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Abstract 

We describe an algorithm for computing the intersection of n balls of equal radius in ]R 3 which runs in time 
O(n lg 2 n). The algorithm can be parallelized so that the comparisons that involve the radius of the balls are 
performed in O(lg 3 n) batches. Using parametric search, these algorithms are used to obtain an algorithm for 
computing the diameter of a set of n points in lI~ 3 (the maximum distance between any pair) which runs in time 
O(n lg 5 n). The algorithms are deterministic and elementary; this is in contrast with the running time O(n lg n) in 
both cases that can be achieved using randomization (Clarkson and Shor, 1989), and the running times O(n lg n) 
and O(n lg 3 n) using deterministic geometric sampling (Brtinnimann et al., 1993; Amato et al., 1994). © 1997 
Elsevier Science B.V. 
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1. Introduction 

Let S be a set of r~ points in R 3. We consider the problems of  (i) computing the intersection of n 
balls of  equal radius centered at the points in S; and (ii) computing the diameter of S, the maximum 
distance between any two points in S. 

Clarkson and Shor [3] gave optimal randomized algorithms for both problems which run in time 
O(n  lg n). They solve the diameter problem through a reduction to computing the intersection of  equal 
radius balls. For the lower bounds, see the text by Preparata and Shamos [13]. Since then, it has been 
a challenge to match that time complexity with deterministic algorithms. Chazelle et al. [4] gave an 
algorithm for the diameter problem that runs in time O(n~+~), where e > 0 is arbitrary (the constant 
in the O notation depends on e); the algorithm uses parametric search and deterministic sampling. 
Matougek and Schwarzkopf [10] improved their algorithm to a running time O ( n l g  c n) where c is 
a constant for which they do not give an explicit bound and which is possibly very large. They did 
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not consider the ball intersection problem directly, and do not provide an elementary solution. Here, 
we give a deterministic algorithm for the ball intersection problem that runs in time O(n lg 2 r~), and 
using parametric search we obtain a deterministic algorithm for the diameter problem that runs in time 
O(n lg 5 n). These algorithms are elementary in the techniques they use, and simple as well. 

Recently, Brtnnimann et al. [2] have given algorithms for these problems that run in time O(n lg n) 
and O(n lg 3 n) respectively. They are based on a complex derandomization technique for geometric 
sampling. Amato et al. [1] have given alternative algorithms with the same running times, also based 
on derandomization techniques but somewhat simpler. We believe that despite these developments 
our algorithms are of interest because they show what can be achieved using elementary methods. 
It remains an open problem to design an O(n lg n) time deterministic algorithm for computing the 
diameter. 

In Section 2, we state geometric and combinatorial properties of the intersection of equal radius 
balls. Section 3 describes the algorithm for intersection of balls, while Section 4 describes how it can 
be made into a parallel algorithm in a comparison model of computation. Section 5 indicates how 
parametric search, using the sequential and parallel algorithms for ball intersection, gives an algorithm 
for the diameter problem. 

2. Geometry of ball intersection 

Let S be a set of n points in R 3. For p E S, let b(p, r) be the ball of radius r centered at p and 
let s(p, r) be the bounding sphere of b(p, r) (t9 and r may be omitted when they are understood or 
not relevant). Let B(S, r) = {b(p, r): p E S}, and let B(S, r) n = NpEs b(p, r) (again, S and r may 
be omitted). B n is a convex body which we call a spherical polytope. The boundary of B n, denoted 
bd(Bn), consists of faces, edges and vertices corresponding to the intersection of one, two and three 
bounding spheres, respectively. We assume that the point set S is in general position so that more 
than three bounding spheres have empty intersection; this can be achieved using symbolic perturbation 
[8]. The faces are intersections of circular caps on a sphere (of different radii in general), which we 
call spherical polygons. These faces, edges and vertices form the boundary graph of B n, denoted 
G(B). The desired output consists of an appropriate data structure representing G(B), allowing certain 
standard adjacency operations in time O(1) (for example, obtaining the next edge bounding the same 
face in a particular direction, which allows a walk along the boundary of a face in time linear with 
its length). Here, the size of a graph G, denoted I~1, is the total number of faces, edges and vertices. 
In general, if the radii are not equal, IG(B)I can be ~"~(n2). However, [G(B)I is O(n) for equal radius 
balls as a result of the following "convexity" property of the faces. 

"Convexity" of faces [9]. Let p, q be two points in bd(B n) both on the same bounding sphere s 
(assuming n >~ 2, they cannot be antipodal). Then the geodesic ~'q connecting p and q on s (a segment 
of great circle) is also in bd(Bn). This is the case because if another ball b ~ contains p, q but not some 
other point in fi'q, then b t would have a radius greater than that of b. 

This implies that for the bounding sphere s of each ball in B, bd(B n) N s has at most one connected 
component. Since the degree of a vertex in G(B) is exactly three, it follows that IF(B)[ is O(n). The 
same bound applies for the dual graph ~D(B) (the graph with a vertex corresponding to each face in 
~(B),  and an edge between two vertices if the corresponding faces in G(B) are adjacent). 
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Fig. 1. Multiple edges in a boundary chain. 

Hierarchical decomposition. It is well-known that a planar graph has a large independent set of 
vertices of degree bounded by a constant. Specifically, in our case, GD(B) has an independent set of 
vertices of size at least n/20 each of degree at most 9 (we are not concerned with the best possible 
constants). Such a set can be found by a greedy algorithm in O([~D(B)[) = O([/3[) time. Note that 
two independent vertices in Co(B) correspond to two non-adjacent faces in G(B). Our algorithms 
use a hierarchical decomposition of B n dual to that of Dobkin and Kirkpatrick [6]; in particular, it 
is built in the exterior of /3n .  Let /30 = /3 and let Ii C Bi be the set of balls corresponding to an 
independent set of vertices in ~D(Bi). We have [Ii[ ~> IBil/20. Let Bi+l =/3i  - Ii. Then 

c /3? c & c . . .  c B2,  
19 where I/3k[ = O(1) and k = O(lgn)  since [/3i+1I ~< ~I/3~[. A ball b E B~ is new in Bi i fb  ~ Bi+l, 

otherwise it is old. A sphere or face is new (respectively old) in bd(Bp) if the corresponding ball is 
new (respectively old). 

Multiple edges in the boundary chain of  a face. The boundary chain bd(f)  of a face f of bd(B n) 
is the circular chain of edges (or corresponding neighbor faces) that bound f .  A neighbor face can 
appear repeatedly in the chain since the intersection of two spheres can contribute more than one 
edge to bd(/3n); see Fig. 1. However, bd( f )  has the DS2 property: there is no subsequence of the 
form . . .  a . . .  b . . .  a . . .  b . . . .  where a ~ b are faces, for such a subsequence would contradict the 
connectedness of the faces. 

3. Sequential algorithm for ball intersection 

We use a divide and conquer approach: divide B into two sets B1 and /32 of nearly equal size, 
compute B1 n and/3~ recursively, and merge them. The bottom of the recursion, when [B I is bounded 
by a constant, can be solved by some brute force approach. Thus, we can concentrate on the problem 
of merging two spherical polytopes. For this, it would be sufficient to identify the laces, the connected 
components of bd(B~) N bd(B~). The trouble here is that we do not know of a scheme to split B 
so that these laces are easily identified. The approach that works for halfspaces, to separate the dual 
points by a plane, produces multiple laces in the case of balls. Our approach is to split arbitrarily, and 
to design a general merge algorithm. 

Let [79I denote the number of faces of the spherical polytope 79. We describe an algorithm that 
merges two spherical polytopes 79 and Q in time O(m lg m) where m = 1791 + I QI. Let 

7 9 = 7 9 o C 7 9 1 C " ' C 7 9 k  and Q = Qo c Q 1 c  ""  c Qt 

be hierarchical decompositions of 79 and Q. 
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Dynamic programming. The approach is to compute all intersections R~,,j -- 7~i C? Qj, 0 ~< i ~< k, 
0 ~< j ~ l, using a dynamic programming method. 

For each i = 0 , . . . ,  k, ~i,z can be computed using a brute force method in time O([7~i[ + IQll)- 
Similarly, for each j = 0 , . . .  ,l, T~k,j can be computed in time O(17~k I + IQjl)- 

The main procedure is to compute .A = ~i , j  from B = -  T~i,j+l and C = ~ i+ l , j  in time linear in 
[B] + [C I. 2 Let the balls of 79i and Qj be colored blue and red, respectively, and correspondingly for 
bounding spheres and faces. Recall the definition of new and old balls (spheres, faces) in a hierarchical 
decomposition. Thus, we have new blue and old blue balls (spheres, faces) in 7:'/, and new red and old 
red balls (spheres, faces) in Qj. The balls (spheres, faces) in .A are given the corresponding labels in 
79i and Qj. Note that in ,4 no two new faces of the same color may form an edge, by construction of 
the hierarchical decomposition (and therefore no three new faces of either color can form a vertex). 
To compute .A it is sufficient to determine the boundary chain bd( f )  of each face f .  Each edge in 
bd( f )  is old or new and blue or red depending on the corresponding neighbor face. First, we deal with 
old faces; only for them one needs to perform comparisons that depend on the radius of the balls. To 
determine the boundary of new faces, it is sufficient to follow pointers because all the vertices have 
already been computed (not all edges have been identified though). 

Obtaining the boundary chain of an old face. Consider an old blue sphere s. We want to determine 
the boundary chain of f ,  the face of s in ,A. Let fl  and f2 be the corresponding faces of s in/3 and C, 
respectively, thus f = fl  N f2. Of course, if either f l  or f2 is empty, then f is empty. To compute 
the boundary chain bd( f )  of f ,  it is sufficient to merge the boundary chains bd(f l )  in/3  and bd(f2) 
in C in an appropriate manner. This problem is similar to that of intersecting convex polygons (in 
the plane) and, as for that problem, a sweep algorithm will do the job. 3 We only need to understand 
spherical polygons and their intersections to be ready to use a sweep algorithm. More specifically, we 
consider the restricted type of spherical polygons that appear in the algorithm. 

For each sphere s, let the north pole of s be the point of largest third coordinate, denoted N(s) ;  
its south pole S(s) is the antipodal of N(s). The meridians (geodesics between N and S) establish a 
circular order that can be used to perform a sweep. Given a spherical polygon g on s, we assume that 
bd(g) contains neither N nor S (a general position assumption that can be enforced with a symbolic 
perturbation). An edge e of bd(9 ) is a northern (respectively southern) edge if g is on its south 
(respectively north) side. A boundary chain is northern (respectively southern) if each of its edges is 
northern (respectively southern). For 9, there are two cases: (i) either N or S is in 9, and we say that 
9 is a northern or southern face respectively; or (ii) neither N nor S is in g. In the first case, because 
of the "convexity" property of faces, bd(9) forms a monotone chain (every meridian intersects bd(9) 
in a unique point); the boundary is a southern or a northern chain respectively. In the second case, the 
chain bd(9) splits into two monotone chains, one northern and one southern (two edges may be split 
in the process). A spherical polytope has at most one northern face and at most one southern face. 
We assume that for each face of a spherical polytope one maintains the information of whether it is 
northern, southern or neither, and in this last case its northern and southern boundary chains. Note in 

2 Computing 7-¢.~ d from T ~ + I , j + I  , ~i and Qj in time linear in IR~+~,j+~ I + 179~1 + IQ31 would result in a linear time 
merge, and an O(n lg n) time algorithm for the ball intersection problem. 

3 We have not been able to avoid the sweep and rather perform walks along the boundaries as in the intersection algorithm 
for convex polygons in [12] (see [13, p. 265]). 
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Fig. 2. Merging faces (new edges appear dashed). 
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particular that f is a northern (respectively southern) face iff both fl and f2 are northern (respectively 
southern). 

In each of bd(fl)  and bd(f2), new edges are independent, that is, they are not incident to common 
vertices. The chain bd(f )  consists of pieces of boundary each of which can be either a piece common 
to both bd(f l )  and bd(f2) (old edges), a piece in bd(fl)  but not in bd(f2) (new blue edges), or a 
piece in bd(f2) but not in bd(fl)  (new red edges). For each of the last two types of pieces, there is 
a corresponding segment of boundary on the outside forming a region called a sickle. The interior 
boundary of a sickle, a single edge in bd(f) ,  is a piece of a new edge, while the exterior boundary can 
consist of both old and new edges. See Fig. 2. Thus, bd(f)  can be obtained from bd(fl)  by replacing 
pieces of bd(fl ) by pieces of new edges that appear in bd(f2), which we call bridges (and similarly 
from bd(f2)). Given the circular chain for bd(fl) ,  it can be augmented to include the bridges from 
bd(f2) (and similarly for bd(f2)). 

With the information above in mind, a straightforward variation of the sweeping line algorithm to 
compute the intersection of two convex polygons (see, e.g., [13, pp. 263-265]) results in a sweeping 
meridian algorithm that determines all the intersections of bd(fl)  and bd(f2), and the chain bd(f) .  
As a byproduct, the boundary chains bd(f~) and bd(f2) are augmented to include the corresponding 
bridges. This takes time O(Ibd(fl)] + [bd(f2)]). 

Obtaining the boundary chain of a new face. All vertices are already known either f rom/3 or C or 
from computing old faces in .,4, since no vertex in .A is incident to only new faces; thus, we only need 
to trace pointers. Let s be a new blue sphere, and let f and f '  be the corresponding faces in .,4 and/3. 
Here we do not have two boundaries to merge, but only bd( f  I) (because s is a new blue sphere, it 
does not appear in C). bd(f )  is obtained from bd( f  t) by determining the new red edges in C that 
create bridges. If no vertex incident to s has been found during the construction of old faces, then f is 
empty. Thus, let v be one such vertex; v is in bd(f ' )  though it may not be a vertex of bd(f ' ) .  Starting 
at v, construct bd(f )  by tracing bd(f ' ) .  At each step the tracing is on an old edge e, and at the same 
time we trace the boundary of the corresponding neighbor face 9. A sickle starts when a vertex in 
bd( f  ~) incident to a new red edge is reached (this information appears in the augmented chain of bd(9) 
where 9 is the neighbor face); the sickle ends when the next vertex in bd(f ' )  incident to the same 
new red edge is reached (no vertices incident to other new red edges can be reached in between). In 
this procedure there is no need to compute new intersections (in particular, no comparisons involving 
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the radius), one just uses the circular chains of the old faces augmented with their bridges. Thus, it 
takes time O (]bd(f') ]) to obtain the boundary chain of f .  

Running time. The basic merge step, obtaining Rid, takes time O(]7"il + [Qjl) (since }-~fcT~ Ibd(f)] = 
O(17"1), where the sum is over the faces f of 7"). Thus, the time to obtain all Rid, 0 <<. i <~ k, 
0 ~ j ~ < / i s  

We have 

k l 

  lejl =o 
i=o j=o 

+ IQjl)). 

( E,_-o tQ01) : o(IQoL ) : o(IQl ), 
and similarly the sum of the 17"il is O([7"1l ). The hierarchical decompositions of 7 ) and Q can be 
computed in time O(17)[ + IQI). Since k = O(lg(17"[) ) and l = O(lg(IQ[) ), the time to merge 7" 
and Q is O(m lg ra) where m = [7' I +IQI. Finally, the running time of the ball intersection algorithm 
satisfies the recurrence 

T(n) = T([n/ZJ) + T ( [ n / 2 ] )  + O(n lgn) .  

Hence, T(n) = O(n lg 2 n). 

4. Parallel algorithm for ball intersection 

With the use of parametric search in view, we are interested in a parallel algorithm for a comparison 
model of computation (often called Valiant's model [14]). That is, we are interested in parallelizing 
those comparisons performed by the algorithm that involve a certain parameter; other computations do 
not need to be parallelized. Thus, when we speak of parallel running time in this model we actually 
mean the number of parallel batches of comparisons. 

In our specific application, ball intersection, the parameter we are concerned with is the radius r of 
the balls. Each of these comparisons requires the determination of the sign of a polynomial of bounded 
degree in the variable r. For example, consider the comparison that determines whether a given ball 
contains a vertex which is one of the intersection points of three other balls; here the outcome depends 
on the sign of r - r0, where r0 is the radius of the sphere containing the four centers. 

The divide and conquer approach parallelizes in a natural manner, introducing a factor lg n in 
the parallel running time. The construction of the hierarchical decomposition also parallelizes: no 
comparisons are involved in determining a large independent set of faces, and the reconstruction of 
the spherical polytope after the corresponding balls are removed is independent for each of the "cone" 
like portions of spherical polytope that appear. So there is a factor lg n in the parallel running time from 
the hierarchy construction. The dynamic programming construction can be parallelized by computing 
all T~i,j for fixed i + j in parallel, thus introducing a lg n factor in the parallel running time. Below 
we show that bd(fl)  and bd(f2) can be merged in parallel to obtain bd(f )  using O(log m) time and 
O ( m l o g m )  work where m = Ibd(fl)[ + Ibd(f2)[. Thus, the basic merging step, T~i, j from Ri,j+l and 
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Fig. 3. A new blue edge intersected by several new red edges (dashed). 
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~r~i+l,j, also parallelizes, since the remaining computations do not require comparisons involving the 
radius. 

Merging two boundaries in parallel. The vertices in bd(f)  are old-old, old-new or new-new depending 
on the edges to which they are incident (disregarding orientation). Consider first the new-new vertices. 
A particular new blue edge e in bd(fx ) (which may be one of several contributed by the same neighbor 
face) may have multiple intersections with the red edges of bd(f2); see Fig. 3. Note that all of the 
interior intersections of e are with new red edges, and except for the extreme ones (which can be the 
vertices of e) they are double intersections of e with new red edges. In this case, by the DS2 property 
of boundaries, the two intersections of e with a new red edge e ~ are the only intersections of e ~ with 
bd(fl) .  Thus, in order to find the new-new vertices, it is sufficient to find for each new edge, blue 
in bd(fl)  or red in bd(f2), its extreme intersections with the other face (the intersections of e and e' 
are accounted for as the extreme intersections of et). For this, for each new edge we perform a binary 
search in the boundary of the other face. This is explained below. 

Now consider old-old and old-new vertices. Although they already appear in bd(fl)  or in bd(f2), 
one needs information to decide their relative order along the boundary. Again the solution is to 
perform for each old edge e a binary search in the boundary of the other face. To be precise, taking 
e in bd(fl) ,  bd(f2) does not cross e, but there may be vertices of bd(f2) on e; we are interested in 
identifying the extreme ones, and hence all of them. 

Binary search to determine the vertices. Let e be a new blue edge in bd(fl) .  We use binary search 
to determine its extreme intersections with bd(f2). If e is not monotone, then it can be split into two 
monotone pieces; let ~r be on of the at most two monotone subchains of bd(f2). Now that both e 
and c~ are monotone, it is an easy task to perform the binary search required to determine the extreme 
intersections. 

Let us assume that e is a southern edge. If cr is a southern chain, then e and c~ can have multi- 
ple intersections (the case illustrated in Fig. 3). If cr is a northern chain, then there are at most two 
intersections between e and cr (by "convexity"). A first task of the binary search is to restrict cr to 
a subchain c/ within the interval of meridians determined by e. The second task is to determine the 
extreme intersections; it begins with a single initial interval that contains both potential intersections, 
and eventually splits into two binary searches, one for each extreme intersection. An essential obser- 
vation for the use of binary search is that even though o -t may intersect e several times, the vertices 
of c /behave well: in each of the intervals determined by the extreme intersections, all vertices are to 
north or to the south of e. 

For the case of a southern old blue edge e, the binary search is as that for a southern new blue 
edge, if we interpret the vertices of o- on e as being to the south of e. 

Tracing the boundaries. Once the vertices have been found using the binary search, the boundary of 
an old face f = f l  N f2 is determined by walking along bd(fl ) and bd(f2), determining the sickles and 
bridges (the positions of the new vertices along bd(fl ) and bd(f2) are already known as a result of the 
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binary searches). Finally, the boundaries of new faces are determined as for the sequential algorithm 
(no comparisons are involved so it does not need to be parallelized). 

Parallel running time and total work. There is a factor lg n due to the divide and conquer approach, 
a factor lg n due to dynamic programming method for merging, and a factor lg n due to the binary 
search for merging faces (the factor lg n from the hierarchy construction does not affect this because it 
is performed once in parallel for each of the levels of the divide and conquer tree). Thus, the parallel 
running time is O(lg 3 n). The total work performed by the parallel algorithm is O(nlg  3 n); the lgn  
factor increment over the sequential algorithm is due to the binary searches. 

5. Algorithm for diameter 

We follow Chazelle et al. [4] and Matou~ek and Schwarzkopf [10] in using the parametric search 
technique of Meggido [11]. Our approach differs in that we have at hand sequential and parallel 
algorithms for ball intersection (which is also the case in [1]). 

Let S be a set of n points, and let D be its diameter. As in [3], we need an oracle O that for any 
r > 0 decides whether r < D, r = D or r > D. Their solution is as follows: if there are points of S 
outside B(S, r) n then r < D, if there are no points of S outside B(S, r) • but there are points in 
bd(B(S, r) •) then r = D, otherwise r > D. Thus, to implement O, compute B(S, r) n and then for 
each point determine its position relative to bd(B(S, r) n) (this can be done in time O(nlg  n) using 
standard planar point location techniques [7,13] after an appropriate projection). 

We have at hand sequential Os and parallel Op versions of the oracle O, which run in time O(n lg 2 n) 
and O(lg 3 n), respectively, the parallel one using O(n lg 3 n) work (the data structure for point location 
can be constructed in parallel within these time and work bounds; the n point locations are performed 
in parallel). 

The algorithm for the diameter is as follows. We do not explain the general method of parametric 
search, but directly its application. Run the parallel oracle Op with input S and r = D. Since the 
diameter D is not known, a parallel batch of comparisons that the algorithm presents is resolved as 
follows. Compute the roots of all the polynomials involved in the comparisons and sort them; then 
perform a binary search on the sorted list, using O8 at each step, to determine the position of D among 
the roots. Eventually, the value of D is determined as one of the roots. 

This gives an overall running time in O(nlg  6 n): a factor lg3n due to Op, a factor lgn  due to the 
number of iterations needed to resolve a batch of comparisons through binary search, and O(n lg 2 n) 
due to 08 (the O(n lg 3 n) work of Op is an additive term, so it does not affect the asymptotic running 
time). 

However, we can use Cole's trick [5] to reduce the running time to O(nlg  5 n). This is applied 
to the O(n lg n) simultaneous binary searches that determine vertices for merging faces. Each binary 
search is independent, so a search whose comparison has been resolved can proceed. Cole's trick, 
in our case, consists in assigning a weight 2 -4 to the comparison of depth d in each binary search. 
Using a weighted median on the ordered list of active comparisons (those waiting to be resolved), 
each iteration resolves comparisons with at least half of the active weight. The comparisons resolved 
introduce comparisons with half the weight, so the total weight of active comparisons decreases by 
at least 1/4. Thus, the total active weight decreases exponentially as (3/4)i; since the initial weight 
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is O(n lgn ) ,  and the smallest weight of a comparison is 2 -O(lgn), then all comparisons are resolved 
in O(lg n) iterations. This collects the factor O(lg n) of the length of a binary search and the factor 
O(lg n) of the number of iterations to resolve a parallel batch of comparisons into a single one. 
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