
~-~ Computational
Geometry

Theory and Applications
ELSEVIER Computational Geometry 8 (1997) 57-65

Intersection of unit-balls and diameter of a point set in] ~ 3 ,~

Edgar A. Rarnos J
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Communicated by David Dobkin; submitted 20 December 1993; accepted 13 March 1996

Abstract

We describe an algorithm for computing the intersection of n balls of equal radius in]R 3 which runs in time
O(n lg 2 n). The algorithm can be parallelized so that the comparisons that involve the radius of the balls are
performed in O(lg 3 n) batches. Using parametric search, these algorithms are used to obtain an algorithm for
computing the diameter of a set of n points in lI~ 3 (the maximum distance between any pair) which runs in time
O(n lg 5 n). The algorithms are deterministic and elementary; this is in contrast with the running time O(n lg n) in
both cases that can be achieved using randomization (Clarkson and Shor, 1989), and the running times O(n lg n)
and O(n lg 3 n) using deterministic geometric sampling (Brtinnimann et al., 1993; Amato et al., 1994). © 1997
Elsevier Science B.V.

Keywords." Geometric algorithms; Intersection of balls; Diameter of a point set; Parametric search

1. Introduction

Let S be a set of r~ points in R 3. We consider the problems of (i) computing the intersection of n
balls of equal radius centered at the points in S; and (ii) computing the diameter of S, the maximum
distance between any two points in S.

Clarkson and Shor [3] gave optimal randomized algorithms for both problems which run in time
O(n lg n). They solve the diameter problem through a reduction to computing the intersection of equal
radius balls. For the lower bounds, see the text by Preparata and Shamos [13]. Since then, it has been
a challenge to match that time complexity with deterministic algorithms. Chazelle et al. [4] gave an
algorithm for the diameter problem that runs in time O(n~+~), where e > 0 is arbitrary (the constant
in the O notation depends on e); the algorithm uses parametric search and deterministic sampling.
Matougek and Schwarzkopf [10] improved their algorithm to a running time O (n l g c n) where c is
a constant for which they do not give an explicit bound and which is possibly very large. They did

This research was supported by the National Science Foundation under Grant CCR-9118874.
1Current address: DIMACS Center, Rutgers University, RO. Box 1179, Piscataway, NJ 08855-1179, USA. E-mail:

ramose @ dimacs.mtgers.edu.

0925-7721/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved.
PII S0925-7721 (96)00010-7

58 E.A. Ramos / Computational Geometry 8 (1997) 57~55

not consider the ball intersection problem directly, and do not provide an elementary solution. Here,
we give a deterministic algorithm for the ball intersection problem that runs in time O(n lg 2 r~), and
using parametric search we obtain a deterministic algorithm for the diameter problem that runs in time
O(n lg 5 n). These algorithms are elementary in the techniques they use, and simple as well.

Recently, Brtnnimann et al. [2] have given algorithms for these problems that run in time O(n lg n)
and O(n lg 3 n) respectively. They are based on a complex derandomization technique for geometric
sampling. Amato et al. [1] have given alternative algorithms with the same running times, also based
on derandomization techniques but somewhat simpler. We believe that despite these developments
our algorithms are of interest because they show what can be achieved using elementary methods.
It remains an open problem to design an O(n lg n) time deterministic algorithm for computing the
diameter.

In Section 2, we state geometric and combinatorial properties of the intersection of equal radius
balls. Section 3 describes the algorithm for intersection of balls, while Section 4 describes how it can
be made into a parallel algorithm in a comparison model of computation. Section 5 indicates how
parametric search, using the sequential and parallel algorithms for ball intersection, gives an algorithm
for the diameter problem.

2. Geometry of ball intersection

Let S be a set of n points in R 3. For p E S, let b(p, r) be the ball of radius r centered at p and
let s(p, r) be the bounding sphere of b(p, r) (t9 and r may be omitted when they are understood or
not relevant). Let B(S, r) = {b(p, r): p E S}, and let B(S, r) n = NpEs b(p, r) (again, S and r may
be omitted). B n is a convex body which we call a spherical polytope. The boundary of B n, denoted
bd(Bn), consists of faces, edges and vertices corresponding to the intersection of one, two and three
bounding spheres, respectively. We assume that the point set S is in general position so that more
than three bounding spheres have empty intersection; this can be achieved using symbolic perturbation
[8]. The faces are intersections of circular caps on a sphere (of different radii in general), which we
call spherical polygons. These faces, edges and vertices form the boundary graph of B n, denoted
G(B). The desired output consists of an appropriate data structure representing G(B), allowing certain
standard adjacency operations in time O(1) (for example, obtaining the next edge bounding the same
face in a particular direction, which allows a walk along the boundary of a face in time linear with
its length). Here, the size of a graph G, denoted I~1, is the total number of faces, edges and vertices.
In general, if the radii are not equal, IG(B)I can be ~"~(n2). However, [G(B)I is O(n) for equal radius
balls as a result of the following "convexity" property of the faces.

"Convexity" of faces [9]. Let p, q be two points in bd(B n) both on the same bounding sphere s
(assuming n >~ 2, they cannot be antipodal). Then the geodesic ~'q connecting p and q on s (a segment
of great circle) is also in bd(Bn). This is the case because if another ball b ~ contains p, q but not some
other point in fi'q, then b t would have a radius greater than that of b.

This implies that for the bounding sphere s of each ball in B, bd(B n) N s has at most one connected
component. Since the degree of a vertex in G(B) is exactly three, it follows that IF(B)[is O(n). The
same bound applies for the dual graph ~D(B) (the graph with a vertex corresponding to each face in
~(B), and an edge between two vertices if the corresponding faces in G(B) are adjacent).

E.A. Ramos / Computational Geometry 8 (1997) 57--65 59

~ a b

a

Fig. 1. Multiple edges in a boundary chain.

Hierarchical decomposition. It is well-known that a planar graph has a large independent set of
vertices of degree bounded by a constant. Specifically, in our case, GD(B) has an independent set of
vertices of size at least n/20 each of degree at most 9 (we are not concerned with the best possible
constants). Such a set can be found by a greedy algorithm in O([~D(B)[) = O([/3[) time. Note that
two independent vertices in Co(B) correspond to two non-adjacent faces in G(B). Our algorithms
use a hierarchical decomposition of B n dual to that of Dobkin and Kirkpatrick [6]; in particular, it
is built in the exterior of /3n . Let /30 = /3 and let Ii C Bi be the set of balls corresponding to an
independent set of vertices in ~D(Bi). We have [Ii[~> IBil/20. Let Bi+l =/3i - Ii. Then

c /3? c & c . . . c B2,
19 where I/3k[= O(1) and k = O(lgn) since [/3i+1I ~< ~I/3~[. A ball b E B~ is new in Bi i fb ~ Bi+l,

otherwise it is old. A sphere or face is new (respectively old) in bd(Bp) if the corresponding ball is
new (respectively old).

Multiple edges in the boundary chain of a face. The boundary chain bd(f) of a face f of bd(B n)
is the circular chain of edges (or corresponding neighbor faces) that bound f . A neighbor face can
appear repeatedly in the chain since the intersection of two spheres can contribute more than one
edge to bd(/3n); see Fig. 1. However, bd(f) has the DS2 property: there is no subsequence of the
form . . . a . . . b . . . a . . . b where a ~ b are faces, for such a subsequence would contradict the
connectedness of the faces.

3. Sequential algorithm for ball intersection

We use a divide and conquer approach: divide B into two sets B1 and /32 of nearly equal size,
compute B1 n and/3~ recursively, and merge them. The bottom of the recursion, when [B I is bounded
by a constant, can be solved by some brute force approach. Thus, we can concentrate on the problem
of merging two spherical polytopes. For this, it would be sufficient to identify the laces, the connected
components of bd(B~) N bd(B~). The trouble here is that we do not know of a scheme to split B
so that these laces are easily identified. The approach that works for halfspaces, to separate the dual
points by a plane, produces multiple laces in the case of balls. Our approach is to split arbitrarily, and
to design a general merge algorithm.

Let [79I denote the number of faces of the spherical polytope 79. We describe an algorithm that
merges two spherical polytopes 79 and Q in time O(m lg m) where m = 1791 + I QI. Let

7 9 = 7 9 o C 7 9 1 C " ' C 7 9 k and Q = Qo c Q 1 c "" c Qt

be hierarchical decompositions of 79 and Q.

60 E.A. Ramos / Computational Geometry 8 (1997) 57-65

Dynamic programming. The approach is to compute all intersections R~,,j -- 7~i C? Qj, 0 ~< i ~< k,
0 ~< j ~ l, using a dynamic programming method.

For each i = 0 , . . . , k, ~i,z can be computed using a brute force method in time O([7~i[+ IQll)-
Similarly, for each j = 0 , . . . ,l, T~k,j can be computed in time O(17~k I + IQjl)-

The main procedure is to compute .A = ~i , j from B = - T~i,j+l and C = ~ i+ l , j in time linear in
[B] + [C I. 2 Let the balls of 79i and Qj be colored blue and red, respectively, and correspondingly for
bounding spheres and faces. Recall the definition of new and old balls (spheres, faces) in a hierarchical
decomposition. Thus, we have new blue and old blue balls (spheres, faces) in 7:'/, and new red and old
red balls (spheres, faces) in Qj. The balls (spheres, faces) in .A are given the corresponding labels in
79i and Qj. Note that in ,4 no two new faces of the same color may form an edge, by construction of
the hierarchical decomposition (and therefore no three new faces of either color can form a vertex).
To compute .A it is sufficient to determine the boundary chain bd(f) of each face f . Each edge in
bd(f) is old or new and blue or red depending on the corresponding neighbor face. First, we deal with
old faces; only for them one needs to perform comparisons that depend on the radius of the balls. To
determine the boundary of new faces, it is sufficient to follow pointers because all the vertices have
already been computed (not all edges have been identified though).

Obtaining the boundary chain of an old face. Consider an old blue sphere s. We want to determine
the boundary chain of f , the face of s in ,A. Let fl and f2 be the corresponding faces of s in/3 and C,
respectively, thus f = fl N f2. Of course, if either f l or f2 is empty, then f is empty. To compute
the boundary chain bd(f) of f , it is sufficient to merge the boundary chains bd(f l) in/3 and bd(f2)
in C in an appropriate manner. This problem is similar to that of intersecting convex polygons (in
the plane) and, as for that problem, a sweep algorithm will do the job. 3 We only need to understand
spherical polygons and their intersections to be ready to use a sweep algorithm. More specifically, we
consider the restricted type of spherical polygons that appear in the algorithm.

For each sphere s, let the north pole of s be the point of largest third coordinate, denoted N(s) ;
its south pole S(s) is the antipodal of N(s). The meridians (geodesics between N and S) establish a
circular order that can be used to perform a sweep. Given a spherical polygon g on s, we assume that
bd(g) contains neither N nor S (a general position assumption that can be enforced with a symbolic
perturbation). An edge e of bd(9) is a northern (respectively southern) edge if g is on its south
(respectively north) side. A boundary chain is northern (respectively southern) if each of its edges is
northern (respectively southern). For 9, there are two cases: (i) either N or S is in 9, and we say that
9 is a northern or southern face respectively; or (ii) neither N nor S is in g. In the first case, because
of the "convexity" property of faces, bd(9) forms a monotone chain (every meridian intersects bd(9)
in a unique point); the boundary is a southern or a northern chain respectively. In the second case, the
chain bd(9) splits into two monotone chains, one northern and one southern (two edges may be split
in the process). A spherical polytope has at most one northern face and at most one southern face.
We assume that for each face of a spherical polytope one maintains the information of whether it is
northern, southern or neither, and in this last case its northern and southern boundary chains. Note in

2 Computing 7-¢.~ d from T ~ + I , j + I , ~i and Qj in time linear in IR~+~,j+~ I + 179~1 + IQ31 would result in a linear time
merge, and an O(n lg n) time algorithm for the ball intersection problem.

3 We have not been able to avoid the sweep and rather perform walks along the boundaries as in the intersection algorithm
for convex polygons in [12] (see [13, p. 265]).

E.A. Ramos / Computational Geometry 8 (1997) 57-65

Fig. 2. Merging faces (new edges appear dashed).

61

particular that f is a northern (respectively southern) face iff both fl and f2 are northern (respectively
southern).

In each of bd(fl) and bd(f2), new edges are independent, that is, they are not incident to common
vertices. The chain bd(f) consists of pieces of boundary each of which can be either a piece common
to both bd(f l) and bd(f2) (old edges), a piece in bd(fl) but not in bd(f2) (new blue edges), or a
piece in bd(f2) but not in bd(fl) (new red edges). For each of the last two types of pieces, there is
a corresponding segment of boundary on the outside forming a region called a sickle. The interior
boundary of a sickle, a single edge in bd(f) , is a piece of a new edge, while the exterior boundary can
consist of both old and new edges. See Fig. 2. Thus, bd(f) can be obtained from bd(fl) by replacing
pieces of bd(fl) by pieces of new edges that appear in bd(f2), which we call bridges (and similarly
from bd(f2)). Given the circular chain for bd(fl) , it can be augmented to include the bridges from
bd(f2) (and similarly for bd(f2)).

With the information above in mind, a straightforward variation of the sweeping line algorithm to
compute the intersection of two convex polygons (see, e.g., [13, pp. 263-265]) results in a sweeping
meridian algorithm that determines all the intersections of bd(fl) and bd(f2), and the chain bd(f) .
As a byproduct, the boundary chains bd(f~) and bd(f2) are augmented to include the corresponding
bridges. This takes time O(Ibd(fl)] + [bd(f2)]).

Obtaining the boundary chain of a new face. All vertices are already known either f rom/3 or C or
from computing old faces in .,4, since no vertex in .A is incident to only new faces; thus, we only need
to trace pointers. Let s be a new blue sphere, and let f and f ' be the corresponding faces in .,4 and/3.
Here we do not have two boundaries to merge, but only bd(f I) (because s is a new blue sphere, it
does not appear in C). bd(f) is obtained from bd(f t) by determining the new red edges in C that
create bridges. If no vertex incident to s has been found during the construction of old faces, then f is
empty. Thus, let v be one such vertex; v is in bd(f ') though it may not be a vertex of bd(f ') . Starting
at v, construct bd(f) by tracing bd(f ') . At each step the tracing is on an old edge e, and at the same
time we trace the boundary of the corresponding neighbor face 9. A sickle starts when a vertex in
bd(f ~) incident to a new red edge is reached (this information appears in the augmented chain of bd(9)
where 9 is the neighbor face); the sickle ends when the next vertex in bd(f ') incident to the same
new red edge is reached (no vertices incident to other new red edges can be reached in between). In
this procedure there is no need to compute new intersections (in particular, no comparisons involving

62 E.A. Ramos / Computational Geometry 8 (1997) 5765

the radius), one just uses the circular chains of the old faces augmented with their bridges. Thus, it
takes time O (]bd(f')]) to obtain the boundary chain of f .

Running time. The basic merge step, obtaining Rid, takes time O(]7"il + [Qjl) (since }-~fcT~ Ibd(f)] =
O(17"1), where the sum is over the faces f of 7"). Thus, the time to obtain all Rid, 0 <<. i <~ k,
0 ~ j ~ < / i s

We have

k l

 lejl =o
i=o j=o

+ IQjl)).

(E,_-o tQ01) : o(IQoL) : o(IQl),
and similarly the sum of the 17"il is O([7"1l). The hierarchical decompositions of 7) and Q can be
computed in time O(17)[+ IQI). Since k = O(lg(17"[)) and l = O(lg(IQ[)), the time to merge 7"
and Q is O(m lg ra) where m = [7' I +IQI. Finally, the running time of the ball intersection algorithm
satisfies the recurrence

T(n) = T([n/ZJ) + T ([n / 2]) + O(n lgn) .

Hence, T(n) = O(n lg 2 n).

4. Parallel algorithm for ball intersection

With the use of parametric search in view, we are interested in a parallel algorithm for a comparison
model of computation (often called Valiant's model [14]). That is, we are interested in parallelizing
those comparisons performed by the algorithm that involve a certain parameter; other computations do
not need to be parallelized. Thus, when we speak of parallel running time in this model we actually
mean the number of parallel batches of comparisons.

In our specific application, ball intersection, the parameter we are concerned with is the radius r of
the balls. Each of these comparisons requires the determination of the sign of a polynomial of bounded
degree in the variable r. For example, consider the comparison that determines whether a given ball
contains a vertex which is one of the intersection points of three other balls; here the outcome depends
on the sign of r - r0, where r0 is the radius of the sphere containing the four centers.

The divide and conquer approach parallelizes in a natural manner, introducing a factor lg n in
the parallel running time. The construction of the hierarchical decomposition also parallelizes: no
comparisons are involved in determining a large independent set of faces, and the reconstruction of
the spherical polytope after the corresponding balls are removed is independent for each of the "cone"
like portions of spherical polytope that appear. So there is a factor lg n in the parallel running time from
the hierarchy construction. The dynamic programming construction can be parallelized by computing
all T~i,j for fixed i + j in parallel, thus introducing a lg n factor in the parallel running time. Below
we show that bd(fl) and bd(f2) can be merged in parallel to obtain bd(f) using O(log m) time and
O (m l o g m) work where m = Ibd(fl)[+ Ibd(f2)[. Thus, the basic merging step, T~i, j from Ri,j+l and

E.A. Ramos / Computational Geometry 8 (1997) 5745

Fig. 3. A new blue edge intersected by several new red edges (dashed).

63

~r~i+l,j, also parallelizes, since the remaining computations do not require comparisons involving the
radius.

Merging two boundaries in parallel. The vertices in bd(f) are old-old, old-new or new-new depending
on the edges to which they are incident (disregarding orientation). Consider first the new-new vertices.
A particular new blue edge e in bd(fx) (which may be one of several contributed by the same neighbor
face) may have multiple intersections with the red edges of bd(f2); see Fig. 3. Note that all of the
interior intersections of e are with new red edges, and except for the extreme ones (which can be the
vertices of e) they are double intersections of e with new red edges. In this case, by the DS2 property
of boundaries, the two intersections of e with a new red edge e ~ are the only intersections of e ~ with
bd(fl) . Thus, in order to find the new-new vertices, it is sufficient to find for each new edge, blue
in bd(fl) or red in bd(f2), its extreme intersections with the other face (the intersections of e and e'
are accounted for as the extreme intersections of et). For this, for each new edge we perform a binary
search in the boundary of the other face. This is explained below.

Now consider old-old and old-new vertices. Although they already appear in bd(fl) or in bd(f2),
one needs information to decide their relative order along the boundary. Again the solution is to
perform for each old edge e a binary search in the boundary of the other face. To be precise, taking
e in bd(fl) , bd(f2) does not cross e, but there may be vertices of bd(f2) on e; we are interested in
identifying the extreme ones, and hence all of them.

Binary search to determine the vertices. Let e be a new blue edge in bd(fl) . We use binary search
to determine its extreme intersections with bd(f2). If e is not monotone, then it can be split into two
monotone pieces; let ~r be on of the at most two monotone subchains of bd(f2). Now that both e
and c~ are monotone, it is an easy task to perform the binary search required to determine the extreme
intersections.

Let us assume that e is a southern edge. If cr is a southern chain, then e and c~ can have multi-
ple intersections (the case illustrated in Fig. 3). If cr is a northern chain, then there are at most two
intersections between e and cr (by "convexity"). A first task of the binary search is to restrict cr to
a subchain c/ within the interval of meridians determined by e. The second task is to determine the
extreme intersections; it begins with a single initial interval that contains both potential intersections,
and eventually splits into two binary searches, one for each extreme intersection. An essential obser-
vation for the use of binary search is that even though o -t may intersect e several times, the vertices
of c /behave well: in each of the intervals determined by the extreme intersections, all vertices are to
north or to the south of e.

For the case of a southern old blue edge e, the binary search is as that for a southern new blue
edge, if we interpret the vertices of o- on e as being to the south of e.

Tracing the boundaries. Once the vertices have been found using the binary search, the boundary of
an old face f = f l N f2 is determined by walking along bd(fl) and bd(f2), determining the sickles and
bridges (the positions of the new vertices along bd(fl) and bd(f2) are already known as a result of the

64 E.A. Ramos / Computational Geometry 8 (1997) 57-65

binary searches). Finally, the boundaries of new faces are determined as for the sequential algorithm
(no comparisons are involved so it does not need to be parallelized).

Parallel running time and total work. There is a factor lg n due to the divide and conquer approach,
a factor lg n due to dynamic programming method for merging, and a factor lg n due to the binary
search for merging faces (the factor lg n from the hierarchy construction does not affect this because it
is performed once in parallel for each of the levels of the divide and conquer tree). Thus, the parallel
running time is O(lg 3 n). The total work performed by the parallel algorithm is O(nlg 3 n); the lgn
factor increment over the sequential algorithm is due to the binary searches.

5. Algorithm for diameter

We follow Chazelle et al. [4] and Matou~ek and Schwarzkopf [10] in using the parametric search
technique of Meggido [11]. Our approach differs in that we have at hand sequential and parallel
algorithms for ball intersection (which is also the case in [1]).

Let S be a set of n points, and let D be its diameter. As in [3], we need an oracle O that for any
r > 0 decides whether r < D, r = D or r > D. Their solution is as follows: if there are points of S
outside B(S, r) n then r < D, if there are no points of S outside B(S, r) • but there are points in
bd(B(S, r) •) then r = D, otherwise r > D. Thus, to implement O, compute B(S, r) n and then for
each point determine its position relative to bd(B(S, r) n) (this can be done in time O(nlg n) using
standard planar point location techniques [7,13] after an appropriate projection).

We have at hand sequential Os and parallel Op versions of the oracle O, which run in time O(n lg 2 n)
and O(lg 3 n), respectively, the parallel one using O(n lg 3 n) work (the data structure for point location
can be constructed in parallel within these time and work bounds; the n point locations are performed
in parallel).

The algorithm for the diameter is as follows. We do not explain the general method of parametric
search, but directly its application. Run the parallel oracle Op with input S and r = D. Since the
diameter D is not known, a parallel batch of comparisons that the algorithm presents is resolved as
follows. Compute the roots of all the polynomials involved in the comparisons and sort them; then
perform a binary search on the sorted list, using O8 at each step, to determine the position of D among
the roots. Eventually, the value of D is determined as one of the roots.

This gives an overall running time in O(nlg 6 n): a factor lg3n due to Op, a factor lgn due to the
number of iterations needed to resolve a batch of comparisons through binary search, and O(n lg 2 n)
due to 08 (the O(n lg 3 n) work of Op is an additive term, so it does not affect the asymptotic running
time).

However, we can use Cole's trick [5] to reduce the running time to O(nlg 5 n). This is applied
to the O(n lg n) simultaneous binary searches that determine vertices for merging faces. Each binary
search is independent, so a search whose comparison has been resolved can proceed. Cole's trick,
in our case, consists in assigning a weight 2 -4 to the comparison of depth d in each binary search.
Using a weighted median on the ordered list of active comparisons (those waiting to be resolved),
each iteration resolves comparisons with at least half of the active weight. The comparisons resolved
introduce comparisons with half the weight, so the total weight of active comparisons decreases by
at least 1/4. Thus, the total active weight decreases exponentially as (3/4)i; since the initial weight

E.A. Ramos / Computational Geometry 8 (1997) 57-65 65

is O(n lgn) , and the smallest weight of a comparison is 2 -O(lgn), then all comparisons are resolved
in O(lg n) iterations. This collects the factor O(lg n) of the length of a binary search and the factor
O(lg n) of the number of iterations to resolve a parallel batch of comparisons into a single one.

Acknowledgements

I am indebted to Herbert Edelsbrunner for observing that the dynamic programming method can be
parallelized with a number of parallel stages O(lg n) rather than O(lg 2 n), thus cutting a factor lg n in
the running time of the diameter algorithm.

References

[1] N. Amato, M. Goodrich and E. Ramos, Parallel algorithms for higher dimensional convex hulls, in: Proc.
35th IEEE Sympos. Found. Comput. Sci. (1994) 683-694.

[2] H. Brtinnimann, B. Chazelle and J. Matou~ek, Product range spaces, sensitive sampling, and deran-
domization, in: Proc. 34th IEEE Sympos. Found. Comput. Sci. (1993) 400-409.

[3] K.L. Clarkson and EW. Shor, Applications of random sampling in computational geometry II, Discrete
Comput. Geom. 4 (1989) 387--421.

[4] B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, Diameter, width, closest line pair, and parametric
searching, Discrete Comput. Geom. 10 (1993) 183-196.

[5] R. Cole, Slowing down sorting networks to obtain faster sorting algorithms, J. Assoc. Comput. Mach. 34
(1987) 200-208.

[6] D.E Dobkin and D.G. Kirkpatrick, Fast detection of polyhedral intersection, Theoret. Comput. Sci. 27
(1983) 241-253.

[7] H. Edelsbrunner, Algorithms in Combinatorial Geometry (Springer, Heidelberg, 1987).
[8] H. Edelsbrunner and E.P. Mt~cke, Simulation of simplicity: a technique to cope with degenerate cases in

geometric algorithms, ACM Trans. Graph. 9 (1990) 66-104.
[9] A. Heppes, Beweis einer Vermutung von A. V~izsonyi, Acta Math. Acad. Sci. Hungar. 7 (1956) 463-466.

[10] J. Matou~ek and O. Schwarzkopf, A deterministic algorithm for the three-dimensional diameter problem,
in: Proc. 25th ACM Sympos. Theory Comput. (1993) 478-484.

[11] N. Meggido, Applying parallel computation algorithms in the design of serial algorithms, J. Assoc. Comput.
Mach. 30 (1983) 852-865.

[12] J. O'Rourke, C.-B. Chien, T. Olson and D. Naddor, A new linear algorithm for intersecting convex polygons,
Computer Graphics Image Processing 19 (1982) 384-39 l.

[13] E Preparata and M.I. Shamos, Computational Geometry - An Introduction (Springer, New York, 1985).
[14] L. Valiant, Parallelism in comparison problems, SIAM J. Comput. 4 (1975) 348-355.

