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1. Introduction

Let F be a non-Archimedean local field with ring of integers O. Let ℘ be the unique maximal ideal
of O and π be a fixed uniformizer of ℘ . Assume that the residue field O/℘ is finite. The typical
examples of such rings of integers are Zp (the ring of p-adic integers) and Fq[[t]] (the ring of formal
power series with coefficients over a finite field). We denote by O� the reduction of O modulo ℘� , i.e.,
O� = O/℘� . Let Λk denote the set of partitions with k parts, namely, non-increasing finite sequences
(�1, �2, . . . , �k) of positive integers, and let Λ =⋃Λk . Since O is a principal ideal domain with a
unique maximal ideal ℘ , every finite O-module is of the form

⊕k
i=1 O�i , where �i ’s can be arranged

so that λ = (�1, �2, . . . , �k) ∈ Λk . Let Mλ =⊕k
i=1 O�i and

Gλ,F = AutO(Mλ).

We write Gλ instead of Gλ,F whenever field F is clear from the context. If Mλ = On
� for some natural

number n, then the group Gλ consists of invertible matrices of order n with entries in the ring O� , so
we use the notation GLn(O�) for Gλ in this case.

The representation theory of the finite groups Gλ has attracted the attention of many math-
ematicians. We give a brief history of this problem. Green [9] calculated the characters of the
irreducible representations of GLn(O1). Several authors, for instance, Frobenius [6], Rohrbach [23],
Kloosterman [15,16], Tanaka [30], Nobs and Wolfart [21], Nobs [20], Kutzko [17], Nagornyı̆ [18], and
Stasinski [27] studied the representations of the groups SL2(O�) and GL2(O�). Nagornyı̆ [19] obtained
partial results regarding the representations of GL3(O�) and Onn [22] constructed all the irreducible
representations of the groups G(�1,�2) . Recently, Avni, Klopsch, Onn, and Voll [2] have announced re-
sults about the representation theory of the groups SL3(Zp).

In another direction, it was observed that, being maximal compact subgroups, GLn(O) play an
important role in the representation theory of the groups GLn(F ). Further, every continuous repre-
sentation of GLn(O) factors through one of the natural homomorphisms GLn(O) → GLn(O�). This
brings the study of irreducible representations of groups GLn(O�) to the forefront. Various questions
regarding the complexity of the problem of determining irreducible representations of these groups
have been asked. For example, Nagornyı̆ [19] proved that this problem contains the matrix pair prob-
lem. Aubert, Onn, Prasad, and Stasinski [1] proved that, for F = Fq((t)), constructing all irreducible
representations of GLn(O2) for all n is equivalent to constructing all irreducible representations of
Gλ,Fqm ((t)) for all λ and m (see also Section 6).

Motivated by Lusztig’s work for finite groups of Lie type, Hill [10] partitioned all the irreducible
representations of groups GLn(O�) into geometric conjugacy classes and reduced the study of ir-
reducible representations of GLn(O�) to the study of its nilpotent characters. In later publications
[11–13], he succeeded in constructing many irreducible representations (namely strongly-semisimple,
semisimple, regular, etc.) for these groups. Following the techniques used in the representation the-
ory of groups GLn(O1) and GLn(F ), various notions such as cuspidality and supercuspidality were
introduced for representations of GLn(O) (for more on this see [1] and [26]), but the complete set of
irreducible representations of groups GLn(O�) for � � 2 is still unknown. From the available results,
it was observed that methods of constructing irreducible representations of groups Gλ do not depend
on the particular ring of integers O, but only on the residue field. This led Onn to conjecture [22,
Conjecture 1.2] that:

Conjecture 1.1. The isomorphism type of the group algebra C[Gλ] depends only on λ and q = |O/℘|.
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We discuss the method of constructing complex irreducible representations of the groups GLn(O2)

with the help of Clifford theory and reduce this problem to constructing irreducible representations of
certain subgroups of GLn(O1). This enables us to give an affirmative answer to the above conjecture
for GLn(O2). The groups GLn(O2), for distinct rings of integers O, are not necessarily isomorphic,
even when the residue fields are isomorphic. For example, for a natural number n and a prime p, the
group GLn(Fp[[t]]/t2) is a semi-direct product of the groups Mn(Fp) and GLn(Fp), but on the other
hand GLn(Zp/p2Zp) is not unless n = 1 or (n, p) = (2,2), (2,3) or (3,2) (Sah [24, p. 22], Ginosar [8]).
Our main emphasis is on proving that all of their irreducible representations can be constructed in
a uniform way. We also succeed in showing that representation theory of groups Gλ,Fqm ((t)) plays
a vital role in representation theory of groups GLn(O2) for any O, in the sense that if we know
irreducible representations of the groups Gλ,Fpm ((t)) for all positive integers m, we can determine all
the representations of GLn(O2).

More precisely, let F and F′ be local fields with rings of integers O and O′ , respectively, such
that their residue fields are finite and isomorphic (with a fixed isomorphism). Let ℘ and ℘′ be the
maximal ideals of O and O′ respectively. As described earlier, O2 and O′

2 denote the rings O/℘2 and
O′/℘′2, respectively. We prove:

Theorem 1.2 (Main Theorem). There exists a canonical bijection between the irreducible representations of
GLn(O2) and those of GLn(O′

2), which preserves dimensions.

Definition 1.3 (Representation zeta polynomial). Let G be a finite group. The representation zeta poly-
nomial of G is the polynomial

RG(D) =
∑

ρ∈Irr G

Ddimρ ∈ Z[D].

In view of the above definition, Theorem 1.2 implies that:

Corollary 1.4. The representation zeta polynomials of GLn(O2) and GLn(O′
2) are equal.

In other words, the representation zeta polynomial depends on the ring only through the order of
its residue field.

Concerning the complexity of the problem of constructing irreducible representations of groups
GLn(O2), we obtain the following generalization of [1, Theorem 6.1].

Theorem 1.5. Let O be the ring of integers of a non-Archimedean local field F , such that its residue field
has cardinality q. Then the problem of constructing irreducible representations of the following groups are
equivalent:

(1) GLn(O2) for all n ∈ N.
(2) Gλ,E for all partitions λ and all unramified extensions E of Fq((t)).

We construct all the irreducible representations of GL2(O2),GL3(O2), and GL4(O2). As mentioned
earlier, the representation theory of GL2(O2) is already known. Partial results regarding the represen-
tations of GL3(O2) have been obtained by Nagornyı̆ [19], but the representation theory of GL4(O2)

seems completely novel. We find that:

Theorem 1.6. The number and dimensions of irreducible representations of groups GL3(O2) and GL4(O2) are
polynomials in Q[q].

This theorem proves the strong version of Onn’s conjecture [22, Conjecture 1.3] for the groups
GL3(O2) and GL4(O2).
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1.1. Organization of the article

In Section 2, we set up the basic notation that we use throughout the article and discuss the
action of the group GLn(O2) on the characters of its normal subgroup K = Ker(GLn(O2) �→ GLn(O1)).
We also state the results of Clifford theory, which we use later to prove Theorem 1.2.

In Section 3, we briefly review the similarity classes of Mn(Fq), and in Section 4, we discuss the
centralizer algebras of matrices, namely the set of matrices that commute with a given matrix. For
any matrix A ∈ Mn(Fq) in Jordan canonical form, we describe its centralizer explicitly in Mn(Fq) and
in GLn(Fq).

In Section 5, we present the proof of Theorem 1.2. For this, we prove that all the characters of the
subgroup K can be extended to its stabilizer in GLn(O2).

Section 6 is devoted to applications of Theorem 1.2. We express a relation between the repre-
sentation zeta polynomial of GLn(O2) and that of centralizers in GLn(O1). Then we describe the
representation zeta polynomials of GL2(O2),GL3(O2), G(2,1,1) , and GL4(O2). In particular, we prove
Theorem 1.6.

2. Notations and Clifford theory

In this section, we set up the basic notation that we use throughout the article. We state and apply
the main results of Clifford theory to our case and state Proposition 2.2, which is an important step
toward the proof of Theorem 1.2.

In this article, by “character”, we mean a one dimensional representation, unless stated otherwise.
For any group G , we denote by Irr(G) the set of its irreducible representations, and for any abelian
group A, we denote by Â the set of its characters.

Let κ : GLn(O2) → GLn(O1) be the natural quotient map and K = Ker(κ). Then A �→ I +π A induces
an isomorphism Mn(O1)

∼−→ K . Fix a non-trivial additive character ψ : O1 → C∗ and for any A ∈
Mn(O1) define ψA : K → C∗ by

ψA(I + π X) = ψ
(
Tr(A X)

)
.

Then A �→ ψA gives an isomorphism Mn(O1)
∼−→ K̂ . The group GLn(O2) acts on Mn(O1) by conjuga-

tion via its quotient GLn(O1), and therefore on K̂ : for α ∈ GLn(O2) and ψA ∈ K̂ , we have

ψα
A (I + π X) = ψA

(
I + παXα−1)

= ψ
(
Tr
(

Aκ(α)Xκ(α)−1))
= ψ

(
Tr
(
κ(α)−1 Aκ(α)X

))
= ψκ(α)−1 Aκ(α)(I + π X). (2.1)

Thus the action of GLn(O2) on the characters of K transforms to its conjugation (inverse) action on
elements of Mn(O1).

We shall use the following results of Clifford theory.

Theorem 2.1. Let G be a finite group and N be a normal subgroup. For any irreducible representation ρ of N,
let T (ρ) = {g ∈ G | ρ g = ρ} denote the stabilizer of ρ . Then the following hold:

(1) If π is an irreducible representation of G such that 〈π |N ,ρ〉 
= 0, then π |N = e(
⊕

ρ ′∈Ω ρ ′) where Ω is
an orbit of irreducible representations of N under the action of G, and e is a positive integer.

(2) Suppose that ρ is an irreducible representation of N. Let

A = {θ ∈ Irr
(
T (ρ)

) ∣∣ 〈ResT (ρ)

N θ,ρ
〉 
= 0

}
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and

B = {π ∈ Irr G
∣∣ 〈ResG

N π,ρ
〉 
= 0

}
.

Then

θ → IndG
T (ρ)(θ)

is a bijection of A onto B.
(3) Let H be a subgroup of G containing N, and suppose that ρ is an irreducible representation of N, which

has an extension ρ̃ to H (i.e., ρ̃|N = ρ). Then the representations χ ⊗ ρ̃ for χ ∈ Irr(H/N) are irreducible,
distinct for distinct χ , and

IndH
N (ρ) =

⊕
χ∈Irr(H/N)

χ ⊗ ρ̃.

For proofs of the above, see, for example, 6.2, 6.11, and 6.17, respectively, in Isaacs [14]. Applying
the above results to the group G = GLn(O2) and normal subgroup N = K , we see that the following
proposition plays an important role in the proof of Theorem 1.2.

Proposition 2.2. For a given A ∈ Mn(O1), there exists a character χ of T (ψA) such that χ |K = ψA (such a
character χ is called an extension of ψA ).

Its proof will be given in Section 5.

3. Primary decomposition and Jordan canonical form

In this section, we describe the primary decomposition of matrices under the action of conjugation.
We also discuss the Jordan canonical form for those matrices whose characteristic polynomials split
over Fq .

Let f be an irreducible polynomial with coefficients in Fq .

Definition 3.1 ( f -Primary matrix). A matrix with entries in Fq is f -primary if its characteristic poly-
nomial is a power of f .

Notation. If Ai ’s for 1 � i � l are matrices, then we denote by
⊕

i Ai the block diagonal matrix

⎡
⎢⎢⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Al

⎤
⎥⎥⎦ .

In the same spirit, if A1, A2, . . . , Al are the sets of matrices then
⊕l

i=1 Ai denotes the set of matrices

{⊕l
i=1 Ai | Ai ∈ Ai}. The next two theorems are easy consequences of structure theorems for Fq[t]-

modules. For proofs of these see Bourbaki [4, A.VII.31].

Theorem 3.2 (Primary decomposition). Every matrix A ∈ Mn(Fq) is similar to a matrix of the form

⊕
f

A f ,
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where A f is an f -primary matrix, and the sum is over the irreducible factors of the characteristic polynomial
of A. Moreover, for every f , the similarity class of A f is uniquely determined by the similarity class of A.

Definition 3.3 (Split matrix). A matrix over O1 is called split if its characteristic polynomial splits
over Fq .

Definition 3.4 (Elementary Jordan blocks). For a natural number n and an element a ∈ Fq , an elementary
Jordan block Jn(a) is the matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

a 1 0 0 · · · 0
0 a 1 0 · · · 0
0 0 a 1
...

...
. . .

. . .
...

a 1
0 0 · · · 0 a

⎤
⎥⎥⎥⎥⎥⎥⎦

n×n

.

Theorem 3.5 (Jordan canonical form for split matrices). Every split matrix A ∈ Mn(Fq), up to the rearrange-
ment of the ai ’s, is similar to a unique matrix of the form

⊕
i

Jλ(ai)(ai),

where λ(a) = (λ1(a), λ2(a), . . . , λk(a)) is a partition and

Jλ(ai)(ai) =

⎡
⎢⎢⎢⎣

Jλ1(ai)(ai) 0 · · · 0

0 Jλ2(ai)(ai) · · · 0
...

...
. . .

...

0 0 · · · Jλk(ai)(ai)

⎤
⎥⎥⎥⎦

and each Jλ j(ai)(ai) is an elementary Jordan block with eigenvalue ai .

4. Centralizers

Let R be a commutative ring with unity. In this section, we determine centralizers (see Def-
inition 4.1) of certain matrices in Mn(R) and GLn(R). We also relate the groups Gλ,Fqm ((t)) with
centralizers in GLn(Fq).

Definition 4.1 (Centralizer of an element). Let L be a semi-group under multiplication and l be an
element of L. Assume that T is a subset of L. Then centralizer of l in T , Z T (l), is the set of elements
of T that commute with l, i.e.,

ZT (l) = {t ∈ T | tl = lt}.

Remark 4.2. If T is a group, then ZT (l) is a subgroup of T .

Definition 4.3 (Principal nilpotent matrix). A square matrix is called principal nilpotent if it is of the
form
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Nn =

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 0 0
...

. . .
. . .

...

0 · · · 0 1
0 · · · 0 0

⎤
⎥⎥⎥⎥⎦

n×n

.

In the following section, we use the notation Nn for the principal nilpotent matrix of order n.
Let n1,n2, . . . ,nl be a sequence of natural numbers, such that n = n1 + n2 + · · · + nl . Let A =⊕l

i=1 Nni . In Lemmas 4.4–4.9 we describe the centralizer algebras ZMn(R)(A). The proofs of these
lemmas involve only simple matrix multiplications, so we leave these for the reader.

Lemma 4.4. Let a and b be two elements of R such that a − b is a unit in R. Assume that A and B are two
upper triangular matrices such that all the diagonal entries of A are equal to a and those of B are equal to b.
Then there does not exist any non-zero matrix X over R such that X A = B X.

Lemma 4.5. Let a1,a2, . . . ,al be elements of R such that for all i 
= j, ai −a j is invertible in R. Let A =⊕l
i=1 Ai

be a square matrix of order n, where Ai ’s are upper triangular matrices of order ni . Assume that all diagonal
entries of Ai are equal to ai . Then,

ZGLn(R)(A) =
l⊕

i=1

ZGLni (R)(Ai).

Definition 4.6 (Upper Toeplitz matrix). A square matrix of order n is called Upper Toeplitz if it is of the
form

⎡
⎢⎢⎢⎢⎣

a1 a2 · · · an−1 an

0 a1 a2 an−1
...

. . .
. . .

. . .
...

· · · a1 a2
0 · · · 0 0 a1

⎤
⎥⎥⎥⎥⎦

n×n

.

Lemma 4.7. Assume that Nn and Nm are principal nilpotent matrices of order n and m, respectively. Then
consider the matrices X over R such that X Nm = Nn X are of the form

X =

⎧⎪⎨
⎪⎩
[

0n×m−n Tn×n
]

if n � m,[
Tm×m

0n−m×m

]
if n � m,

where Ts×s , for a natural number s, is an upper Toeplitz matrix of order s over the ring R.

This lemma motivates the following definition of rectangular upper Toeplitz matrix.

Definition 4.8 (Rectangular upper Toeplitz matrix). A matrix of order n × m over a ring R is called a
rectangular upper Toeplitz if it is of the form

[
0n×(m−n) Tn×n

]
if n � m or

[
Tm×m

0(n−m)×m

]
if n � m,

where Ts×s , for a natural number s, is the upper Toeplitz matrix of order s.
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Lemma 4.9. Let n1,n2, . . . ,nl be a sequence of natural numbers such that n = n1 + n2 + · · · + nl. Let A =⊕l
i=1 Nni . Then the centralizer, ZMn(R)(A) of A in Mn(R) consists of matrices of the form

⎡
⎢⎢⎣

Tn1×n1 Tn1×n2 · · · Tn1×nl

Tn2×n1 Tn2×n2 · · · Tn2×nl

...
...

...

Tnl×n1 Tnl×n2 · · · Tnl×nl

⎤
⎥⎥⎦ ,

where Tni×n j for all i, j are rectangular upper Toeplitz matrices.

Definition 4.10 (Block upper Toeplitz matrix). Let Tni×n j be a rectangular upper Toeplitz matrix of order
ni × n j over the ring R . A matrix of the form

⎡
⎢⎢⎣

Tn1×n1 Tn1×n2 · · · Tn1×nl

Tn2×n1 Tn2×n2 · · · Tn2×nl

...
...

...

Tnl×n1 Tnl×n2 · · · Tnl×nl

⎤
⎥⎥⎦

is called a block upper Toeplitz matrix of order (n1,n2, . . . ,nl) over the ring R .

In the following lemma, we relate the groups of automorphisms Gλ,Fq((t)) with the centralizers in
GLn(Fq).

Lemma 4.11. Let A =⊕k
i=1 Nλi and λ = (λ1, λ2, . . . , λk) be a partition. Then the following groups are iso-

morphic:

(1) The group of automorphisms, Gλ,Fq((t)) = AutO(Oλ1 ⊕ Oλ2 ⊕ · · · ⊕ Oλk ).
(2) The centralizer ZGLn(Fq)(A).
(3) The set of invertible block upper Toeplitz matrices of order (λ1, λ2, . . . , λk) over Fq.

Proof. Lemma 4.9 implies that groups (2) and (3) are actually equal. We prove isomorphism between
(1) and (3). Every f ∈ Gλ can be thought as an invertible matrix of the form

⎡
⎢⎢⎣

f11 f12 · · · f1k
f21 f22 · · · f2k
...

...
...

fk1 fk2 · · · fkk

⎤
⎥⎥⎦

with each f i j ∈ EndO(Oλi , Oλ j ). Hence it is sufficient to find an isomorphism between EndO(Oλi , Oλ j )

and rectangular Toeplitz matrices of order λi × λ j over Fq , which takes composition to matrix mul-
tiplication. We prove it only for λi = λ1 and λ j = λ2 with λ1 � λ2, but the rest of the parts can be
proved similarly.

Let Tλ1,λ2 be the set of rectangular upper Toeplitz matrices of order λ1 × λ2 over the field Fq .
Define a map EndO(Oλ1 , Oλ2 ) → Tλ1,λ2 by

f �→ [
0(λ1−λ2)×λ2 A

]
λ1×λ2

,

where
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A =

⎡
⎢⎢⎢⎢⎣

a1 a2 · · · aλ2−1 aλ2

0 a1 a2 aλ2−1
...

. . .
. . .

. . .
...

· · · a1 a2
0 · · · 0 0 a1

⎤
⎥⎥⎥⎥⎦

λ2×λ2

and elements a1,a2, . . . ,aλ2 are determined by the expression f (1) = a1 + a2π + · · · + aλ2π
λ2−1. It is

straightforward to see that this map gives the required isomorphism. �
5. Proof of the Main Theorem

In this section, we present proofs of Proposition 2.2 and Theorem 1.2.
Recall that for any character ρ ∈ K̂ , T (ρ) = {g ∈ GLn(O2) | ρ g = ρ} is the stabilizer of ρ in

GLn(O2). By (2.1), for each ψA ∈ K̂ ,

T (ψA) = κ−1(ZGLn(O1)(A)
)
. (5.1)

Fix a section s : O1 → O2 of the natural quotient map O2 → O1, such that s(0) = 0 and s(1) = 1. By
extending s entry-wise, we obtain a map s : Mn(O1) → Mn(O2). Observe that the restriction of s to
GLn(O1) defines a section of κ . For every matrix A in Mn(O1), ZGLn(O2)(s(A)) is the centralizer of
s(A) in GLn(O2).

Lemma 5.1. Assume that A is a split matrix and is in its Jordan canonical form, then

ZGLn(O1)(A) = κ
(

ZGLn(O2)

(
s(A)

))
.

Proof. Let α = κ(t) for some t ∈ ZGLn(O2)(s(A)). Then by definition, t satisfies ts(A) = s(A)t , which
along with the fact that κ is a homomorphism, implies κ(t)A = Aκ(t). Hence α = κ(t) ∈ ZGLn(O1)(A).
This proves κ(ZGLn(O2)(s(A))) ⊆ ZGLn(O1)(A). For the reverse inclusion, because A is a split matrix, by
Theorems 3.2 and 3.5,

A =
l⊕

i=1

Ai,

where each Ai is a split primary matrix and is of the form

Ai =
li⊕

j=1

Jλi j (ai)

with ai ’s being distinct elements of the field O1. By using s(0) = 0 and s(1) = 1, we obtain s(Ai), for
all i is an upper triangular matrix with all diagonal entries equal to s(ai) and s(A) =⊕l

i=1(s(Ai)).
Further for all i 
= j, ai 
= a j implies that s(ai)− s(a j) are invertible elements of the ring O2. Therefore,
by Lemma 4.5,

ZGLn(O2)

(
s(A)

)= l⊕
i=1

ZGLni (O2)

(
s(Ai)

)
. (5.2)
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Because we also have

ZGLn(O1)(A) =
l⊕

i=1

ZGLni (O1)
(Ai),

it is sufficient to prove ZGLn(O1)(A) ⊆ κ(ZGLn(O2)(s(A))) when A is a split primary.
Split primary case: Now we assume that A is split primary and is in its Jordan canonical form. Theo-

rems 3.2 and 3.5 give that A = aIn + (
⊕t

i=1 Nni ) for some a ∈ O1. Let α ∈ ZGLn(O1)(A). By Lemma 4.11,
α is an invertible block Toeplitz matrix of order (n1,n2, . . . ,nt) over the ring O1. Our choice of
section ensures that s(A) = s(a)In + (

⊕t
i=1 Nni ), and s(α) is an invertible block Toeplitz matrix of

order (n1,n2, . . . ,nt) over the ring O2. However, then by Lemma 4.9, s(α) ∈ ZGLn(O2)(s(A)). Hence
α = κ(s(α)) ∈ κ(ZGLn(O2)(s(A))). �

From the proof of the above lemma we obtain:

Corollary 5.2. If A is a split matrix and is in its Jordan canonical form, then α ∈ ZGLn(O1)(A) if and only if
s(α) ∈ ZGLn(O2)(s(A)).

Corollary 5.3. If A is a split matrix and is in its Jordan canonical form, then T (ψA) = K ZGLn(O2)(s(A)).

Proof. The inclusion T (ψA) ⊆ K ZGLn(O2)(s(A)) follows from (5.1) and Lemma 5.1. �
Lemma 5.4. Let G be a finite group with two subgroups N and M, such that N is normal in G and G = N.M. If
ψ1 and ψ2 are one dimensional representations of N and M, respectively, such that ψ1(mnm−1) = ψ1(n) for
all m ∈ M, n ∈ N and ψ1|N∩M = ψ2|N∩M , then ψ1.ψ2 defined by ψ1.ψ2(n.m) := ψ1(n)ψ2(m) is the unique
one dimensional representation of G extending both ψ1 and ψ2

Proof. We simply prove that ψ1.ψ2 is well defined; the rest of the proof is straightforward. Suppose
nm = n′m′ , where n,n′ ∈ N and m,m′ ∈ M . Then n′−1n = m′m−1 ∈ M ∩ N:

ψ1.ψ2(nm) = ψ1(n)ψ2(m)

= ψ1
(
n′n′−1n

)
.ψ2
(
mm′−1m′)

= ψ1
(
n′).ψ1

(
n′−1nmm′−1).ψ2

(
m′)

= ψ1
(
n′).ψ2

(
m′)

= ψ1ψ2
(
n′m′). �

Proof of Proposition 2.2. It follows from (2.1) that orbits of the action of GLn(O2) on K are the same
as orbits of Mn(O1) under the action of GLn(O1), namely the similarity classes. It is easy to see that,
if we can extend the character ψA from K to T (ψA), then we can extend any ψA′ in the orbit of ψA
under the action of GLn(O2) on T (ψA). Therefore to prove the proposition, it is enough to choose
a representative A of each similarity class of Mn(O1) and to extend the corresponding character ψA
from K to T (ψA). We prove existence of this extension in three steps:

Step 1 (A is split primary). Let A be a split primary matrix with unique eigenvalue a ∈ O1. Replace
A with a matrix in its similarity class of the form

⊕l
i=1 Jλi (a), where each Jλi (a) is an elementary

Jordan block.
We define a character ψa : O1 → C∗ by ψa(x) = ψ(ax). The map x �→ 1 +πx gives an isomorphism

from O1 onto the subgroup 1 +π O1 of the multiplicative group O∗
2 . Choose χ ∈ Ô∗

2 such that χ(1 +
πx) = ψa(x) for all x ∈ O1. Define a character χ̃ : ZGLn(O2)(s(A)) → C∗ by χ̃ (x) = χ(det(x)).
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Lemma 5.5. The character χ̃ of ZGLn(O2)(s(A)) satisfies

χ̃ |K∩ZGLn(O2)(s(A)) = ψA |K∩ZGLn(O2)(s(A)).

Proof. By Lemma 4.11, K ∩ ZGLn(O2)(s(A)) = I + π ZMn(O1)(A). If X = (xij) ∈ ZMn(O1)(A), then by
Lemma 4.9, X is a block upper Toeplitz matrix. Therefore, Tr(A X) = a(x11 + x22 + · · · + xnn). We have

ψA(I + π X) = ψ
(
Tr(A X)

)
= ψ

(
a(x11 + x22 + · · · + xnn)

)
= χ

(
det(I + π X)

)= χ̃ (I + π X). �
Applying Lemma 5.4 to the group T (ψA) with its subgroups K and ZGLn(O2)(s(A)), and characters

ψ1 = ψA and ψ2 = χ̃ , we obtain that the character ψA .χ̃ is an extension of ψA from K to T (ψA).

Step 2 (A is split). Let A be a split matrix with distinct eigenvalues a1,a2, . . . ,al . Then by Theorem 3.2,
A can be written as

⊕l
i=1 Ai , where each Ai is a split primary matrix, say of order ni , and has a

unique eigenvalue ai . We may assume each Ai in its Jordan canonical form. Then by (5.2),

K ∩ ZGLn(O2)

(
s(A)

)= l⊕
i=1

(
K ∩ ZGLni (O2)

(
s(Ai)

))
.

As in Step 1, define the characters χ̃i of ZGLni (O2)(s(Ai)) such that

χ̃i|K∩ZGLni (O2)(s(Ai)) = ψAi |K∩ZGLni (O2)(s(Ai)).

Then the character χ̃ = χ̃1 × χ̃2 × · · · × χ̃l is a character of ZGLn(O2)(s(A)), such that

χ̃ |K∩ZGLn(O2)(s(A)) = ψA |K∩ZGLn(O2)(s(A)).

Again by Lemma 5.4, ψA .χ̃ is an extension of ψA from K to T (ψA).

Step 3 (General case). Let Õ1 be a splitting field for the characteristic polynomial of A, and let Õ2 be
the corresponding unramified extension of O2. Let K̃ = Ker(GLn(Õ2) → GLn(Õ1)) under the natural
quotient map, and let ψ̃ : Õ1 → C∗ be a character such that ψ̃ |O1 = ψ . Then ψ̃A : K̃ → C∗ , defined
by

ψ̃A(I + π X) = ψ̃
(
Tr(A X)

)
is a character of K̃ . Let T̃ (ψA) be the stabilizer of ψ̃A in GLn(Õ2). Because A splits over Õ1, by Step 2,
there exists a character χ̃ : T̃ (ψA) → C∗ , such that

χ̃ |K̃ = ψ̃A .

Define a character χ : T (ψA) → C∗ by χ = χ̃ |T (ψA) . Then χ is an extension of ψA to T (ψA). This
completes the proof of Proposition 2.2. �
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Fix an extension χA of ψA from K to T (ψA), and let S denote the set of similarity classes
of Mn(O1). By (5.1), the groups T (ψA)/K and ZGLn(O1)(A) are isomorphic. Therefore, by Clifford
theory, there exists a bijection between the sets

∐
A∈S

{
Irr
(

ZGLn(O1)(A)
)}←→ Irr

(
GLn(O2)

)
, (5.3)

given by,

φ �→ IndGLn(O2)
T (ψA) (χA ⊗ φ). (5.4)

As [GLn(O2) : T (ψA)] = [GLn(O1) : ZGLn(O1)(A)], this already proves that there exists a dimension
preserving bijection between the sets Irr(GLn(O2)) and Irr(GLn(O′

2)). To prove that this bijection is
canonical we need to do little more work.

Let O′ be an another ring of integers of local non-Archimedean field F ′ , such that residue fields
of both O and O′ are isomorphic. We fix an isomorphism φ between their residue fields. From now
onwards we shall assume that section s : O1 → O2 satisfies s(0) = 0 and s|O∗

1
is multiplicative. The

existence and uniqueness of this section is proved in, for example, Serre [25, Proposition 8]. In the
sequel, this unique section will be called the multiplicative section of O1 (or of O∗

1) (depending on the
domain). Given above isomorphism φ:

Lemma 5.6. There exists a canonical isomorphism between groups Ô∗
2 and Ô′ ∗

2 .

Proof. Let s : O∗
1 → O∗

2 and s′ : O′ ∗
1 → O′ ∗

2 be the multiplicative sections of O∗
1 and O′ ∗

1 , respectively.
Then the following exact sequences split,

0 O1
i

O∗
2 O∗

1
s

1

0 O′
1

i′
O′ ∗

2 O′ ∗
1

s′

1.

The uniqueness of the sections s and s′ implies the existence of a unique isomorphism f : O∗
2 → O′ ∗

2

such that f ◦ s = s′ ◦ φ and f ◦ i = i′ ◦ φ. This gives a canonical isomorphism between Ô∗
2 and Ô′ ∗

2 .
Let K ′ = Ker(GLn(O′

2) → GLn(O′
1)). Then

K ∼= K ′ ∼= Mn(O1),

hence the set {ψA | A ∈ Mn(O1)} can also be thought of as the set of characters of K ′ . Let T ′(ψA)

denote the stabilizer of character ψA in GLn(O′
2). By (5.1), groups T ′(ψA)/K ′ and T (ψA)/K are canon-

ically isomorphic. Further, to prove that there exists a canonical bijection between Irr(GLn(O2)) and
Irr(GLn(O′

2)), it is sufficient to prove that for a given A ∈ Mn(O1), and an extension χA : T (ψA) → C∗
of ψA , there exists a canonical extension χ ′

A : T ′(ψA) → C∗ of ψA from K ′ to T ′(ψA). For that, in
Steps 1 and 2 of the proof of Proposition 2.2, choose the character of O′ ∗

2 by using the given charac-

ter of O∗
2 and canonical isomorphism between Ô∗

2 and Ô′ ∗
2 ; the rest of the argument follows easily

from this. For Step 3, any isomorphism between Õ1 and Õ′
1 that extends φ : O1 → O′

1 is defined
uniquely up to an element of the Galois group. To complete the proof for this step, we observe that,
if ψ̃ is an extension of ψ from O1 to Õ1 and γ is an element of Galois group Gal(Õ1/O1) then by
definition (ψ̃ ◦ γ )A = ψ̃A ◦ γ where on the right side element γ is thought as scalar matrix with all
its diagonal entries equal to γ . Choose χ̃A an extension of ψ̃A from K̃ to T̃ (ψA) and let γ̃ be a lift
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of γ from Gal(Õ1/O1) to Gal( F̃/F ), which takes the maximal ideal of Õ to itself (for existence of
this see [7, p. 26]), then χ̃ ◦ γ̃ (again γ̃ is thought as scalar matrix with diagonal entries equal to γ̃ )
extends ψ̃A ◦ γ . The restrictions of χ̃A and χ̃A ◦ γ̃ to T (ψA) coincide. This completes the proof of
Theorem 1.2. �
Corollary 5.7. The isomorphism type of group algebra C[GLn(O2)] depends only on the cardinality of the
residue field of O.

This can be restated as:

Corollary 5.8. The number and dimensions of irreducible representations of groups GLn(O2) depends only on
the residue field.

The equivalence between number of conjugacy classes and irreducible representations further
gives:

Corollary 5.9. The number of conjugacy classes of groups GLn(O2) depends only on the cardinality of the
residue fields.

Remark 5.10. In a forthcoming paper, we will sharpen this result by showing that the class equation
of GLn(O2) depends only on the cardinality of the residue field.

6. Complexity of the problem

In this section we comment on the complexity of the problem of constructing all the irreducible
representations of GLn(O2).

In this context, Aubert, Onn, Prasad, and Stasinski have proved the following (see [1, Theorem 6.1]):

Theorem 6.1. Let F = Fq((t)) be a local function field. Then the problems of constructing all the irreducible
representations of the following are equivalent:

(1) G2n,F for all n ∈ N.
(2) Gkn,F for all k,n ∈ N.
(3) Gλ,E for all partitions λ and all unramified extensions E of F .

The above, combined with Theorem 1.2, proves the following:

Theorem 6.2. Let O be ring of integers of a non-Archimedean local field F , such that the residue field has
cardinality q. Then the problems of constructing irreducible representations of the following groups are equiv-
alent:

(1) GLn(O2) for all n ∈ N.
(2) Gλ,E for all partitions λ and all unramified extensions E of Fq((t)).

7. Applications

In this section, we discuss a few applications of the theory developed so far. In particular, we dis-
cuss the relation between the representation zeta polynomial of GLn(O2) and those of centralizers in
GLn(O1). We also construct all the irreducible representations of groups GL2(O2), GL3(O2), GL4(O2)

and obtain their representation zeta polynomials.
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Recall the following definition from Section 1:

Definition 7.1 (Representation zeta polynomial). Let G be a finite group. The representation zeta poly-
nomial of G is the polynomial:

RG(D) =
∑

ρ∈Irr G

Ddimρ ∈ Z[D].

7.1. Representation zeta polynomial of GLn(O2)

Let S be the set of similarity classes of Mn(O1). From (5.3), it is clear that representations of
centralizers play an important role in determining irreducible representations of GLn(O2). Moreover,
we obtain the following relation between their representation zeta polynomials,

RGLn(O2)(D) =
∑
A∈S

R ZMn(O1)(A)

(
D[GLn(O1):ZGLn(O1)(A)])

, (7.1)

where [GLn(O1) : ZGLn(O1)(A)] = [GLn(O2) : T (ψA)] is the index of ZGLn(O1)(A) in GLn(O1). Following
Green [9], a similarity class c of Mn(O1) can be denoted by the symbol

c = (. . . , f νc( f ), . . .
)
,

where f is an irreducible polynomial appearing in the characteristic polynomial of c, and νc( f ) is the
partition associated with f in the canonical form of c.

Let c = (. . . , f νc( f ), . . .). Let d be a positive integer, and let ν be a partition other than zero.
Let rc(d, ν) be the number of f appearing in the characteristic polynomial of c with degree d and
νc( f ) = ν . Let ρc(ν) be the partition

{
nrc(n,ν), (n − 1)rc(n−1,ν), . . .

}
.

Then two classes b and c are of the same type if and only if ρb(ν) = ρc(ν) for each non-zero parti-
tion ν . By abusing notation, we shall also say that matrices of class c and d have the same type.

Let ρν be a partition-valued function on the non-zero partitions ν (ρν may take value zero). The
condition for ρν to describe a type of Mn(O1) is

∑
ν

|ρν ||ν| = n.

The total number t(n) of functions ρν satisfying the above expression is independent of q, and so is
the number of types of Mn(O1) (for large enough q). The following lemma (which is easy) under-
lines the importance of types in the calculation of the representation zeta polynomials of the groups
GLn(O2):

Lemma 7.2. If matrices A and B in Mn(O1) are of the same type, then their centralizers are isomorphic.

Let T denote the set of representatives of types of Mn(O1), and for each A ∈ T , let nA be the total
number of similarity classes of type A. The expression (7.1) simplifies to

RGLn(O2)(D) =
∑

nA R ZMn(O1)(A)

(
D[GLn(O1):ZGLn(O1)(A)])

. (7.2)

A∈T
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Table 1
Group GL2(O2).

Type A Number of similarity
classes of given type (nA)

Isomorphism type of
centralizer ZGL2(O1)(A)

Index
[GL2(O1) : ZGL2(O1)(A)](

ρa 0
0 ρa

)
q RGL2(O1)(D) 1

(
ρa 0
0 ρb

)
1
2 q(q − 1) (q − 1)2 D q(q + 1)

(
ρa 1
0 ρa

)
q q(q − 1)D q2 − 1

(
σ a 0
0 σ aq

)
1
2 q(q − 1) (q2 − 1)D q2 − q

The elements ρ and σ are primitive elements of Fq and Fq2 respectively, such that ρ = σ q+1.

Summarizing the discussion so far, to determine the irreducible representations of groups GLn(O2), it
is sufficient to determine the representations of the centralizers ZGLn(O1)(A), where A varies over the
set of types of Mn(O1). However, determining representations of groups ZGLn(O1)(A) for general n is
still an open problem. We discuss representations of these groups for n = 2, n = 3, and n = 4.

We shall use the following theorems. For proofs of these results, see, for example, [29, Chapter 1].

Theorem 7.3. Let A ∈ Mn(Fq). Then the centralizer of A in Mn(Fq) is the algebra Fq[A] if and only if the mini-
mal polynomial of A coincides with its characteristic polynomial. Moreover, in this case, dimFq ZMn(Fq)(A) = n.

Theorem 7.4. Let A ∈ Mn(Fq). Then its centralizer in Mn(Fq) is a field if and only if its characteristic polynomial
is irreducible over Fq.

7.2. Representations of GL2(O2)

The irreducible representations of groups GL2(O2) have already been described by Nagornyı̆ [18]
and Onn [22]. Because they fall out of our discussion very easily and are used in representation theory
of groups GL4(O2), we add a brief description of them as well. For representation theory of groups
GLn(O1), we refer to Green [9] and Steinberg [28]. In Table 1, we describe types of M2(O1) (set of
2×2 matrices over O1) with their centralizers. To determine centralizers, wherever required, we have
used Theorems 7.3 and 7.4.

The representation zeta polynomial of the group GL2(O1) (see Steinberg [28]) is

RGL2(O1)(D) = (q − 1)D + (q − 1)Dq + 1

2
(q − 1)(q − 2)Dq+1 + 1

2
q(q − 1)Dq−1.

Feeding all these data into 7.2, we easily obtain the representation zeta polynomial of GL2(O2):

RGL2(O2)(D) = qRGL2(O1)(D) + 1

2
q(q − 1)3 Dq(q+1) + q2(q − 1)Dq2−1

+ 1

2
q(q + 1)(q − 1)2 Dq2−q. (7.3)

7.3. Representations of GL3(O2)

Partial results regarding representations of groups GL3(O2) have already been given by Nagornyı̆
[19]. We complete his results for these groups.



2558 P. Singla / Journal of Algebra 324 (2010) 2543–2563
Table 2
Group GL3(O2).

Type A Number of similarity
classes of given type (nA)

Isomorphism type of
centralizer ZGL3(O1)(A)

Index
[GL3(O1) : ZGL3(O1)(A)]⎛

⎝ ρa 0 0
0 ρa 0
0 0 ρa

⎞
⎠ q RGL3(O1)(D) 1

⎛
⎝ ρa 0 0

0 ρa 0
0 0 ρb

⎞
⎠ q(q − 1) (q − 1)RGL2(O1)(D) q2(q2 + q + 1)

⎛
⎝ ρa 0 0

0 ρb 0
0 0 ρc

⎞
⎠ 1

6 q(q − 1)(q − 2) (q − 1)3 D q3(q + 1)(q2 + q + 1)

⎛
⎝ ρa 1 0

0 ρa 0
0 0 ρb

⎞
⎠ q(q − 1) q(q − 1)2 D q2(q3 − 1)(q + 1)

⎛
⎝ ρa 1 0

0 ρa 0
0 0 ρa

⎞
⎠ q RG(2,1)

(D) (q3 − 1)(q + 1)

⎛
⎝ ρa 1 0

0 ρa 1
0 0 ρa

⎞
⎠ q q2(q − 1)D q(q3 − 1)(q2 − 1)

⎛
⎝ ρa 0 0

0 σ a 0
0 0 σ aq

⎞
⎠ 1

2 q2(q − 1) (q − 1)(q2 − 1)D q3(q3 − 1)

⎛
⎝ τ 0 0

0 τ bq 0

0 0 τ bq2

⎞
⎠ 1

3 q(q2 − 1) (q3 − 1)D q3(q − 1)2(q + 1)

The elements ρ , σ , and τ are primitive elements of Fq , Fq2 , and Fq3 , respectively, such that ρ = σ q+1 = τ q2+q+1.

In Table 2, we describe types and their corresponding centralizers for the group M3(O1). The
representation zeta polynomial of GL3(O1) (Steinberg [28]) is

RGL3(O1)(D) = (q − 1)D + (q − 1)Dq2+q + (q − 1)Dq3

+ (q − 1)(q − 2)Dq2+q+1 + (q − 1)(q − 2)Dq(q2+q+1)

+ 1

6
(q − 1)(q − 2)(q − 3)D(q+1)(q2+q+1)

+ 1

2
q(q − 1)2 D(q−1)(q2+q+1)

+ 1

3
q(q − 1)(q + 1)D(q+1)(q−1)2

. (7.4)

The irreducible representations of all the centralizers appearing in Table 2 except G2,1 are either very
easy or well known. Onn [22, Theorem 4.1] has described all the irreducible representations of groups
G(�,1) for � > 1. As a consequence, we have

Lemma 7.5. The representation zeta polynomial of the group G(2,1) is

RG(2,1)
(D) = (q − 1)2 D + (q2 − 1

)
Dq−1 + (q − 1)3 Dq.

Collecting all the pieces together, we obtain the expression for the representation zeta polynomial
of GL3(O2):
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RGL3(O2)(D) = qRGL3(O1)(D) + q(q − 1)2 RGL2(O1)

(
Dq2(q2+q+1)

)
+ 1

6
q(q − 2)(q − 1)4 Dq3(q+1)(q2+q+1)

+ q2(q − 1)3 Dq2(q3−1)(q+1) + qRG(2,1)

(
D(q3−1)(q+1)

)
+ q3(q − 1)Dq(q3−1)(q2−1)

+ 1

2
q2(q − 1)2(q2 − 1

)
Dq3(q3−1)

+ 1

3
q
(
q2 − 1

)(
q3 − 1

)
Dq3(q−1)2(q+1). (7.5)

7.4. Representations of GL4(O2)

In this section we discuss representation theory of groups GL4(O2).
In Table 3, we give all the data required for the representations of GL4(O2). The expression

for the representation zeta polynomial of GL4(O1) is rather long, so we omit the details here (see
Steinberg [28]). Among the other centralizers appearing in this table, only the results regarding the
representations of group G(2,1,1) are not clear from our discussion so far. We follow a method of Uri
Onn to discuss the representations of these groups.

For the proof of next Proposition (which follows from the theory of finite Heisenberg groups) we
refer to Bushnell and Fröhlich [5, Proposition 8.3.3].

Proposition 7.6. Let 1 → N → G →φ G/N → 1 be an extension, where V = G/N is an elementary finite
abelian p-group so also viewed as a finite dimensional vector space over Fp . Further, let χ : N �→ C∗ be a
non-trivial character such that G stabilizes χ . Assume furthermore that hχ (g1N, g2N) = 〈g1N, g2N〉χ =
χ([g1, g2]) is an alternating non-degenerate bilinear form on V . Then there exists a unique irreducible repre-
sentation ρχ of G such that ρχ |N is χ -isotypic. Moreover, dim(ρχ )2 = [G : N].

Lemma 7.7. The representation zeta polynomial of the group G(2,1,1) is

RG(2,1,1)
(D) = (q − 1)2 RGL2(O1)

(
Dq2)+ (q − 1)R(O2

1×O2
1)�G(1,1)

(D),

where

R(O2
1×O2

1)�G(1,1)
(D) = R(1,1)(D) + 2(q − 1)Dq2−1 + (q − 1)2 D

(
q2 − 1

)
q

+ (q + 2)D(q2−1)(q−1). (7.6)

Proof. Using the notation in the proof of Lemma 4.11, let H be the kernel of map G(2,1,1) → G1 ×
G(1,1) ,

g �→
(

g11(mod ℘),

(
g22 g23
g32 g33

))
.

Then

H = I +
[

℘ ℘ ℘

O1

]
.

O1
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Table 3
Group GL4(O2).

Type A Number of similarity
classes of given type (nA)

Isomorphism type of
centralizer ZGL4(O1)(A)

Index
[GL4(O1) : ZGL4(O1)(A)]⎛

⎜⎜⎝
ρa 0 0 0
0 ρa 0 0
0 0 ρa 0
0 0 0 ρa

⎞
⎟⎟⎠ q GL4(O1) 1

⎛
⎜⎜⎝

ρa 0 0 0
1 ρa 0 0
0 0 ρa 0
0 0 0 ρa

⎞
⎟⎟⎠ q G(2,1,1) (q2 + 1)(q3 − 1)(q + 1)

⎛
⎜⎜⎝

ρa 0 0 0
1 ρa 0 0
0 0 ρa 0
0 0 1 ρa

⎞
⎟⎟⎠ q G(2,2) q(q4 − 1)(q3 − 1)

⎛
⎜⎜⎝

ρa 0 0 0
1 ρa 0 0
0 1 ρa 0
0 0 0 ρa

⎞
⎟⎟⎠ q G(3,1) q2(q4 − 1)(q3 − 1)(q + 1)

⎛
⎜⎜⎝

ρa 0 0 0
1 ρa 0 0
0 1 ρa 0
0 0 1 ρa

⎞
⎟⎟⎠ q O∗

4 q3(q4 − 1)(q3 − 1)(q2 − 1)

⎛
⎜⎜⎝

ρa 0 0 0
0 ρa 0 0
0 0 ρa 0
0 0 0 ρb

⎞
⎟⎟⎠ q(q − 1) GL3(O1) × O∗

1 q3(q + 1)(q2 + 1)

⎛
⎜⎜⎝

ρa 0 0 0
1 ρa 0 0
0 0 ρa 0
0 0 0 ρb

⎞
⎟⎟⎠ q(q − 1) G(2,1) × O∗

1 q3(q2 + 1)(q + 1)2(q3 − 1)

⎛
⎜⎜⎝

ρa 0 0 0
1 ρa 0 0
0 1 ρa 0
0 0 0 ρb

⎞
⎟⎟⎠ q(q − 1) O∗

3 × O∗
1 q4(q4 − 1)(q3 − 1)(q + 1)

⎛
⎜⎜⎝

ρa 0 0 0
0 ρa 0 0
0 0 ρb 0
0 0 0 ρb

⎞
⎟⎟⎠ 1

2 q(q − 1) GL2(O1) × GL2(O1) q4(q2 + 1)(q2 + q + 1)

⎛
⎜⎜⎝

ρa 0 0 0
1 ρa 0 0
0 0 ρb 0
0 0 0 ρb

⎞
⎟⎟⎠ q(q − 1) O∗

2 × GL2(O1) q4(q2 + q + 1)(q4 − 1)

⎛
⎜⎜⎝

ρa 0 0 0
1 ρa 0 0
0 0 ρb 0
0 0 1 ρb

⎞
⎟⎟⎠ 1

2 q(q − 1) O∗
2 × O∗

2 q4(q + 1)(q4 − 1)(q3 − 1)

⎛
⎜⎜⎝

ρa 0 0 0
0 ρa 0 0
0 0 ρb 0
0 0 0 ρc

⎞
⎟⎟⎠ 1

2 q(q − 1)(q − 2) GL2(O1) × O∗
1 × O∗

1 q5(q + 1)(q2 + 1)(q2 + q + 1)
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Table 3 (continued)

Type A Number of similarity
classes of given type (nA)

Isomorphism type of
centralizer ZGL4(O1)(A)

Index
[GL4(O1) : ZGL4(O1)(A)]⎛

⎜⎜⎝
ρa 0 0 0
1 ρa 0 0
0 0 ρb 0
0 0 0 ρc

⎞
⎟⎟⎠ 1

2 q(q − 1)(q − 2) O∗
2 × O∗

1 × O∗
1 q5(q2 + 1)(q + 1)2(q3 − 1)

⎛
⎜⎜⎝

ρa 0 0 0
0 ρb 0 0
0 0 ρc 0
0 0 0 ρd

⎞
⎟⎟⎠ 1

24 q(q − 1)(q − 2)(q − 3) O∗
1 × O∗

1 × O∗
1 × O∗

1
q6(q3 + q2 + q + 1)(q + 1) ×

(q2 + q + 1)

⎛
⎜⎜⎝

ρa 0 0 0
0 ρa 0 0
0 0 σ b 0
0 0 0 σ bq

⎞
⎟⎟⎠ 1

2 q2(q − 1) GL2(O1) × F∗
q2 q5(q2 + 1)(q3 − 1)

⎛
⎜⎜⎝

ρa 0 0 0
1 ρa 0 0
0 0 σ b 0
0 0 0 σ bq

⎞
⎟⎟⎠ 1

2 q2(q − 1) O∗
2 × F∗

q2 q5(q3 − 1)(q4 − 1)

⎛
⎜⎜⎝

ρa 0 0 0
0 ρb 0 0
0 0 σ c 0
0 0 0 σ cq

⎞
⎟⎟⎠ 1

4 q2(q − 1)2 O∗
1 × O∗

1 × F∗
q2 q6(q + 1)(q2 + 1)(q3 − 1)

⎛
⎜⎜⎝

σ a 0 0 0
0 σ aq 0 0
0 0 σ a 0
0 0 0 σ aq

⎞
⎟⎟⎠ 1

2 q(q − 1) GL2(Fq2 ) q4(q − 1)(q3 − 1)

⎛
⎜⎜⎝

σ a 0 0 0
0 σ aq 0 0
1 0 σ a 0
0 1 0 σ aq

⎞
⎟⎟⎠ 1

2 q(q − 1) Fq2 × F∗
q2 q4(q4 − 1)(q3 − 1)(q − 1)

⎛
⎜⎜⎝

σ a 0 0 0
0 σ aq 0 0
0 0 σ b 0
0 0 0 σ bq

⎞
⎟⎟⎠ 1

8 q(q − 1)(q2 − q − 2) F∗
q2 × F∗

q2 q6(q2 + 1)(q3 − 1)(q − 1)

⎛
⎜⎜⎝

ρa 0 0 0
0 τ b 0 0
0 0 τ bq 0

0 0 0 τ bq2

⎞
⎟⎟⎠ 1

3 q2(q2 − 1) O∗
1 × F∗

q3 q6(q4 − 1)(q2 − 1)

⎛
⎜⎜⎝

ωa 0 0 0
0 ωaq 0 0

0 0 ωaq2
0

0 0 0 ωaq3

⎞
⎟⎟⎠ 1

4 q(q3 − q) F∗
q4 q6(q − 1)(q2 − 1)(q3 − 1)

The elements ρ , σ , τ , and ω are primitive elements of Fq , Fq2 , Fq3 , and Fq4 , respectively, such that ρ = σ q+1 = τ q2+q+1 =
ωq3+q2+q+1 and σ = ωq2+1.

The center of H , i.e., Z(H) ∼= O1. Firstly we claim that H has q − 1 irreducible representations of di-
mension q2 that lie above the non-trivial characters of Z(H). We identify Z(H) with its dual by z �→
ψz(.) = ψ(Tr(z.)). H stabilizes these characters of Z(H), and furthermore, each of the non-trivial char-
acters gives rise to an alternating non-degenerate bilinear form 〈h1 Z(H),h2 Z(H)〉ψz = ψ(Tr(z[h1,h2]))
on H/Z(H). Proposition 7.6 gives q − 1 pairwise inequivalent irreducible representations of dimension
|H/Z(H)|1/2 = q2. This proves the claim. Furthermore, the group G2,1,1 stabilizes each of these rep-

resentations of H . Let ρχ ∈ Ĥ be such a representation lying over a non-trivial character χ ∈ Ẑ(H).
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We claim that the representation ρχ can be extended to G(2,1,1) . Let Hi = Z(H) × O1 × O1 be the
pre-image in H of the maximal isotropic subgroup O1 × O1 for the above bilinear form. Let χ i be any
extension of χ to Hi . Indeed, the subgroup G2 × G(1,1) stabilizes both Hi and χ i . Let χ̃ be an exten-
sion of χ to G2 × G(1,1) . Then by Lemma 5.4, χ i .χ̃ (a.b) = χ i(a)χ̃ (b) for all a ∈ Hi , and b ∈ G2 × G(1,1)

is a well-defined linear character of Hi .(G2 × G(1,1)). By the proof of Proposition 7.6, ρχ does not de-
pend on the choice of isotropy group and the extension χ i . Therefore, for the induced representation

ρχ i = ind
H .G2×G(1,1)

Hi(G2×G(1,1))

(
χ i),

ρχ � ρχ i , and as dimρχ = dimρχ i = q2, we conclude that ρχ i is an extension of ρχ to G(2,1,1) .
By the Clifford theory, it follows that all the representations of G(2,1,1) that lie above ρχ are of the
form {ρχ i .φ | φ ∈ G(2,1,1)/H}. Hence the contribution to the representation zeta polynomial of G(2,1,1)

from these representations is (q − 1)R O∗
1×GL2(O1)(Dq2

). The remaining representations correspond
to representations of H whose central character is trivial, that is, representations pulled back from
((O2

1 × O2
1) � G(1,1)) × O∗

1 . The action of G(1,1) on O2
1 × O2

1 is given by

(
1

D

)(
1 π v
w I

)(
1

D−1

)
=
(

1 π v D−1

D w I

)
.

After a choice of identification of O2
1 × O2

1 with its dual: 〈(v̂, ŵ), (v, w)〉 = ψ(v v̂ + w ŵ), we get

g−1(v̂, ŵ) = (D−1 v̂, ŵ D
)
, where g =

(
1

D

)
,

and the orbits and stabilizers of this action are given by

Orbits Stabilizers

(1)

[(
0
0

)
,

(
0 0

)]
G(1,1)

(2)

[(
0
0

)
,

(
O2

1 \ 0 0

)]
O1 � O∗

1

(3)

[
O2

1 \
(

0
0

)
,

(
0 0

)]
O1 � O∗

1

(4)

[
O2

1 \
(

0
0

)
,

(
0 O∗

1

)]
O1

(5)

[
O2

1 \
(

0
0

)
,

(
u∗ O1

)]
, u∗ ∈ O∗

1 O∗
1

Collecting all the pieces, we get the desired result. �
From the above discussion, one easily obtains the representation zeta polynomial for the group

GL4(O2).

Remark 7.8. The representation zeta polynomial RG(D) for D = 1 gives the number of conjugacy
classes of G . From above, we can easily obtain the number of conjugacy classes of groups GL2(O2),
GL3(O2), and GL4(O2). The number of conjugacy classes of GL2(O2) and GL3(O2) is already known;
see Avni, Onn, Prasad, and Vaserstein [3].
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