi(x)hl(y). (27)

By integrating this equation twice with regard to x and twice with regard to y we find

∂2u
∂x2

=

−
i

−
l

ailhi(x)p2l(y)+ yϕ′′

1 (x)+ ϕ′′

2 (x)

∂2u
∂y2

=

−
i

−
l

ailp2l(x)hl(y)+ xψ ′′

1 (y)+ ψ ′′

2 (y).
(28)

By multiple integration we obtain

u(x, y) =

−
i

−
l

ailp2i(x)p2l(y)+ yϕ1(x)+ ϕ2(x)+ xψ1(y)+ ψ2(y). (29)

Next the boundary conditions are satisfied:

(i) It follows from u(x, 0) = 0 that ϕ2(x) = −xψ1(0)− ψ2(0).
(ii) The condition u(0, y) = 0 gives ψ2(y) = −yϕ1(0)− ϕ2(0).
(iii) Satisfying the condition u(x, 1) = 0 we obtain

ϕ1(x) = −

−
i

−
l

ai lp2 i(x)q2(l)+ ϕ1(0)− x[ψ1(1)− ψ1(0)].

(iv) In view of u(1, y) = g(y)we find

ψ1(y) = −

−
i

−
l

ai lq2(i)[−p2 l(y)+ yq2(l)] + ψ1(0)+ y[ψ1(1)− ψ1(0)] + g(y).

Now (28) obtain the form

∂2u
∂x2

=

−
i

−
l

ailhi(x)[p2l(y)− yq2(l)]

∂2u
∂y2

=

−
i

−
l

ail[p2l(x)− xq2(i)hl(y)] + xg ′′(y).
(30)
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Fig. 2. Solution of the Poisson equation for J = 3.

Substituting this result into (26) and satisfying the obtained equation in the collocation points we find

u(x, y) =

−
i

−
l

ailRilrs = F(r, s) (31)

where

Rilrs = H(i, r)P2(l, s)+ P2(i, r)H(l, s)− H(i, r)q2(l)ys − q2(i)xrH(l, s)

F(r, s) = f (xr , ys)− xrg ′′(ys).
(32)

For solving this system again the technique of Section 3 is applied. The final result is

u(x, y) =

−
i

−
l

ail{p2i(x)[p2l(y)− yq2(l)] + xq2(i)[−p2l(y)+ yq2(l)]} + g(y). (33)

Example 2. Solve (26) for g = 0 and

f (x, y) = 6xy[y2(1 − 2x)(1 − y)− x2(1 − 2y)(1 − x)]. (34)

The exact solution for this case is

uex = x3y3(1 − x)(1 − y). (35)

For estimating the accuracy of the wavelet results the matrix norm from the MATLAB library ∆(η) = norm(u − ue x, η)
is used; the case η = 2 gives the largest column sum, the case η → inf—the largest row sum. In the present case due
to symmetry both norms are equal and we can estimate the accuracy of our solution by the parameter δ = ∆(2)/(2M).
Computer simulation gave the following error estimates: δ = 9.4E − 5 for J = 2, δ = 2.4E − 5 for J = 3, δ = 6.0E − 6 for
J = 4.

Example 3. Consider the case f (x) = 3x2, g(y) = A sin(πy) The solution for J = 3 is plotted in Fig. 2. In the present case
we do not know the exact solution, therefore to estimate the accuracy of the solution by the curves u(x, 0.5) and u(0.5, y),
which are plotted in Fig. 3 for different values of J; it turnedout that already for J = 2 and J = 3 these curves visually coincide.
In addition to it the value of V = u(0.5, 0.5) was also computed and we found that V = 0.13494 for J = 2, V = 0.13542
for J = 3, V = 0.13560 for J = 4. So we can state that already the solution J = 2 (64 grid points) guarantees the necessary
exactness in most cases.

6. Conclusions

The main benefits of the proposed method are its simplicity (already a small number of grid points guarantees the
necessary accuracy) and universality (the same approach is applicable for a wide class of PDEs). The method is very
convenient for solving boundary value problems, since the boundary conditions are taken into account automatically. For
numerical calculations useful are the matrix programs of MATLAB. The most time-consuming procedure is to calculate the
integrals (5); for this purpose it is suitable to put together an universal subprogram. In this paper only linear problems were
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Fig. 3. Poisson equation: sections of the surface u = u(x, y).

considered, but the method is applicable also for nonlinear PDEs: we recommend consulting the paper [22] in which the
Burgers’ equation was solved.
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