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The problem of the asymptotic distribution of integral points on a sequence of 
expanding spheres x* + y* + za = mi [first penetrated by Linnik with his 
ergodic method] is shown to be attackable by analytic methods, especially via the 
theory of modular forms. Success depends on a new estimate for the Fourier 
coeff. of cusp forma of half integral dimension on the theta group, which we 
obtain after improving upon previously known estimates of the associated 
Kloostermann sums. 

1. INTRODUCTION 

Let d be a Jordan measurable region on the 3dimensional unit sphere. 
Let r(m; A) be the number of solutions (x, y, z) of 

2 + y2 + z2 = m with X, y, z E Z (the set of rational integers) (1.1) 

and (x, y, z)/m1J2 contained in d. It might be expected that 

m(A) 
r(mj ; 4 - 7 r(mj) as j-fco, (1.2) 

where r(m) = rs(m) denotes the number of (unconstrained) solutions of (1.1) 
and m(A) the area of A, if the sequence {m3 ; j = 1,2,...,} is chosen so that 
r(mJ + co. Indeed, Malyshev [6] and Pommerenke [7] have established the 
analogue of (1.2) for integral positive quadratic forms in more than three 
variables. Thus lattice points on n-dimensional ellipsoids (centered at the 
origin) are asymptotically uniformly distributed for IZ Z 5, and also for 
n = 4, (but then only under a restriction, corresponding to r(mJ 2 cm,). 
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The proofs use traditional methods from the analytic theory of quadratic 
forms, the theory of modular functions and the circle method. 

The situation for positive ternary forms is less clear. Linnik ([4], chap. IV) 
with his “ergodic method” has claimed the first major result, which states that 
(1.2) does hold for certain {mj] and convex d. Still, it remained an interesting 
open question whether or not (1.2) say, is attackable with methods from the 
analytic theory of quadratic forms; see for instance [4, p. 41 or [7, p. 2291. 
Up to now analytic methods have not yielded a result on this (ternary) prob- 
lem. It is our primary goal in this paper to show that a proof of the validity of 
(1.2) is accessible via the theory of modular forms and classical analytic 
number theory, at least for some sequences {mj}. 

Our approach is based on the method originated by Hecke and employed 
by Pommerenke [7], namely a reduction to spherical theta functions. The 
crucial ingredient for making this approach work, in the present 3-dimensional 
case, is a new estimate for the Fourier coefficients of cusp forms of half 
integral dimension on the theta group. In Section 7 (Theorem 3) we give 
such an estimate, based on an improved estimate (Theorem 2 in 6) of certain 
Kloostermann sums. Thereafter we show that this estimate is sharp enough 
to establish (1.2) for certain rare sequences {mi}, (Theorem 4 in Section 8). 

It might be of interest that we derive the formula for Y&Z), (Theorem 1, 
Section 2). Such a formula was first obtained by Gauss [3]. Analytic deriva- 
tions have been given in more recent times by several authors and are con- 
tained in [ 11, [2], [5], [Ill, for instance. Still, a finished “explicit” formula for 
r3(m) is hardly available in the literature. We include our version of a proof 
also because our result (Theorem 4) on (1.2) depends very strongly on the 
arithmetic nature of r3(m) as exhibited in (2.14). Finally, our proof incorpo- 
rates some simplifications not given in earlier proofs. 

2. THE THREE SQUARES FORMULA 

The generating function for r&r) is 

f’. r3(n) enin = @(T), where O(T) = 2 eniTn2 
7l=--ll 

and Im T > 0. Well known properties of the theta function imply that O3 
belongs to JY,,, , the space of entire modular forms of dimension -3/2 
with multipliers V = I’, , on the theta group Fe: The theta group consists of 
all transformations 7 -+ MT = (aT + b)/(CT + d) with 

M = (E “,) = (i T) or (y -k)mod2, 

a,b,c,dEZ and detM=l, 
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(and has a fundamental domain described by 1 Re T 1 < 1 < I 7 I); while 

V,(M) = y-3(4, c) for c > 0 
with 

jl/Z 2’ 

rh 4 = 2ccj1,2 7=1 enirsa’c --c for (a,~) = 1. (2.1) 

The Gauss sum ~(a, c), (c > 0, (a, c) = 1) can be evaluated in terms of the 
Jacobi symbol 

if a f: c = 1 mod 2, 

if UC = 1 mod 2, 

if a + c = 0 mod 2. 

(2.2) 

It obeys the reciprocity law 

L(p) = (ip)l12 . L(-l/p) ( 
arc(ip)l12 = $ sgn p 

1 (2.3) 

with L(p) = c-l12y(u, c) = Lb + 2), if p = u/c. 
Following Hecke we consider the Dirichlet-Eisenstein series with conver- 

gence generating factor 

Y(q s) = y@ 1 + 1 r”(u, C)(CT - a)-312 1 CT - a j--s ) (2.4) 
DE0 

where p = u/c runs over all rational numbers (c > 0, (a, c) = l), y = Im 
T  > 0 and u = Re s > l/2 for absolute convergence. Direct calculations 
using (2.3) yield (for u > l/2) 

Y(-l/T; s) = (-iT)“l”!?(T; s), Y(T  + 2; s) = ‘U(T; S); 

hence (as for 03) 

(2.5) 

y(hfT; S) = v,(ikf)(CT + d)‘/‘Y/(T; S), if A4Ero; (2.5)’ 

i.e., Y transforms like a function in &3,2 . 
We now continue Y analytically as function of s (for any fixed 7 with 

mmation formula y > 0) to the half plane 0 > -l/4. Applying the Poisson SUI 

yields 

y-“/2y(T; S) - 1 = c L’(p) C-’ E (T - p + 2?2)-3/2 
ornod n=-cc 

= c 4(? S> I(% 7, S), (a > l/2), 
n 

1 7 - p + 2n j--s 

(2.6) 
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where 

and 

s 

+@J 
Z(n; 7, s) = g e-nint(7 + t)- (3+8)/z (? + p/2 & --m 

q(n; s) = c L3(p) c-%?-*‘i”n, (p=a/c,c>O,(a,c)=l) 
ornod 

= .Ld2 (-1)C L(p) c-“-le-“i”n, (0 > l/2) 

since ~“(a, c) = (-l)c for ac + 1 mod 2, by (2.2). Clearly the integral is 
holomorphic in s for CJ > -l/2. Suitably shifting the line of integration 
implies that, for y = Im T > 0, 

Z(n; 7, s) = O(e--rrlnly12) as IZ --f &co, uniformly for u 3 -l/4. (2.7) 

Also 

z(n; 0) 0, if n < 0, 7, = 
j-3/2 2rr(nyi2 pini, if n > 0. Gw 

Furthermore, by definition of L(p) in (2.3) and exchange of summation with 
the Gauss sum defined in (2.1) we obtain 

q(n; s) c k-S-1 = c 
k>O c>o 
odd even 

a=1 
odd 

so c-s-1 f &) e-ninr, 

O&l 
a=1 

1 
=-- 

iI/2 
I 

c 
o<c-O(2) 

c-S-lN(-n, 2c) - c c-“-lN(--n, c)) 
c;o 

(2.9) 

with N(n, c) = Ci=l,h~,,modc 1, since N(n, 2~) = N(n, c) for odd c. 
The last series have Euler products 

z. N(n, c) c-s = n f iv@?, p”) p-J=, (u > 2) 
P k=O 

and 

c 
o<o= O(2) 

N@, 2c) C-’ = 2* z2 N(??, 2k) 2-kS . g2 -f. N(n, p”) p-“8. 

For every integer n # 0 let d(n) be the discriminant of the number field 
Q(n)l12, (d(n) = 1, X. n = k2 > 0 with integer k) and for every prime p let 
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m = m(p, n) be the largest integer such that p2”’ divides 4n/d(n). Then, 
from the known enumeration of solutions of quadratic congruences mod pk, 

i. N(% P”) p-“s 

=E p[k/Z]-ks + pm(l-2s)-S 

= (1 + p-8) (1 - ($) p-f1 h(n; p, s), (p > 2, n # 0) 

where m = m(p, n), d = d(n) and 

h(n; p, s) = pm+28) + (1 - (~)p-~)mf1pk(l-2s,. 

k=O 

For p = 2 and n # 0 set m(n) = m(2, n) - (d(n)/2)2. Then 

f j j+, 2k) 2-“8 = ‘y 2[k/2]-ks + 2m(n)(l-2s)-s 

k=l k=l 

x 11 + 2 (f)” (2-s + [ 1 + ($1 i2 2-q 

= 2-s (1 - (f, 2-9-l h(n; s) 

with d = d(n) and 

h(n; s) = 1 + (4) + [21-8 - (+)I ‘El 2[k/21-ks, m = m(2, n). 

(Here (d/2) is Kronecker’s extension of the Jacobi symbol.) 
Finally, since N(0, pk) = pIk12J, 

j. WA P”) P-~’ = 1’$:, , (p > 2) 

il N(O, 2k) 2-ks = 2-s + 21-2s 
1 _ 21-28 . 

From these relations and (2.9) we obtain, setting w  = s + 1, 

q(0; s) G/Z = (l ,&r”)-’ /(I - 2-W) ; T 2’:--; - 21 5 ; +$;, 
W 

= 21--2v + 2-w - 1 5(2w - 1) 
1 _ 2-m Kw ’ 



INTEGRAL POINTS ON 3-DIMENSIONAL SPHERES 223 

and 

q(n; s) i1/2 = (I -,‘T)” ((1 - 2-9 1 h(yi2Ti-W - 21 
W 

x n (1 + P-9 M--n; P, 4 

P>2 1 - (d/P) P-w 

L(w; d) =--- 
1 

(1 - 2-y I?(-n; w) - 2 + (d/2) 21-W 

a24 1 - 2-2w I 

x lJ M--n; P, 4 
2<Pl(4nld) 

(2.10) 

for n # 0 and with d = d(--n) (!), where S(W) is the Riemann zeta function 
and 

L(w; d) = c cf, n+, 
n>O 

(Re w  > 1). (2.11) 

It follows that q(n; s) is kolomorphic for u > -l/2 (and all n), since 
h(--n; 1) = 2, when d(-n) = 1. Also, q(n; s) = O(/ n 1) as tz --f fco, 
uniformly for Re s > -l/4. This and (2.7) imply that the last series in (2.6) 
converges uniformly for u > -l/4 and Im T > 6 > 0. Thus Y(T; s) is a 
holomorphic function of s in 0 > -l/4 (at least), and by (2.6) and (2.8) 

Y(T; 0) = 1 - 2.rr(i)li2 C q(n; 0) n1/2eniTn, 
n>O 

(2.12) 

which is a holomorphic function of 7 in Im T > 0. 
The functional equations (2.5) hold also for f(~) = Y(T; 0), by analytic 

continuation. They imply 

f( 
--f$j-) =f(T) (+,"'" (Lj2--f3/2 i--3/2, if 7' = *, 

and then for the function 

F(T’) =f(T)(-iT’)-3’2e-““i7’/4 = F(T’ - 1). 

Hence F(T’) has a convergent Fourier expansion in Im 7’ > 0 and thus 

Y(T;  0) = f(T) = (-iT’)“/” E ane2aih+3/8h’ 
9 (2.13) 

?z=--m 

Since q(n; 0) = O(n) (at most) as n -+ co, (2.12) implies 

If(dl = wee) as y = Im 7 -+ +0 (uniformly in Re T), 

641/11/z-5 
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and thus in (2.13) a, = 0 for 12 < 0. Thus f(~) has a zero (of order 3/8 at 
least) at T = - 1. Hence Y(T) is in dvz . 

Since this space has dimension one (or, sincef(T) @-‘(7) is invariant under 
F, and bounded in its fundamental domain and hence constant) it follows 
with (2.12) 

THEOREM 1. (Maass). Y(T;  0) = 03(7). Comparing Fourier coeficients 
it follows, using (2.10) for w  = 1 and Dirichlet’s class number formula, since 
npm(p*+) = 1(4n/d)11’2, that 

r3(4 = 3 [l - (f)] 2iN (Pp) + pzpLA ’ [l - ($)]I, (2.14) 

where d = d( -n) is the discriminant of the imaginary quadraticfield Q(( -n)l/3, 
(n > 0); h(d) its (ideal) class number, w(d) the number of its units; (d/q) the 
quadratic character mod 1 d 1, n = n,N2 with squarefree n, and N = 17pn(p) 
in unique prime factorization. (Clearly m(p, -n) = n(p) for odd p; also 
d = d(-n,,), and r3(n) # 0, #no + --I mod 8.) For completeness we list that 

2h(d)/w(d) = [2 - ($)I-’ I$; (;), (d < 0). (2.14)’ 

3. A SUFFICIENT CONDITION FOR UNIFORM DISTRIBUTION 

In what follows all vectors will be written as columns, the ’ will denote 
transposition and 1 x j = (x’x)~/~, if x E R3. Let d denote a Jordan measurable 
set on the unit sphere S of ES, m(d) its area and 1(x; d) its characteristic 
function (X E S). 

Let E > 0. There exists a continuous function 1*(x; d) on S (depending on 
E) such that 0 < 1*(x; d) < 1, 1*(x; d) = 1 for x E d, and 1*(x; d) = 0 
for x E S - d *, where d * is a Jordan measurable open set on S with d C d * 
and m(d*) - m(d) < ET. Let plcz(x) (degree k, 1 11 < k) denote in E3 
harmonic homogeneous polynomials forming a complete orthonormal system 
on S. They span the space of spherical harmonics, which is dense in the space 
of continuous functions on S. Consequently there exist real ckz and an 
integer K (all depending on E and d) such that 

K 

0 < k;. c,,p: (4 - I*k 4 < $3 (XES). (3.1) 
lzl<k 

Then, by orthonormality and choice of d * 

coo 
m(A) -r<;. 
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Now, by definition of I* and (3.1) 

m-“12 c ckl c pk”(n> 
k=O Ill<k s’ra=m 

(3.2) 

summing over it E Z3. Next we use the following 

LEMMA 1. Let pk(x) (x E R3) be a harmonic homogeneous polynomial of 
degree k (in the coordinates of x). There exist jinitely many isotropic vectors 
&, E C3; (i.e., with f$fh = 0), such that 

Pk(X) = $ (&X)k. 

A proof is in [7], p. 248. Assuming now that there exists an increasing sequence 
(mj} of natural numbers satisfying the conditions 

.,L,, @Ok L 4#“rh>> as j+cc (k 3 2) (3.3) 
2 

for all isotropic LJ E C3 and all even natural numbers k, then by (3.2) and 
lemma 1, for j > N(E, 0) say, 

r(mj ; A) < (* + E) r(mf). 

Clearly (3.4) holds also with d replaced by its complement on S. Thus the 
lower estimate corresponding to (3.4) holds also. Therefore the condition 
(3.3) implies (1.2); i.e. asymptotic uniform distribution of lattice points on 
the corresponding sequence of spheres in R3. 

4. SOME RESULTS FROM THE THEORY OF MODULAR FORMS 

The sum appearing on the left side of (3.3) is the mjth Fourier coefficient 
of the spherical theta function 

O(T; 5, k) = c ([‘n)k e+n’n (Im 7 > 0) (4.1) 
?EZS 

with isotropic E E C3. These functions (e.g., [7], section 2) are in Ck+312, the 
space of entire cusp forms on r, with dimension -(k + 3/2), (k > 0 even) 
and multipliers V3 (the same as for OS) defined in (2.1). 
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We only require the following known facts about the (Hilbert) space 
C k+3/2: 

(1) The dimension of Ck+3,2 is finite, in particular, dim C,,,,, = [k/4] 
for k > 0 and even. (Thus especially @(7; f, 2) is identically zero.) 

(2) For every natural n and k one defines the Poincare series for 
ck+3/2 bY (Cf. (2.4)) 

P-(7; k) = ensnr + c c eninM7y3( -d, C)(CT + d)--R--3/2, 
c>o (d,C)=l 

* * 

M=c d ( ) 

(4.2) 

where for the summation (in each term) the first row of M is to be chosen 
so that M E r, ; (7(-d, c) = 0, if d = c mod 2 here). These functions are 
all in G+3f2 , and the special system 

forms a (linear) basis Of ck+312, if k > 4 iS even. 

(3) The Fourier expansion in Im 7 > 0 of the Poincare series can be 
calculated as 

with 

P%(T; k) = 2 ALneRimr 
nZ=l 

(4.3) 

Ak - a,, + i-k-3’2(m/~)(2k+1)‘4 TT f Jht1j2 (G (mn)“‘) c-‘K(m, rz; c), ?nn - 
Cd 

where J”(t) denotes the standard Bessel function of the 1. kind, a,, the 
Kronecker delta symbol, and 

K(m, n; c) = 5 y3(-d, c) .pi(n=+ma)/c, 

d=l 
f&c)=1 

in each term, is a generalized Kloostermann sum. 
It is clear from these facts and (4.1) and (4.3) that the conditions (3.3) for a 

sequence {m,} will be satisfied, if that sequence satisfies 

A&, =!= o(mF’2r3(mi)) as j + co, for 1 < II < [k/4], k even. (4.5) 

The remainder of this paper will be devoted to establish (4.5) for certain 
M3. 
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5. ESTIMATION OF THE GENERALIZED KLOOSTERMANN SUM (I) 

We now derive an estimate for the Kloostermann sum K(pn, n; c) defined 
in (4.4), which will be used to estimate the A;, . Such sums, but without the 
Gauss sums (or their powers) as coefficients, have been calculated by SaliC [9], 
among others. The following calculations were inspired by this work, but 
contain several simplifications. 

Case I. Let c > 0 be odd. 
By (2.2) and substitution of d = 2d’, d’ =fh mod c, wherefis a solution of 

4f = 1 mod c, and a = 2h into (4.4) we get 

K(m, n; c) = e (f (2 - c)) (*) e ( mfh ,” “’ ), (5.1) 
tih-lmodc 

where e(z) is an abbreviation for ezxiz, to be used from here on. Let 

c = Cl * ... . Ck ) c, = p;r with natural a,. 

and distinct odd primes pr , (r = I,..., k). Selecting integers b, so that 

bl; + ... + b,; = 1, 

and applying the direct decomposition of the ring of residue classes mod c, 
reduces (5.1) to 

1 K(m, n; c)l = rh 1 h$, (-$) e ( mfb’hr~~ nbTLy 11. (5.2) 
&h,glmode, 

It is convenient to define the sums 

Sn(U, 0: p”) = hzd*,a (3,” e ( Uh s ” ), (a > 0, p > 2 prime) (5.3) 

where the asterisk indicates that the sum is over residue classes prime to pa 
and that h is to be determined from hE = 1 mod pa. Then we have (always 
for odd p) 

LEMMA 2. (i) If u + ~1 + UZ, E 0 mod p, then 

I 

0, if a>2, 

U% 0; P”) = ( J-$-y! ($) P)liZ, if a=1 and n=l, (5.4) 
-- 1, if a=1 and n=2. 
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(ii) If u = 0 = u mod p, then 

I PS?a if a>2, 
s&G4 u; P”) = 0 if a=1 and n=l, (5.5) 

P’- 1, if a=1 and n=2. 

Proof. Let a > 2. All h modp” with (h, p) = 1 are given by h = I + rpa-l 
with I = l,..., pa-1 - 1, (I, p) = 1 and r = 0 ,..., p - 1. Then /i = I - 
rtzpa-1 mod pa with II E 1 mod pa. Using this in (5.3) gives 

S&4, v; pa) = ,,l~a-l cf,” e ( “‘: ” ) y e ($ (24 - 7zu)), (a 3 2). 
7=0 

(5.6) 

This yields the result in both cases (i) and (ii). Now let a = 1. The case (i) 
with n = 1 is a well known identity for Gauss sums. The remaining three 
cases are trivial. 

If u z 0 = v mod pk with 1 < k < a - 1, then (5.5) implies 

S&d, v; p”) = p’cS,(up-“, up-“; pa-q. (5.7) 

Lemma 2 reduces calculation of the sums defined in (5.3) to the case that 
(uv,p) = 1. 

LEMMA 3. Let (m/p) = - 1. Then &(u, v; pa) = 0 for a > 2; and for 
n=a=l. 

Proof. If a >, 2, eq. (5.6) holds again. The inner sum is different from 
zero only, when p 1 ZJ - 12v; i.e., uv = (Iu)~ mod p, since now p + uv. This is 
impossible, since uu is not a quadratic residue mod p. If a = 1 and n = 1, 
the summation transformation h -+ Cvti mod p applied in (5.3) reproduces 
the sum with the factor (m/p); hence the result. 

LEMMA 4. Let (uv/p) = 1 and w be a solution of w2 = uv mod p”. Then 

&(u, v; pa) = (j,” ($-)‘+n (e(2wp-O) + ($,“+” e(-2wp-“)) (p*O)l12 

(5.8) 
for a 3 2; andfor n = a = 1; wherep* = (-l/p)p. 

Proof. Applying the transformation h -+ Uwh mod pa ‘to the sum in 
(5.3) yields 

S,(u, u; p”) = (Y)” &(w, w; p”). 
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Now let a > 2, and set b = a - c with c = [u/2]. Then all h mod pa with 
(h, p) = 1 are given by h = I+ rpb with I= I ,..., pb - 1, (l, p) = 1 and 
r = O,..., pc-l.Thenh-I- I2 b r p mod pa with It= 1 mod pa, thus with 
(5.3) 

S,(w, ,c; p") = pc gl (t)” e ( w’F “’ ). (5.9) 

If a is even, then b = c = a/2 and the summation conditions allow only the 
values 1 = 1 and 1 = pc - 1, with 1 = 1 and 1 = p” - pc - 1, respectively. 
Thus the result in (5.8) follows (with the positive square root). 
If a is odd, then c = (a - I)/2 = b - 1 and the summation conditions in 
(5.9) have solutions I= 1 + hpc with h = O,..., p - 1, and I= -1 + kpc 
with k = l,..., p. Then 1 3 1 - hpc + h2pa-1, respectively I = -1 - kpc - 
k2pa--l mod pa. Thus (5.9) implies, using (2.1) 

SJM., w” p”) = p(a-1)P(-~pyP 3 

X !e(2wp-') y(21r*, p) + c$)” e(-2wp-“) y(-2w, p)\. 

Now the result in (5.8) for odd a > 2 (with the square root positive or positive 
imaginary) follows by using (2.2). (The preceding proof is modeled on the 
one in [13].) The result (5.8) in the remaining case a = n = 1 of lemma 4 
can be found in the paper of SaliC [9], (54). Another, most elegant derivation 
is in [14]. 

LEMMA 5. For the sums S = &(u, v; pa) defined in (5.3) we have 

(9 I S I < [1 + WP)IP a/z ora>landforn=a=l,ifp~uv; f 

(ii) / S 1 < 
i 
gP”” if a=1 

and p I uu, but p r (U + v); 
9 if a>1 

(iii) 1 S / < (1 + e,)(v, pa) pa/2, if p / u and p I v; where ep = 0 for 
p>3ande,=lforp=3. 

Proof. (i) Follows from lemmas 3 and 4. (ii) follows from (5.4) in 
lemma 2. For the proof of (iii) set (u, p”) = pb, (u, pa) = pc. We consider 
three cases: 

(1) Let b # c. Setting k = min{b, c} we have 0 < k < a and by (5.7) 
and (ii) above j S I < pkf1i2 < (v, p”) p1j2. 

(2) Let b = c < a. Setting k = c we have by (5.7) and (i) above 

1 S / < 2pkl-(a-k)/2 < (1 + e,) pk-baj2 < (1 + e,)(u, pa) pai2, 
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ifa-k>lornisodd.Fora-k=landnevenwehaveby(5.7) 

1 s 1 < pyp - 1) < p(k+l+=)/2 < (0, p”) pa/s, since k>l. 

(3) Let b = c = a. Setting k = a - 1 we have by (5.7) 

I s I < P”(P - 1) < @, P”>. 

Returning to (5.2) we observe that in the product there occur sums as 
defined in (5.3) with n = a(= a,) only. Thus by Lemma 5 

1 ~(m, n; c)l < 2(n, c) c112 n [l + (y)] (c > 0 odd) (5.10) 
PIG 

since (b, , p,.) = 1 and f is a quadratic residue mod pr for every p,. 1 c. We 
remark also that (5.1), (5.3) and Lemmas 3 and 4 imply especially 

= i3/2c1/2 (<) 42/z/c), if (c, mn) = 1, (5.11) 
h=l 

where in the product each h, is a solution of 4hr2 = mn mod c, (if solvable). 
This completes our study in Case I. 

6. ESTIMATION OF THE GENERALIZED KLOOSTERMANN SUM (II) 

We now study the sums defined in (4.4) in 

Case II. c > 0 is even. 
Then, using (2.2) and again e(z) = e21iiz, 

K(m, n; c) = 5 
d=l 

e (i (1 - d,)(f) e ( na lc”“) (6.1) 

ad-lmod2c 

Let 

2c = 2% = fj c, ) c, =pF (p. = 2, c’ odd) 
S=O 

with natural a, and distinct primes p,. , (a, 2 2); and 

bo$ + . . . + bk$ = 1 (b, E 9. 
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Introducing (for fixed a, and odd c’) the functions 

g(d) = e (5 i”-l)( if” (-l)k-W--l)!J (d odd) (6.2) 

we obtain from (6.1) using the quadratic reciprocity law, the direct decomposi- 
tion of the ring of residue classes mod 2c (observing that g(d) = g(h), if 
d = h mod co) and (5.3) 

/ K(m, n; c>l = 1 

(6.3) 

where So = S(mb, , nb, ; ao) with odd b, and 

s(U, V; a) = hmTdta g(h) e (v) (hh = 1 mod 2”, a > 0). (6.4) 

Clearly, the factors under the product in (6.3) can be estimated by Lemma 5 
again, thus similar to (5.10) 

I K(m, n; c)l < 2 I So I (n, c’)(c’Y2 n [ 1 + (?)I. (6.5) 
1llC 

It remains to estimate the sum in (6.4) with g(h) defined in (6.2) having 
period 8 in h and 1 g(h)\ = 1 or 0. 

LEMMA 6. Let a > 4. Then 

0, if u r=‘ v f 1 mod 2, 
S(u, v; a) = 

2S(++a- I), 
(6.6) 

(f u 5 0 zx ~7 mod 2. 

The proof is the same as that of Lemma 2. We infer 

S(u, v; a) = 2’“S(2-%, 2-“v; a - k), if u = 0 = v mod 2”, 1 < k < a - 3. 

(6.7) 

LEMMA 7. Let a 3 6, uv = 1 mod 2 and UZI f 1 mod 8. Then S(u, v; a) = 
0. 
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Proof. Imitating the derivation of (5.6), forp = 2, and since g(h) in (6.4) 
has period 8, we get 

S = S(u, v; a) = 2 gi g(l) e ( ” 1” ) (I7 3 1 mod 2a) 

observing that in the inner sum r takes the values 0 and 1 only, and that 
u - t2v is even. Repeating this process yields 

S = 2 [ 1 + e (y)] ‘i: g(l) e ( ‘* z ” ) (I7 = 1 mod 2”). 

The square bracket gives zero, when uv = 3 mod 4; and two, when uv = 1 
mod 4. In the latter case, repeating the process again (observing that 
2(a - 3) > a and 2a-3 = 0 mod 8) we obtain for S the factor 

l+e(F)=O, since now uv = 5 mod 8. 

LEMMA 8. Let a > 6 and uv = 1 mod 8. Then 

1 S(u, v; a)1 < 2(a+5)/2. 

ProoJ With b = a - c and c = [u/2] all h mod 2a, h odd, are given 
by h = I + r2b with I= l,..., 2b - 1, 1 odd and r = 0 ,..., 2” - 1. Then 
ti = 1 - r722b mod 2” with 17 = 1 mod 2”. Thus from (6.4) 

S = S(u, v; a) = 2” L$l g(l) e ( ~4’ G ” ), 72v z u mod 2G 

since b 3 3. If a is even, then b = c = a/2 and the summation conditions 
for I have exactly 4 solutions, since uv is quadratic residue mod 8. Thus 
[ S ] < 2c+2. If a is odd, then c = (a - 1)/2 > 3 and b = c + 1, thus the 
sum has 8 terms and 1 S 1 < 2c+3. 

Lemmas 6, 7 and 8 together with (6.7) and the trivial estimate (when 
a < 5) imply that for all a > 0 

1 S(u, v; a)1 < K,(v, 2”) 2512 with an absolute constant K,, . w3) 

With a = a,, v = nb, and (6.5) we obtain finally our 

THEOREM 2. The sum defined in (4.4) satisfies for all natural m, n and c 

I K(m, n; c>l < KmY2 n [l + (?)I, 
2<PlC 

(6.9) 

where K is a.n absolute constant. 
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Theorem 2 implies 

1 K(m, n; c)I < Kr?c1/22w(~), (6.10) 

where w(c) is the number of prime divisors of c. This last estimate, however, 
is not sharp enough for our intended application, which requires the full 
content of (6.9). It is interesting that the proof of Theorem 2 is elementary. 
It does not require the well known estimate of Weil [12]; (cf. [lo], Section 3). 
The rarely mentioned result of Sal% ([9], (54)) namely (5.8) for it = a = I, 
instead yields the crucial estimate. 

7. ESTIMATION OF THE FOURIER COEFFICIENTS OF Pn(~;k) 

We now turn to the Fourier coefficients of the Poincare series in (4.3). 
For the spherical Bessel function we use the familiar estimate 

j J,+,,,(x)/ ,< C(k) min{xk+li2, x-1/21. (x > 0). (7.1) 

Because of Theorem 2 we introduce for natural a, c the function 

K*(a; 4 = jJ [ 1 + (+)I 
2<PIC 

(7.2) 

and obtain from (4.3), using (7.1) and (6.9), for the mth Fourier coefficient 

A:, < nC,(k) mk’2n-(k+1”” . 1 K*(a; c) 
1 c<2dd'" 

+ ,Hrctl/2 . 
C,2~G)l,f K*k 4 c-,-l/ (7.3) 

with a = mn > 0. [A < B means I A 1 < const. B with an absolute constant.] 
Since K*(a; c) = O(c’) is multiplicative in c, we introduce the Dirichlet 
series with Euler product 

G(s; a) = f K*(u; c) CY 
C=l 

=(I - p-1 n l 1 (al;)p-” , 
P>2 

(u > 1). (7.4) 

Then 

G(s; a) = &; dW(s; 4&)/5(2s), d = d(a), (7.5) 
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where d(a) is the discriminant of @~)l/~ as before, L(s; d) the associated 
Dirichlet L-function from (2.1 l), 5(s) = L(s; 1) and 

H(s; a> = :a [( 1 - (4,~~‘) (1 - p-‘+j, d = d(u). (7.6) 

ProoJ From (7.6) with k = &z/d(u) 

I H(S; 4 G 5(3/2) n (1 + p-9. 
plk 

Now, if k has h prime divisors and pj is the jth prime, 

log fl (1 + p-“) < i p;3’4 < 4~1,‘~ < (h log h)1’4 = o(log k), 
plk j=l 

since k > 2n. This implies the lemma. 

LEMMA 10. If u > 314 and s = u + it, then 

L(s; d) Q d114(1 + 1 t /)I/* for d> 1, 

5(s) < (1 + I t lP4 for I s - 1 I 3 l/4. 

The proof follows from [8], p. 115. 
Next, from a well-known formula (e.g., [8], p. 376) and (7.4) 

1 K*(a; c) - & j”” G(s; a) x5 2 < (b -x;,2 T + C,(6) q, (7.7) 
C<X 77 b zT s 

where x > 0 is half an odd integer, 1 < b < 2 < T and 6 > 0; since G(s; 1) 
has a pole of order 2 at s = 1 by (7.5). Now let d = d(a) > 1, so that G(s; a) 
has a simple pole at s = 1. Then by the residue theorem (using a rectangular 
contour) and (7.5) 

s 
b+iT 

G(s; a) xs $ = 2rri 
L(1; d) H(1; a) 

b--iT 5(2) 

with c = 314. Here, by Lemmas 9 and 10 

f 

C*iT 

b&T 

G(s; a) x5 f < Cz(c)(a/d>( d1/4xbT-‘/2, 

f 

CiiT 

C-i7 

G(s; a) xs f < C2(~)(u/d>E d114x3/4T1/2. 
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Taking b = 1 + l/log x, T = x1j4 and 6 = l/8 in (7.7) we obtain 

c;z K*(a; c) - $ H(1; a) L(1; d) < x7/8(1 + C,(E) &(1/4)-9, (7.8) 

ifd=d(a)>l,E>O(andx>16). 
Now let q(k) denote the squarefree factor of the integer k. 

LEMMA 11. Let a = mn with natural m, n and q(n) # q(m) < m1j5. Then 

1 K*(a; c) < Bx with B = H(I ; a) L(1; d) + n3j16 (7.9) 
C<X 

and d = d(u), for x > (mn)1/2. 

Proof. From the assumption: 1 < d(mn) < 4q(m)q(n) < nm1j6. Especially, 
(7.8) is valid for such a = mn, and with E = l/64 the result follows. 
Thus we have an estimate for the finite sum in (7.3). The infinite series 
there can be estimated by partial summation and (7.9), observing that 
K*(a; h) > 0: 

g K*(a; c) c-k-1 = c (c-k-1 - (c + 1)-“-l) c K*(a; 12) 
C>Z x<h<c 

< (k + 1) B c C--~-I < Bx-” (k > 0). (7.10) 
C>X 

With x = 27r(mn)lL2 in (7.9) and (7.10) we obtain from (7.3) 

THEOREM 3. If the squarefree kernels of m and n satisfy q(n) # q(m) < 
m115, then for the mth Fourier coeficient of the Poincart? series P,,(T; k) E 
C K-w2 

I A;, I < C,(k) n(5-2k)‘4(H(1; mn) L(l; d(mn)) + 1) m(k+1)‘2, (7.11) 

This yields (see (8.4)) 

I A:, I < C(k) m(“*1”2(log q(m)) log log(m/q(m)). (7.11’) 

Theorem 3 is sufficient to establish (4.5) and thus (1.2) for some sequences 
{mj}, as will be demonstrated shortly. It is also interesting that the estimate 
(7.11) is apparently sharp enough to exhibit some of the expected arithmetic 
structure of the Fourier coefficients of modular forms of half-integral dimen- 
sion -(k + 3/2) on the theta group. If we use the weaker estimate (6.10) 
instead of (6.9), then G(s; a) in the preceding treatment will be replaced by 
5a(s)/5(2s), and instead of (7.11) we get 

[ Ai, 1 < C,(k) n1-K’2m(“+1)‘2 log 2mn (7.12) 
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without restriction on m. This (though better than the usually quoted esti- 
mate A:, = O(m(k+1)/2+C); e.g., [lo], (1.13’)) is not sharp enough for satis- 
fying the condition (4.5). 

8. SPHERES WITH UNIFORM DISTRIBUTION OF LATTICE POINTS 

We shall here construct sequences {m$}, for which our earlier condition 
(4.5) is satisfied. In order that we can apply Theorem 3 we choose m to be of 
the form 

m =fg2 with f > 1 squarefree and g > f a, g odd; (8.1) 

which implies q(m) = f -C m l15. Then, from (7.6) with a = mn > 0 and 
b = 8u/d(a) 

Ml; m) < C(2) n (1 + p-l> < (log log 3n) n (1 + P-9, 
plb PlQ 

(8.2) 

since with n = hk2, h squarefree, we have b = 2”g2k2(f, h)2, thus every 
prime divisor of b divides g or 2n, and the product can be estimated similar 
as in lemma 9. Also, since d(mn) < 4 fn, 

L( 1; d(mn)) < log d(mn) < (log 2n) log $ (8.3) 

If we assume that f # q(n), then by Theorem 3 and the foregoing 

1 AEn 1 < C,(k) m(“+1)/2(log f) 11 (1 + p-l) (m = fg2, k > 4). (8.4) 
NQ 

Also, by (2.14) and (8.1), iff + -1 mod 8, 

r&4 > Wd) g I$ [ 1 + (1 - ($)) p-11, d = 4-f). (8.5) 

Here, by the well known theorem of Siegel about the class number, 

h(d) > c(e)f (1-E)/2 (e > 0) 

hence with (8.4) and (8.1), if q(n) #f + -1 mod 8 and k >, 4 

1 A:, 1 m--k’2r;1(m) < C(c, k) f’ n P-t1 
e,. P + 1 - (d/p) ’ 

d = d(-f). (8.6) 

Now we require 
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LEMMA 12. Let (q, d) = 1 and b > 0 bejixed, then uniformly in d, q and x 

pzzoda ; 1 ; g (log X)-“‘(“‘), if d < logb x. (8.7) 

Proof. The Siegel-Walk theorem implies 

i 
+(I d I) c p-l - log log x < B, 

I 
(x > 3) 

p=:sobda 

where $(*) is the Euler function and B,, a constant (depending on b). Then 

with another constant B, and the statement follows. 
For the intended application in (4.5) let k > 4 be even, 1 < )2 < [k/4] and 

E > 0 be fixed. Let {fi}, (j = 1, 2,...) be an increasing sequence of squarefree 
natural numbers with fj -f -I mod 8. Then fj # q(n) < k/4 for j > N(k), 
say. For each j let q3 be a natural number with 

( 1 dj -1 -&-= ’ where dj = d(--J;:) < 0, C3.8) 

and set 

g3 = n P with xj = exp{(~~;)“(-dj)). (8.9) 
2~n$zj~pwjmodd~ 

Then gj > exp(x3/$(-dj)) >h2 (amply) and h < log’ ~3 with b = I/E. 
Finally let mj =figj2, so that it has the form of m in (8.1). Setting m = mj in 
(8.6) lets the product there assume the same form as that in Lemma 12, by 
(8.9) and (8.8). Hence from (8.6) and (8.7) forj > N(k) 

1 Akj, 1 < C(E, k)j-‘mjk’2r,(mj) = o(mF”r3(mj)) as j+ co. (8.10) 

Thus the condition (4.5) holds for this sequence {mj}, and consequently 
we have proven 

THEOREM 4. Let {fi} be an increasing sequence of squarefree natural 
numbers with J; 9 --I mod 8. There exist sequences (mi} with mi =figi2 
(gi E 2) such that for every Jordan measurable region A on the unit sphere in ES 



238 ARENSTORF AND JOHNSON 

Thus, from the notation given in the introduction, lattice points (of Z3) on 
the sequence of spheres 

x2 +y2 -I- z2 = mi (i = 1, 2,...) 

(in R3) are asymptotically uniformly distributed. 
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