The G elfand-G raev R epresentation of $U(3, q)$

J ulianne G. R ainbolt*
Department of Mathematics, Statistics, and Computer Science ($m / c 249$), University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607-7045

metadata, citation and similar papers at core.ac.uk

In this paper we explicitly calculate the irreducible representations of the endomorphism algebra of the Gelfand-G raev representation of the unitary group $\mathrm{U}(3, q)$. In addition, we compute the structure constants of this endomorhphism algebra. © 1997 A cademic Press

INTRODUCTION

Let $\mathrm{GL}\left(3, \overline{\mathbf{F}}_{q}\right)$ denote the general linear group of invertible 3 by 3 matrices over $\overline{\mathbf{F}}_{q}$. Let $F: \mathrm{GL}\left(3, \overline{\mathbf{F}}_{q}\right) \rightarrow \mathrm{GL}\left(3, \overline{\mathbf{F}}_{q}\right)$ denote the homomorphism defined by $F\left(a_{i j}\right)=\left(\left(a_{i j}^{q}\right)^{t}\right)^{-1}$. Then F is a Frobenius map and the group of fixed points of F is the unitary group $\mathrm{U}(3, q)$. In this paper we will examine the structure and representations of the Hecke algebra H of the Gelfand-G raev representation of $\mathrm{U}(3, q)$. In this case, the Gelfand-G raev representation is the induced representation of any nontrivial linear representation of the maximal unipotent subgroup U of $U(3, q)$ to $U(3, q)$. The center of $\mathrm{GL}\left(3, \overline{\mathbf{F}}_{q}\right)$ is connected, thus there is only one Gelfand-Graev representation Γ of $U(3, q)[3, p .519]$, and Γ is independent of the choice of the nontrivial linear representation of U.
After a discussion of some preliminary results in Section 1, Section 2 contains the calculations that explicitly give the irreducible representations of H. D. Surowski [8] has previously calculated some of these irreducible representations in the case of $\operatorname{SU}(3, q)$ instead of $U(3, q)$. The techniques used in Section 2 are different than Surowski's (most notably the use of Curtis's theorem to be discussed below), and this section provides a

[^0]complete list of the irreducible representations. The structure of the Hecke algebra is further examined in Section 3 and the structure constants of the algebra are explicitly calculated.

The material in this paper forms a part of the author's doctoral dissertation at the University of Illinois at Chicago. I thank my advisor Bhama Srinivasan for her invaluable assistance. In addition, I thank Jonathan A lperin, Paul Fong, D avid R adford, Steve Smith, and Jeremy Teitelbaum for their comments and discussions on this material. I thank Charles Curtis for suggesting this problem. I also thank Henri Gillet for financial support in the form of a research assistantship.

1. PRELIMINARY RESULTS AND
 BACKGROUND INFORMATION

1.1. Gelfand-Graev Representations

Let \tilde{G} be a connected reductive algebraic group defined over a finite field \mathbf{F}_{q}. Given a Frobenius endomorphism F, let $G=\tilde{G}^{F}$, the fixed points of F. The G elfand-G raev characters of G are constructed in the following way (see, for example [5, Chap. 7; 3, pp. 518-519]). Given an F-stable Borel subgroup \tilde{B} of \tilde{G} and an F-stable maximal torus \tilde{T}_{0} contained in \tilde{B}, we have the root system Φ of \tilde{G} with respect to \tilde{T}_{0}. Let Π denote the set of simple roots in Φ corresponding to \tilde{B}. Let \tilde{U} be the unipotent radical of \tilde{B} and let \hat{U} be the subgroup of \tilde{U} generated by the root subgroups corresponding to the nonsimple roots of Φ. A lso let $\left\{U_{\alpha}\right\}_{\alpha \in \Pi}$ be the set of simple root subgroups. Then for each F-orbit i on Π let

$$
U_{i}=\prod_{\alpha \in i} U_{\alpha} .
$$

Let ψ be a linear character of $U=\tilde{U}^{F}$ which is trivial on \hat{U}^{F}. Then ψ is called nondegenerate if ψ is nontrivial when it is restricted to the F-fixed points of any of the U_{i}. Given a nondegenerate character ψ of U, let $\Gamma=\operatorname{Ind}_{U}^{G}(\psi)$. Then Γ is called a Gelfand-Graev character of G.

1.2. Properties of Gelfand-Graev Representations

The Gelfand-G raev characters Γ are multiplicity free [7, Theorem 49]. Thus, in principle, it might be feasible to decompose the Gelfand-Graev representation into irreducible representations. In the case that $Z(G)$ is connected there is only one distinct Gelfand-G raev representation [3, p. 519]. Thus, in this case the choice of nondegenerate linear representation of U will not affect the results. Let \tilde{T}_{0} denote a maximally split F-stable
maximal torus of \tilde{G}. A maximal torus of G is defined to be a subgroup of the form \tilde{T}^{F} where \tilde{T} is an F-stable maximal torus of \tilde{G}. Now the G-conjugacy classes of F-stable maximal tori of G are parametrized by the F-conjugacy classes of $N_{\tilde{G}}\left(\tilde{T}_{0}\right) / \tilde{T}_{0}$ where the F-conjugate of x by g is defined to be $g x F(g)^{-1}$ (see, for example, [1, Propositions 3.3.2 and 3.3.3]). A lso, given an F-conjugacy class $[x], T_{x}$ is conjugate (in \tilde{G}) to a maximal torus of G where

$$
T_{x}=\left\{A \in \tilde{T}_{0} \mid x A x^{-1}=F(A)\right\} .
$$

Conversely, all the maximal tori of G are conjugate (in \tilde{G}) to T_{x} for some x.

Given an F-stable maximal torus \tilde{T} of \tilde{G} let $R_{T, \theta}^{G}$ denote the D eligne-Lusztig generalized character, where θ is an irreducible character of the torus $T=\tilde{T}^{F}$ (see, for example, [1, Chap. 7]). Let Q_{T}^{G} denote the Green function, which is defined for all unipotent elements $u \in G$ by $Q_{T}^{G}(u)=R_{T, \theta}^{G}(u)_{\sim}^{(s e e}$, for example, [1, p. 212]).

Given a pair (T, θ) there exists a unique irreducible character $\chi_{T, \theta}$ of G such that $\left\langle\chi_{T, \theta}, \Gamma\right\rangle \neq 0$ and $\left\langle\chi_{T, \theta}, R_{T, \theta}^{G}\right\rangle \neq 0$. Also any irreducible character χ of G such that $\langle\chi, \Gamma\rangle \neq 0$ coincides with a $\chi_{T, \theta}$ for some pair (\tilde{T}, θ) (see, for example, [3, Theorem 2.1]). The pairs (\tilde{T}, θ) are partitioned into geometric conjugacy classes (see, for example, [1, Sect. 4.1]). In fact, each Gelfand-Graev character of G is equal to

$$
\sum_{\substack{(\tilde{T}, \theta) \in \kappa \\ \bmod G}} \frac{\epsilon_{\tilde{G}} \epsilon_{\tilde{T}} R_{T, \theta}^{G}}{\left(R_{T, \theta}^{G}, R_{T, \theta}^{G}\right)}
$$

for some geometric conjugacy class κ of pairs (\tilde{T}, θ) where $\epsilon_{\tilde{G}}=$ $(-1)^{\text {rel. rank } \tilde{G}}$ (see, for example, [1, Proposition 8.4.7]). In particular when χ is cuspidal, $\langle\chi, \Gamma\rangle=\left\langle\chi, R_{T, \theta}^{G}\right\rangle=1$.

1.3. The Hecke Algebra

Given $G=\tilde{G}^{F}$, the maximal unipotent subgroup U of G and a nondegenerate linear character ψ of U, the H ecke algebra H is constructed in the following way. (This can be done more generally, see [4, Sect. 11].) Let e denote the central primitive idempotent in $\mathbf{C} U$ corresponding to ψ. That is,

$$
e=|U|^{-1} \sum_{u \in U} \psi\left(u^{-1}\right) u
$$

Then $H=e \mathbf{C} G e$.

Let N be a set of double coset representatives of U, U in G. Let $\operatorname{ind}(n)=|U n U| /|U|=\left|U:{ }^{n} U \cap U\right|$ for $n \in N$. Let $J=\left\{n \in N \mid{ }^{n} \psi=\psi\right.$ on $\left.{ }^{n} U \cap U\right\}$. Let $c_{n}=\operatorname{ind}(n)$ ene. Then $\left\{c_{n}\right\}_{n \in J}$ is a basis for H called the standard basis of H [4, Proposition 11.30]. There is a bijection from the set of irreducible characters χ of G such that $\langle\chi, \Gamma\rangle \neq 0$ to the set of all irreducible characters of H. This bijection is given by restriction from $\mathbf{C} G$ to H [3, Proposition 2.2]. A lso the primitive central idempotents of H are $\{e \epsilon\}$ where ϵ is a primitive central idempotent of $\mathbf{C} G$ associated with a χ such that $\langle\chi, \Gamma\rangle \neq 0$. Since Γ is multiplicity free, the Hecke algebra H is commutative [3, Proposition 2.2]. Thus these idempotents are actually primitive (non-central) idempotents. Thus they give us the simple module C Ge ϵ which affords χ [4, Corollary 11.27].

1.4. Curtis's Theorem

As mentioned above, the set of irreducible characters of H is in bijection with the set of irreducible characters χ of G such that $\langle\chi, \Gamma\rangle \neq$ 0 . Namely, given a pair (\tilde{T}, θ) there exists a unique irreducible character $\chi_{T, \theta}$ of G such that $\left\langle\chi_{T, \theta}, \Gamma\right\rangle \neq 0$ and $\left\langle\chi_{T, \theta}, R_{T, \theta}^{G}\right\rangle \neq 0$. The restriction of $\chi_{T, \theta}$ to H is the corresponding irreducible character $f_{T, \theta}$ of H. Thus we can index the characters of H by the pairs (\tilde{T}, θ). In addition, $f_{T, \theta}=f_{T^{\prime}, \theta^{\prime}}$ if and only if the pairs (\tilde{T}, θ) and ($\tilde{T}^{\prime}, \theta^{\prime}$) are geometrically conjugate [4, Theorem 3.1]. So each irreducible representation $f_{T, \theta}$ of H corresponds to the unique irreducible character $\chi_{T, \theta}$ of G which occurs as a common constituent of both $R_{T, \theta}^{G}$ and Γ.
Curtis's theorem is as follows [3, Theorem 4.2]:
Theorem 1.1. Let the pair (\tilde{T}, θ), the Gelfand-Graev representation $\Gamma=\operatorname{Ind}_{U}^{G}(\psi)$, and the Hecke algebra H be given. Let $\bar{\theta}$ denote the extension of θ to $\mathbf{C} T$. Also let x_{s} and x_{u} denote the semisimple and unipotent parts of $x \in G$. Then:
(i) There exists a unique homomorphism $f_{T}: H \rightarrow \mathbf{C} T$, independent of θ, which has the property that each character $f_{T, \theta}: H \rightarrow \mathbf{C}$ can be factored as $f_{T, \theta}=\bar{\theta} \cdot f_{T}$.
(ii) $f_{T}\left(c_{n}\right)=\sum_{t \in T} f_{T}\left(c_{n}\right)(t) t$ where c_{n} is an element in the standard basis of H described above and the coefficients $f_{T}\left(c_{n}\right)(t)$ are given by

$$
\begin{equation*}
f_{T}\left(c_{n}\right)(t)=\frac{\operatorname{ind}(n)}{\left\langle Q_{T}^{G}, \Gamma\right\rangle|U|\left|C_{G}(t)\right|} \sum_{\substack{g \in G, u \in U \\\left(\text { gung }^{-1}\right)_{s}=t}} \psi\left(u^{-1}\right) Q_{T}^{C_{G}(t)}\left(\left(\text { gung }^{-1}\right)_{u}\right) \tag{1.2}
\end{equation*}
$$

N ote that Curtis's theorem says that we have the following commutative diagram:

Thus if we first find the homomorphisms f_{T} for each maximal torus T of G and then compose these with the irreducible characters of T we will get all the irreducible characters of H.

2. THE GELFAND-GRAEV REPRESENTATION OF G

2.1. Notation

As described in the Introduction let $F: \mathrm{GL}\left(3, \overline{\mathbf{F}}_{q}\right) \rightarrow \mathrm{GL}\left(3, \overline{\mathbf{F}}_{q}\right)$ denote the twisted Frobenius map, defined by $F\left(a_{i j}\right)=\left(\left(a_{i j}^{q}\right)^{t}\right)^{-1}$. From now on $\mathrm{GL}\left(3, \overline{\mathbf{F}}_{q}\right)$ will be denoted by \tilde{G}. Instead of using the fixed point group \tilde{G}^{F} it will be convenient to take the unitary group G given by conjugating \tilde{G}^{F} by

$$
\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

Now let \tilde{U} denote the unipotent subgroup of \tilde{G} which consists of upper unitriangular matrices. That is,

$$
\tilde{U}=\left\{\left.\left(\begin{array}{ccc}
1 & t & u \\
0 & 1 & v \\
0 & 0 & 1
\end{array}\right) \right\rvert\, t, u, v \in \overline{\mathbf{F}}_{q}\right\} .
$$

Let U be the subgroup of G given by conjugating \tilde{U}^{F} by

$$
\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

Then

$$
U=\left\{\left|\left(\begin{array}{ccc}
1 & t & u \\
0 & 1 & t^{q} \\
0 & 0 & 1
\end{array}\right)\right| t, u \in \mathbf{F}_{q^{2}} \text { and } t^{q+1}=u+u^{q}\right\} .
$$

Let $[U, U$] denote the commutator subgroup of U. Since $U /[U, U$] is isomorphic to the additive group $\mathbf{F}_{q^{2}}$, there is a correspondence between the irreducible linear characters ψ of U and the additive characters χ of $\mathbf{F}_{q^{2}}$. This correspondence is given by

$$
\psi\left(\begin{array}{ccc}
1 & t & u \\
0 & 1 & t^{q} \\
0 & 0 & 1
\end{array}\right)=\chi(t) .
$$

Choose any nontrivial irreducible linear character ψ of U. Let $\Gamma=$ $\operatorname{Ind}_{U}^{G}(\psi)$. Then Γ is independent of the choice of ψ and Γ is the Gelfand-Graev character of G (see [3; 5, Chap. 14]). Let e denote the idempotent

$$
e=\frac{1}{|U|} \sum_{u \in U} \psi\left(u^{-1}\right) u
$$

Then let H be the Hecke algebra $e(\mathbf{C} G) e$.
From now on, the diagonal matrix

$$
\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)
$$

will be denoted by $[a, b, c$]. In addition, the element

$$
\left(\begin{array}{lll}
0 & 0 & a \\
0 & b & 0 \\
c & 0 & 0
\end{array}\right)
$$

will be denoted by $[\widehat{a, b, c}]$. Also an element

$$
\left(\begin{array}{ccc}
1 & t & u \\
0 & 1 & t^{q} \\
0 & 0 & 1
\end{array}\right) \in U
$$

will be denoted by $[t, u]$.
The following is a summary of the above notation:

$$
\begin{aligned}
\tilde{G} & =\mathrm{GL}\left(3, \overline{\mathbf{F}}_{q}\right) \\
G & =\mathrm{U}(3, q)=[1, \widehat{-1}, 1] \tilde{G}^{F}[1, \widehat{-1}, 1] \\
U & =\left\{[t, u] \mid u, t \in \mathbf{F}_{q^{2}} \text { and } t^{q+1}=u+u^{q}\right\} \\
\psi & =\text { nontrivial linear character of } U
\end{aligned}
$$

$$
\begin{aligned}
\chi & =\operatorname{additive} \text { character of } \mathbf{F}_{q^{2}} \text { such that } \psi([t, u])=\chi(t) \\
\Gamma & =\operatorname{Ind}_{U}^{G}(\psi) \\
e & =(1 /|U|) \sum_{u \in U} \psi\left(u^{-1}\right) u \\
H & =e(\mathbf{C} G) e .
\end{aligned}
$$

We recall Curtis's theorem, Theorem 1.1. The main result of this section will be the computations of the unique homomorphisms $f_{T_{i}}: H \rightarrow \mathbf{C} T_{i}$, for each maximal torus T_{i} of G.

2.2. The Maximal Tori of G

Let \tilde{T} denote the maximally split F-stable maximal torus of \tilde{G} :

$$
\tilde{T}=\left\{[t, u, v] \mid t, u, v \in \overline{\mathbf{F}}_{q}^{*}\right\} .
$$

As discussed in the Introduction, the G-conjugacy classes of F-stable maximal tori of \tilde{G} are parametrized by the F-conjugacy classes of $N_{\tilde{G}}(\tilde{T}) / \tilde{T}$ (see, for example, [5, Proposition 3.23]). A lso $N_{\tilde{G}}(\tilde{T}) / \tilde{T}=W(\tilde{T})$, the W eyl group, which in this case is isomorphic to S_{3}, the symmetric group on three elements. Let, e.g., (12) denote the element of S_{3} corresponding to the permutation matrix

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

which will also be denoted by (12), and similarly for the other permutation matrices.

Now since $S_{3}=\langle(12),(23)\rangle$, the twisted Frobenius map F can be thought of as the automorphism of S_{3} that takes (12) to (23) and takes (23) to (12). Let $[x]$ denote the F-conjugacy class of x. Then

$$
\begin{aligned}
{[e] } & =\{e,(123),(132)\} \\
{[(12)] } & =\{(12),(23)\} \\
{[(13)] } & =\{(13)\} .
\end{aligned}
$$

Thus there are three classes of maximal tori in G. E ach of these maximal tori is conjugate (in \tilde{G}) to T_{x} for some F-conjugacy class $[x]$ where

$$
T_{x}=\left\{A \in \tilde{T} \mid x A x^{-1}=F(A)\right\} .
$$

Thus the three maximal tori are

$$
\begin{aligned}
T_{e} & =\left\{[t, u, v] \mid[t, u, v]=\left[v^{-q}, u^{-q}, t^{-q}\right] \text { and } t, u, v \neq 0\right\}, \\
T_{(12)} & =\left\{[t, u, v] \mid[u, t, v]=\left[v^{-q}, u^{-q}, t^{-q}\right] \text { and } t, u, v \neq 0\right\},
\end{aligned}
$$

and

$$
T_{(13)}=\left\{[t, u, v] \mid[v, u, t]=\left[v^{-q}, u^{-q}, t^{-q}\right] \text { and } t, u, v \neq 0\right\} .
$$

From now on denote T_{e} by $T_{0}, T_{(12)}$ by T_{1}, and $T_{(13)}$ by T_{2}.
The above conditions on T_{0}, T_{1}, and T_{2} simplify to

$$
\begin{aligned}
& T_{0}=\left\{\left[t, u, t^{-q}\right] \mid t^{q^{2}-1}=1, u^{q+1}=1\right\} \\
& T_{1}=\left\{\left[t, t^{2}, t^{-q}\right] \mid t^{q^{3}+1}=1\right\} \\
& T_{2}=\left\{[t, u, v] \mid t^{q+1}=1, u^{q+1}=1, \text { and } v^{q+1}=1\right\} .
\end{aligned}
$$

Notice that T_{1} is not a subgroup of G_{\sim} but there exists a subgroup \hat{T}_{1} of G such that T_{1} is conjugate to T_{1} in G. Since T_{1} is diagonal, it will be convenient to work with the group T_{1} instead of \hat{T}_{1}. Notice that $\left|T_{0}\right|=$ $(q+1)\left(q^{2}-1\right),\left|T_{1}\right|=q^{3}+1$ and $\left|T_{2}\right|=(q+1)^{3}$. Also notice that T_{0} is the maximally split torus in G.

2.3. The Hecke Algebra

Let $s=[1, \widehat{-1}, 1]$. Then $N_{G}\left(T_{0}\right)=\left\{A \mid A \in T_{0}\right.$ or $\left.A \in T_{0} s\right\}$, where $N_{G}\left(T_{0}\right)$ denotes the normalizer of T_{0} in G. We have the Bruhat decomposition

$$
G=\bigcup_{w=1, s} U T_{0} w U .
$$

But then a basis of the Hecke algebra is given by

$$
\begin{aligned}
& \left\{c_{j}=\operatorname{ind}\left(x_{j}\right) e x_{j} e \mid x_{j} \in T_{0} \cup T_{0} s\right. \text { and } \\
& \left.\quad \psi(y)=\psi\left(x_{j} y x_{j}^{-1}\right) \text { for all } y \in U \cap x_{j} U x_{j}^{-1}\right\}
\end{aligned}
$$

(see, for example, [4, Proposition 11.30]). Here ind $(x)=\left|U:^{x} U \cap U\right|=$ the number of left cosets of U in the double coset $U x U$. The following are calculations that determine this basis explicitly.

Fix a $y \in U$, i.e., $y=[v, w]$ for some $v, w \in \mathbf{F}_{q^{2}}$ and $v^{q+1}=w+w^{q}$. First let $x \in T_{0} s$. That is, $x=\left[t, \widehat{-u}, t^{-q}\right]$ for some t, u such that $t^{q^{2}-1}=1$
and $u^{q+1}=1$. Then

$$
x y x^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-u t^{-1} v^{q} & 1 & 0 \\
w t^{-q-1} & -u^{-1} v t^{-q} & 1
\end{array}\right) .
$$

Thus $x y x^{-1} \in U$ if and only if $u t^{-1} v^{q}=0, w t^{-q-1}=0$, and $u^{-1} v t^{-q}=0$. But $t, u \neq 0$ so that $v=0$ and $w=0$. Thus ${ }^{x} U \cap U=I$ when $x \in T_{0} s$. Thus ind $(x)=|U|=q^{3}$ when $x \in T_{0} s$.

Now let $x \in T_{0}$. So $x=\left[t, u, t^{-q}\right]$ and $x U x^{-1}=U$. But note that the condition that $\psi(y)=\psi\left(x y x^{-1}\right)$ for all $y \in U \cap x U x^{-1}$ implies that

$$
\psi([v, w])=\psi\left(\left[t u^{-1} v, t^{q+1} w\right]\right) .
$$

But this holds if and only if $t u^{-1} v=v$ for all $v \in \mathbf{F}_{q^{2}}$. This holds if and only if $t=u$ which causes $t^{-q}=u^{-q}=u$ since $u^{q+1}=1$. Thus we must have

$$
x \in\left\{[t, t, t] \mid t^{q+1}=1\right\} .
$$

But then $x y x^{-1}=y$. Also for x of this type ${ }^{x} U \cap U=U$ and ind $(x)=1$.
Thus if

$$
c_{u, t}=\operatorname{ind}\left(\left[t, \widehat{-u}, t^{-q}\right]\right) e\left[t, \widehat{-u}, t^{-q}\right] e=q^{3} e\left[t, \widehat{-u}, t^{-q}\right] e
$$

and

$$
c_{u}=\operatorname{ind}([u, u, u]) e[u, u, u] e=[u, u, u] e,
$$

then the set

$$
\left\{c_{u, t}, c_{u} \mid t, u \in \mathbf{F}_{q^{2}}^{*} \text { and } u^{q+1}=1\right\}
$$

is a basis for the Hecke algebra H. Note that the number of elements in this basis is $(q+1)+\left(q^{2}-1\right)(q+1)=q^{2}(q+1)$.

2.4. Calculations of $C_{G}(t), t \in T_{i}$, and $\left\langle Q_{T_{i}}^{G}, \Gamma\right\rangle$

In order to apply Curtis's theorem we need to know $C_{G}(t)$ for t in a maximal torus T_{i} of G. Also we will need the values of $\left\langle Q_{T_{i}}^{G}, \Gamma\right\rangle$ for each of the maximal tori.

For all three tori if $t \in T_{i}$ and the entries on the main diagonal are all distinct then $C_{G}(t)=T_{i}$. A lso, if the entries on the main diagonal are all the same, then clearly $C_{G}(t)=G$.

Fix a $t \in T_{0}$ so that $t=\left[t_{1}, t_{2}, t_{1}^{-q}\right]$ for some fixed t_{1}, t_{2} such that $t_{1}^{q^{2}-1}=1$ and $t_{2}^{q+1}=1$. Suppose that $t_{1}=t_{1}^{-q}$ and $t_{1} \neq t_{2}$ (so $t_{1}^{-q} \neq t_{2}$). Then

$$
C_{G}(t)=\left\{\left(\begin{array}{lll}
a & 0 & c \\
0 & e & 0 \\
g & 0 & i
\end{array}\right)\right\} .
$$

Let

$$
H_{2}=\left\{\left(\begin{array}{lll}
a & 0 & c \\
0 & 1 & 0 \\
g & 0 & i
\end{array}\right)\right\}
$$

Then $H_{2} \cong U(2, q)$ under the isomorphism

$$
\beta:\left\{\left(\begin{array}{lll}
a & 0 & c \\
0 & 1 & 0 \\
g & 0 & i
\end{array}\right)\right\} \rightarrow\left\{\left(\begin{array}{ll}
a & c \\
g & i
\end{array}\right)\right\} .
$$

A lso let

$$
S_{2}=\left\{[1, w, 1] \mid w^{q+1}=1\right\} .
$$

Then $S_{2} \cong S$ where S is the subgroup of $\mathbf{F}_{q^{2}}^{*}$ consisting of elements x such that $x^{q+1}=1$. Thus, in this case, $C_{G}(t)=H_{2} \times S_{2} \cong U(2, q) \times S$. So $\left|C_{G}(t)\right|=|U(2, q)||S|=q(q+1)\left(q^{2}-1\right)(q+1)=q(q+1)^{3}(q-1)$.

N ote that the case $t_{1}=t_{2}$ and $t_{1} \neq t_{1}^{-q}$ (so $t_{1}^{-q} \neq t_{2}$) cannot occur. Also the case $t_{2}=t_{1}^{-q}$ and $t_{1} \neq t_{2}$ (so $t_{1}^{-q} \neq t_{1}$) cannot occur.

Now let $t \in T_{1}$ so that $t=\left[t_{1}, t_{1}^{q^{2}}, t_{1}^{-q}\right]$ for some fixed t_{1} such that $t_{1}^{q^{3}+1}=1$. Note that it is not possible that exactly two of the entries on the main diagonal of t are the same.

Now fix a $t \in T_{2}$ so that $t=\left[t_{1}, t_{2}, t_{3}\right]$ for some fixed t_{1}, t_{2}, t_{3} such that $t_{i}^{q+1}=1$. Suppose that $t_{1}=t_{2}$ and $t_{2} \neq t_{3}$ (so $t_{1} \neq t_{3}$). Then

$$
C_{G}(t)=\left\{\left(\begin{array}{lll}
a & b & 0 \\
d & e & 0 \\
0 & 0 & i
\end{array}\right)\right\}
$$

Let

$$
H_{1}=\left\{\left(\begin{array}{lll}
a & b & 0 \\
d & e & 0 \\
0 & 0 & 1
\end{array}\right)\right\}
$$

Then $H_{1} \cong U(2, q)$ under the isomorphism

$$
\alpha:\left(\begin{array}{lll}
a & b & 0 \\
d & e & 0 \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right) .
$$

A lso let S_{1} be the torus

$$
\left\{[1,1, w] \mid w^{q+1}=1\right\} .
$$

Then S_{1} is isomorphic to the multiplicative subgroup S of $\mathbf{F}_{q_{2}}^{*}$ consisting of elements x such that $x^{q+1}=1$. So in this case $C_{G}(t)=H_{1} \times S_{1} \cong$ $U(2, q) \times S$.
Now suppose that $t_{1}=t_{3}$ and $t_{2} \neq t_{3}$ (so $t_{1} \neq t_{2}$). Then

$$
C_{G}(t)=\left\{\left(\begin{array}{ccc}
a & 0 & c \\
0 & e & 0 \\
g & 0 & i
\end{array}\right)\right\} .
$$

So again $C_{G}(t)=H_{2} \times S_{2} \cong U(2, q) \times S$.
Now suppose that $t_{2}=t_{3}$ and $t_{1} \neq t_{2}$ (so $t_{1} \neq t_{3}$). Then

$$
C_{G}(t)=\left\{\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & e & f \\
0 & h & i
\end{array}\right)\right\} .
$$

So now let

$$
H_{3}=\left\{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & e & f \\
0 & h & i
\end{array}\right)\right\}
$$

and

$$
S_{3}=\left\{[w, 1,1] \mid w^{q+1}=1\right\} .
$$

Then in this case $C_{G}(t)=H_{3} \times S_{3} \cong U(2, q) \times S$.
Notice that when $t \in T_{2}$ has exactly two entries on the diagonal the same, $\left|C_{G}(t)\right|=|U(2, q)||S|=q(q+1)\left(q^{2}-1\right)(q+1)=q(q+1)^{3}$ ($q-1$).

Lemma 2.1. We have that

$$
\begin{aligned}
& \left\langle Q_{T_{0}}^{G}, \Gamma\right\rangle=1 \\
& \left\langle Q_{T_{1}}^{G}, \Gamma\right\rangle=-1 \\
& \left\langle Q_{T_{2}}^{G}, \Gamma\right\rangle=-1 .
\end{aligned}
$$

Proof. For any maximal torus T we have, by definition, $Q_{T}^{G}(u)=$ $R_{T, \theta}^{G}(u)$ for $u \in U$. But also, when θ is in general position, $R_{T, \theta}^{G}= \pm \chi$ for some irreducible character χ of G. (The sign is chosen so that $R_{T, \theta}^{G}(u)=1$ when u is in the regular unipotent conjugacy class.) Thus if we choose the character θ_{i} of T_{i} appropriately we get that $\left\langle Q_{T_{i}}^{G}, \Gamma\right\rangle=\left\langle R_{T_{i}, \theta_{i}}^{G}, \Gamma\right\rangle= \pm 1$. The correct sign can be determined by examining the character table for G in, for example, [6].

2.5. Characteristic Equations of Elements of T_{0}

Recall, as mentioned in the Introduction, given an F-stable maximal torus \tilde{T} and a character θ of $T=\tilde{T}^{F}$ there exists a unique homomorphism $f_{T}: H \rightarrow \mathbf{C} T$, independent of θ, which has the property that each homomorphism $f_{T, \theta}: H \rightarrow \mathbf{C}$ can be factored as $f_{T, \theta}=\bar{\theta} f_{T}$. In addition, $f_{T}\left(c_{n}\right)$ $=\sum_{t \in T} f_{T}\left(c_{n}\right)(t) t$, where c_{n} is an element in the basis of H given above, and

$$
f_{T}\left(c_{n}\right)(t)=\frac{\operatorname{ind}(n)}{\left\langle Q_{T}^{G}, \Gamma\right\rangle|U|\left|C_{G}(t)\right|} \sum_{\substack{g \in G \\ u \in U \\\left(\text { gung }^{-1}\right)_{s}=t}} \psi\left(u^{-1}\right) Q_{T}^{C_{G}(t)}\left(\left({\left.\left.\left.g u n g^{-1}\right)_{u}\right)\right)}\right.\right.
$$

[3, Theorem 4.2]. Here n is the element in $Z \cup T_{0} w$ such that $c_{n}=$ ind (n)ene, $Z=\left\{[u, u, u] \mid u^{q+1}=1\right\}$, and $w=[1,-1,1]$.

In order to explicitly compute these homomorphisms, it remains to determine for which $g \in G$ and $u \in U$ we have that $\left(\text { gung }^{-1}\right)_{s}=t$, for a fixed $t \in T$.

Note. Since t is semisimple, t and un have the same characteristic equation if and only if there exists a g such that $\left(g u n g^{-1}\right)_{s}=t$. So it is enough to find conditions on u and n so that $u n$ and t have the same characteristic equation. In this section we will determine under what conditions un and t have the same characteristic equation when $t \in T_{0}$.
The following lemma is a general result about all three maximal tori of G.

Lemma 2.2. Let t be an element of a maximal torus T_{i}. Also let $u \in U$ and let $n=n_{\lambda}=[\lambda, \lambda, \lambda]$. Then $\left\{u \in U \mid\left(g u n_{\lambda} g^{-1}\right)_{s}=t\right\}=U$ if all the diagonal entries of t are equal to λ, otherwise $\left\{u \in U \mid\left(g u n_{\lambda} g^{-1}\right)_{s}=t\right\}=\varnothing$.

Proof. It is clear that $u n$ and t have the same characteristic equation if and only if $t=n$. For this $t,\left(g u n g^{-1}\right)_{s}=\left(g u g^{-1} g n g^{-1}\right)_{s}=g n g^{-1}=n=t$ for all $u \in U$ and for all $g \in G$.

In what follows let D denote the set of diagonal matrices in \tilde{G}.
Lemma 2.3. Fix an element z in D, so $z=[a, b, c]$ for some $a, b, c \in \overline{\mathbf{F}}_{q}^{*}$. Again let u be an element of U, so $u=[r, s]$ for some r and s such that $r^{q+1}=s+s^{q}$. But now let $n \in T_{0} w$, so that

$$
n=n_{\lambda, n}=\left[\mu, \widehat{-\lambda}, \mu^{-q}\right],
$$

for some λ, μ such that $\lambda^{q+1}=1$. Then un and z have the same characteristic equation if and only if the following three conditions occur:

$$
\begin{align*}
s & =(a+b+c+\lambda) \mu^{q} \tag{2.4}\\
r^{q+1} & =\left((a b+b c+a c) \mu^{q}+\mu+s \lambda\right) \lambda^{-1} \tag{2.5}\\
\mu^{q-1} & =\lambda a^{-1} b^{-1} c^{-1} . \tag{2.6}
\end{align*}
$$

Proof. Note that $u n$ and z will have the same characteristic equation if and only if

$$
\begin{aligned}
\operatorname{det}(x I-u n) & =(x-a)(x-b)(x-c) \\
& =x^{3}-(a+b+c) x^{2}+(a b+b c+a c) x-a b c .
\end{aligned}
$$

Now

$$
\begin{aligned}
\operatorname{det}(x I-u n)= & x^{3}-\left(s \mu^{-q}-\lambda\right) x^{2} \\
& -\left(\mu^{-q+1}+s \mu^{-q} \lambda-r^{q+1} \mu^{-q} \lambda\right) x-\lambda \mu^{-q+1} .
\end{aligned}
$$

Equating coefficients gives the three equations

$$
\begin{align*}
s \mu^{-q}-\lambda & =a+b+c \tag{2.7}\\
\mu^{-q}\left(\mu+s \lambda-r^{q+1} \lambda\right) & =-(a b+b c+a c) \tag{2.8}\\
\lambda \mu^{-q+1} & =a b c . \tag{2.9}
\end{align*}
$$

These are the same equations as (2.4)-(2.6) above.
Corollary 2.10. Fix an element t in T_{0}, so $t=\left[t_{1}, t_{2}, t_{1}^{-q}\right]$ for some $t_{1}, t_{2} \in \mathbf{F}_{q^{2}}^{*}$ with $t_{2}^{q+1}=1$. Using the same notation as in the preceding lemma, un and thave the same characteristic equation if and only if the following two conditions occur:

$$
\begin{align*}
s & =\left(t_{1}+t_{1}^{-q}+t_{2}+\lambda\right) \mu^{q} \tag{2.11}\\
\mu^{q-1} & =\lambda t_{1}^{q-1} t_{2}^{-1} . \tag{2.12}
\end{align*}
$$

Proof. Substituting $t_{1}=a, t_{2}=b$, and $t_{1}^{-q}=c$ immediately gives (2.11) and (2.12) from (2.4) and (2.6) of the preceding lemma. That is, (2.4)-(2.6) of the above lemma become

$$
\begin{align*}
s & =\left(t_{1}+t_{2}+t_{1}^{-q}+\lambda\right) \mu^{q} \tag{2.13}\\
r^{q+1} & =\left(\left(t_{1} t_{2}+t_{2} t_{1}^{-q}+t_{1}^{-q+1}\right) \mu^{q}+\mu+s \lambda\right) \lambda^{-1} \tag{2.14}\\
\mu^{q-1} & =\lambda t_{1}^{q-1} t_{2}^{-1} . \tag{2.15}
\end{align*}
$$

Thus it remains to show that (2.14) is implied by (2.13) and (2.15). Now (2.14) requires that $r^{q+1}=\mu^{q} \lambda^{-1}\left(t_{1} t_{2}+t_{2} t_{1}^{-q}+t_{1}^{-q+1}\right)+\mu \lambda^{-1}+s$. By the defining conditions on U we already have the requirement $r^{q+1}=s+$ s^{q}. Thus, from (2.13),

$$
\begin{aligned}
r^{q+1} & =s+s^{q}=s+\left(t_{1}^{q}+t_{2}^{q}+t_{1}^{-q^{2}}+\lambda^{q}\right) \mu^{q^{2}} \\
& =s+\left(t_{1}^{q}+t_{2}^{-1}+t_{1}^{-1}+\lambda^{-1}\right) \mu,
\end{aligned}
$$

since $x^{q^{2}}=x$ for all $x \in \mathbf{F}_{q^{*}}^{*}$ and since $t_{2}^{q+1}=\lambda^{q+1}=1$. Thus by (2.15),

$$
r^{q+1}=\mu^{q} \lambda^{-1} t_{1} t_{2}+\mu^{q} \lambda^{-1} t_{2} t_{1}^{-q}+\mu^{q} \lambda^{-1} t_{1}^{-q+1}+\mu \lambda^{-1}+s
$$

as required. Thus (2.13) and (2.15) imply (2.14).
The following lemma and proof are a modification of the lemma and proof in [2, p. 500].

Lemma 2.16. Let z, u and $n_{\lambda, \mu}$ be as in Lemma 2.3. Suppose that $u n_{\lambda, \mu}$ and z have the same characteristic equation. Then $r=0$ if and only if $-\lambda$ is an eigenvalue of z.

Proof. Using (2.5) of Lemma 2.3, we have that $r^{q+1}=0$ if and only if $\left((a b+a c+b c) \mu^{q}+\mu+s \lambda\right) \lambda^{-1}=0$. Thus, using (2.4) and (2.6), we have that $r^{q+1}=0$ if and only if $0=-(a b+a c+b c) \lambda-a b c-\lambda^{2}(a+b+c$ $+\lambda)$. But this is true if and only if $0=-\lambda^{3}-(a+b+c) \lambda^{2}-(a b+a c$ $+b c) \lambda-a b c$. But as noted above the characteristic equation of z is $x^{3}-(a+b+c) x^{2}+(a b+a c+b c) x-a b c$. Thus $-\lambda$ is a root of the characteristic equation for z if and only if $r=0$.

Corollary 2.17. Let t be an element of a maximal torus T_{i}. Also let $u \in U$, and $n_{\lambda, \mu} \in T_{0} w$. Also suppose that $u n_{\lambda, \mu}$ and t have the same characteristic equation. Then $r=0$ if and only if $-\lambda$ is an eigenvalue of t.

Proof. This is immediate from Lemma 2.16.
In the remainder of this section we will distinguish the results between when $t \in T_{0}$ has a characteristic equation with three distinct roots ($t_{1} \neq$ $t_{2}, t_{2} \neq t_{1}^{-q}, t_{1} \neq t_{1}^{-q}$), two equal roots ($t_{1}=t_{1}^{-q}$ but $t_{2} \neq t_{1}$), and three equal roots ($t_{1}=t_{1}^{-q}=t_{2}$). These cases will be denoted by (t_{1}, t_{2}, t_{1}^{-q}), $\left(t_{1}, t_{2}, t_{1}\right)$, and (t_{1}, t_{1}, t_{1}), respectively. (N ote that the cases $t_{2}=t_{1}, t_{1} \neq t_{1}^{-q}$ and $t_{2}=t_{1}^{-q}, t_{2} \neq t_{1}$ are not possible, as mentioned in Subsection 2.4.) Note that there are $q+1$ elements t in T_{0} in case (t_{1}, t_{1}, t_{1}), $q(q+1)$ elements t in case $\left(t_{1}, t_{2}, t_{1}\right)$, and thus $\left(q^{2}-1\right)(q+1)-(q+1)-q(q+$ $1)=(q+1)^{2}(q-2)$ elements t in case $\left(t_{1}, t_{2}, t_{1}^{-q}\right)$.

Note that the notation (a, b, c) means that a, b, and c are distinct.

Proposition 2.18. Let $t=\left[t_{1}, t_{2}, t_{1}^{-q}\right] \in T_{0}$ be fixed. Then the number of $u \in U$ and $n \in T_{0} w$ such that un and t have the same characteristic equation is the following:
(1) If t is of type $\left(t_{1}, t_{2}, t_{1}^{-q}\right):((q-1)+q(q-1)(q+1))$.
(2) If t is of type $\left(t_{1}, t_{2}, t_{1}\right):\left(2(q-1)+(q-1)^{2}(q+1)\right)$.
(3) If t is of type $\left(t_{1}, t_{1}, t_{1}\right):((q-1)+q(q-1)(q+1))$.

Proof. As above, we use the notation $n=n_{\lambda, \mu}$. Now for all three types of t there are $q+1$ choices for λ and by (2.12), there are $q-1$ choices for μ. A lso by (2.11), s is completely determined by μ, λ, and t and by Corollary 2.17 if $-\lambda$ is chosen to be an eigenvalue (i.e., one of t_{1}, t_{2}, t_{1}^{-q}) then $r=0$. Also if $-\lambda$ is not an eigenvalue, then $r^{q+1}=s+s^{q} \neq 0$. So if $-\lambda$ is not an eigenvalue there are $q+1$ choices for r. Thus suppose t is of type $\left(t_{1}, t_{2}, t_{1}^{-q}\right)$. Then if λ is chosen so that $-\lambda$ is an eigenvalue, then $\lambda=-t_{2}$, since $t_{1} \neq t_{1}^{-q}$. Thus when $-\lambda$ is an eigenvalue, there is 1 choice for $\lambda, q-1$ choices for μ, 1 choice for s, and 1 choice for r. Also if $-\lambda$ is not an eigenvalue, there are $q+1-1=q$ choices for $\lambda, q-1$ choices for $\mu, 1$ choice for s, and $q+1$ choices for r. This gives (1). Very similar reasoning gives results (2) and (3). The only differences are that in (2), if $-\lambda$ is an eigenvalue then it is either t_{1} or t_{2} and in (3), if $-\lambda$ is an eigenvalue then it is t_{1}.

The above proposition is a modification of a similar proposition for GL(3,q) proved by Carter in [2, Proposition 5].

2.6. Characteristic Equations of Elements of T_{1} and T_{2}

Recall that T_{1} denotes the maximal torus of elements of the form $t=\left[t_{1}, t_{1}^{q^{2}}, t_{1}^{-q}\right]$ such that $t_{1}^{q^{3}+1}=1$. Thus there are two types of elements in T_{1}, either $t_{1} \neq t_{1}^{q^{2}}, t_{1} \neq t_{1}^{-q}$, and $t_{1}^{q^{2}} \neq t_{1}^{-q}$ or $t_{1}=t_{1}^{-q}=t_{1}^{q^{2}}$. (The condition that $t_{1}^{q^{3}+1}=1$ forces all three to be equal if any two are equal.) These two types will be denoted by ($t_{1}, t_{1}^{q^{2}}, t_{1}^{-q}$) and (t_{1}, t_{1}, t_{1}), respectively. Notice that there are $q+1$ elements t of type $\left(t_{1}, t_{1}, t_{1}\right)$ and $q^{3}+1-$ $(q+1)=q\left(q^{2}-1\right)$ elements t of type $\left(t_{1}, t_{1}^{q^{2}}, t_{1}^{-q}\right)$.

Proposition 2.19. Fix an element t in T_{1}, so $t=\left[t_{1}, t_{1}^{q^{2}}, t_{1}^{-q}\right]$ for some t_{1} such that $t_{1}^{q^{3}+1}=1$. Using the same notation for u and $n_{\lambda, \mu}$ as in the previous section, $u n_{\lambda, \mu}$ and t have the same characteristic equation if and only if the following two conditions occur:

$$
\begin{align*}
s & =\left(t_{1}+t_{1}^{q^{2}}+t_{1}^{-q}+\lambda\right) \mu^{q} \tag{2.20}\\
\mu^{q-1} & =\lambda t_{1}^{-q^{2}+q-1} . \tag{2.21}
\end{align*}
$$

Proof. Substituting $t_{1}=a, t_{1}^{q^{2}}=b$, and $t_{1}^{-q}=c$ immediately gives (2.20) and (2.21) from (2.4) and (2.6) of Lemma 2.3. That is, (2.4)-(2.6) of Lemma 2.3 become

$$
\begin{align*}
s & =\left(t_{1}+t_{1}^{q^{2}}+t_{1}^{-q}+\lambda\right) \mu^{q} \tag{2.22}\\
r^{q+1} & =\left(\left(t_{1}^{q^{2}+1}+t_{1}^{q^{2}-q}+t_{1}^{-q+1}\right) \mu^{q}+\mu+s \lambda\right) \lambda^{-1} \tag{2.23}\\
\mu^{q-1} & =\lambda t_{1}^{-q^{2}+q-1} \tag{2.24}
\end{align*}
$$

Thus it remains to show that (2.23) is implied by (2.22) and (2.24). Now (2.23) requires that

$$
r^{q+1}=\mu^{q} \lambda^{-1}\left(t_{1}^{q^{2}+1}+t_{1}^{q^{2}-q}+t_{1}^{-q+1}\right)+\mu \lambda^{-1}+s
$$

From (2.22) we have that

$$
\begin{aligned}
r^{q+1} & =s+s^{q}=s+\left(t_{1}^{q}+t_{1}^{q^{3}}+t_{1}^{-q^{2}}+\lambda^{q}\right) \mu^{q^{2}} \\
& =s+\left(t_{1}^{q}+t_{1}^{-1}+t_{1}^{-q^{2}}+\lambda^{-1}\right) \mu,
\end{aligned}
$$

since $t_{1}^{q^{3}+1}=\lambda^{q+1}=1$. Then using (2.24) we get that

$$
r^{q+1}=\mu^{q} \lambda^{-1} t_{1}^{q^{2}+1}+\mu^{q} \lambda^{-1} t_{1}^{q^{2}-q}+\mu^{q} \lambda^{-1} t_{1}^{-q+1}+\mu \lambda^{-1}+s
$$

as required. Thus (2.22) and (2.24) imply (2.23).
Proposition 2.25. Let $t=\left[t_{1}, t_{1}^{q^{2}}, t_{1}^{-q}\right] \in T_{1}$ be fixed. Also let $u \in U$ so that $u=[r, s]$ for some r and s such that $r^{q+1}=s+s^{q}$. Then the number of u in U and $n_{\lambda, \mu} \in T_{0} w$ such that $u n_{\lambda, \mu}$ and t have the same characteristic equation is the following:
(1) If t is of type $\left(t_{1}, t_{1}^{q^{2}}, t_{1}^{-q}\right):(q+1)^{2}(q-1)$.
(2) If t is of type $\left(t_{1}, t_{1}, t_{1}\right):((q-1)+q(q-1)(q+1))$.

Proof. If t is of type $\left(t_{1}, t_{1}^{q^{2}}, t_{1}^{-q}\right)$ then $-\lambda$ cannot be chosen to be an eigenvalue since $t_{1} \neq t_{1}^{-q}$. Thus there are $q+1$ choices for $\lambda, q-1$ choices for $\mu, 1$ choice for s, and $q+1$ choices for r when t is of this type by Proposition 2.19. Whereas if t is of type $\left(t_{1}, t_{1}, t_{1}\right)$ we can choose $-\lambda=t_{1}$ leaving $q-1$ choices for μ and 1 choice for each of r and s since r must be zero by Corollary 2.17. Or we can choose $-\lambda \neq t_{1}$ of which there are q choices and then there are $q-1$ choices for $\mu, 1$ choice for s, and $q+1$ choices for r.

Now consider the maximal torus T_{2}. Recall that T_{2} is the maximal torus whose elements t are of the form $t=\left[t_{1}, t_{2}, t_{3}\right]$ where $t_{i}^{q+1}=1$. Thus
there are five types of elements in $T_{2}:\left(t_{1}, t_{2}, t_{3}\right),\left(t_{1}, t_{1}, t_{3}\right),\left(t_{1}, t_{2}, t_{1}\right)$, $\left(t_{1}, t_{2}, t_{2}\right)$, and $\left(t_{1}, t_{1}, t_{1}\right)$. Note that there are $q(q+1)(q-1)$ elements t in T_{2} of type $\left(t_{1}, t_{2}, t_{3}\right), q(q+1)$ elements t in T_{2} in each of the types $\left(t_{1}, t_{1}, t_{3}\right),\left(t_{1}, t_{2}, t_{1}\right),\left(t_{1}, t_{2}, t_{2}\right)$, and $q+1$ elements t in T_{2} of type $\left(t_{1}, t_{1}, t_{1}\right)$.

Proposition 2.26. Fix an element t in T_{2}, so $t=\left[t_{1}, t_{2}, t_{3}\right]$ for some $t_{1}, t_{2}, t_{3} \in \mathbf{F}_{q^{2}}^{*}$ with $t_{i}^{q+1}=1$. Then $u n_{\lambda, \mu}$ and t have the same characteristic equation if and only if the following two conditions occur:

$$
\begin{align*}
s & =\left(t_{1}+t_{2}+t_{3}+\lambda\right) \mu^{q} \tag{2.27}\\
\mu^{q-1} & =\lambda t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} . \tag{2.28}
\end{align*}
$$

Proof. Substituting $t_{1}=a, t_{2}=b$, and $t_{3}=c$ immediately gives (2.27) and (2.28) from (2.4) and (2.6) of Lemma 2.3. That is, (2.4)-(2.6) of Lemma 2.3 become

$$
\begin{align*}
s & =\left(t_{1}+t_{2}+t_{3}+\lambda\right) \mu^{q} \tag{2.29}\\
r^{q+1} & =\left(\left(t_{1} t_{2}+t_{2} t_{3}+t_{1} t_{3}\right) \mu^{q}+\mu+s \lambda\right) \lambda^{-1} \tag{2.30}\\
\mu^{q-1} & =\lambda t_{1}^{-1} t_{2}^{-1} t_{3}^{-1} . \tag{2.31}
\end{align*}
$$

Thus it remains to show that (2.29) and (2.31) imply (2.30). Now (2.30) requires that

$$
r^{q+1}=\mu^{q} \lambda^{-1}\left(t_{1} t_{2}+t_{2} t_{3}+t_{1} t_{3}\right)+\mu \lambda^{-1}+s
$$

From (2.29) we have that

$$
\begin{aligned}
r^{q+1} & =s+s^{q}=s+\left(t_{1}^{q}+t_{2}^{q}+t_{3}^{q}+\lambda^{q}\right) \mu^{q^{2}} \\
& =s+\left(t_{1}^{-1}+t_{2}^{-1}+t_{3}^{-1}+\lambda^{-1}\right) \mu,
\end{aligned}
$$

since $x^{q^{2}}=x$ for all $x \in \mathbf{F}_{q^{2}}^{*}$ and since $t_{i}^{q+1}=\lambda^{q+1}=1$. Thus by (2.31) we have that

$$
r^{q+1}=\mu^{q} \lambda^{-1} t_{1} t_{2}+\mu^{q} \lambda^{-1} t_{2} t_{3}+\mu^{q} \lambda^{-1} t_{1} t_{3}+\mu \lambda^{-1}+s .
$$

Proposition 2.32. Let $t=\left[t_{1}, t_{2}, t_{3}\right] \in T_{2}$ be fixed. Also let $u \in U$ so that $u=[r, s]$ for some r and s such that $r^{q+1}=s+s^{q}$. Then the number of u in U and $n_{\lambda, \mu} \in T_{0} w$ such that $u n_{\lambda, \mu}$ and t have the same characteristic equation is the following:
(1) If t is of type $\left(t_{1}, t_{2}, t_{3}\right):(3(q-1)+(q-2)(q-1)(q+1))$.
(2) If t is of type $\left(t_{1}, t_{1}, t_{3}\right),\left(t_{1}, t_{2}, t_{1}\right)$, or $\left(t_{1}, t_{2}, t_{2}\right):(2(q-1)+(q-$ $\left.1)^{2}(q+1)\right)$.
(3) If t is of type $\left(t_{1}, t_{1}, t_{1}\right):((q-1)+q(q-1)(q+1))$.

Proof. This proof is completely analogous to the proofs of Propositions 2.18 and 2.25. N ote that since each of t_{1}, t_{2}, and t_{3} are such that $t_{i}^{q+1}=1$, if $-\lambda$ is an eigenvalue of t it can be any of the t_{i}.

2.7. The Homomorphism $f_{T_{0}}: H \rightarrow \mathbf{C} T_{0}$

Let θ be an irreducible character of a maximal torus, T_{i}, of G. Then, as previously discussed, there exists a unique homomorphism $f_{T_{i}}: H \rightarrow \mathbf{C} T_{i}$, independent of θ, which has the property that each homomorphism $f_{T_{i}, \theta}: H \rightarrow \mathbf{C}$ can be factored as $f_{T_{i, \theta}}=\bar{\theta} f_{T_{i}}$. A lso,

$$
f_{T_{i}}(c)=\sum_{t \in T_{i}} f_{T_{i}}(c)(t) t
$$

One more lemma is needed before stating the results of the calculations of the coefficients $f_{T_{i}}(c)(t)$. The proof of the following lemma is clear and thus omitted.

Lemma 2.33. Let u and n be fixed as in Subsections 2.5 and 2.6. Also let $t \in T_{i}$ be fixed. Suppose there exists a $g \in G$ such that $\left(\mathrm{gung}^{-1}\right)_{s}=t$. Then $\left|C_{G}\left((u n)_{s}\right)\right|=\left|C_{G}(t)\right|$. Also $\left(\text { hunh }^{-1}\right)_{s}=t$ if and only if $h=g x^{-1}$ for some $x \in C_{G}\left((u n)_{s}\right)$.

In the remainder of this paper, the notation $N(x)$ and $T(x)$ will denote the norm and trace of $x \in \mathbf{F}_{q^{2}}$ over $\mathbf{F}_{q^{2}}$, respectively. R ecall the basis

$$
\left\{c_{\lambda, \mu}, c_{\lambda} \mid \lambda, \mu \in \mathbf{F}_{q^{2}}^{*} \text { and } \lambda^{q+1}=1\right\}
$$

of the Hecke algebra described in Subsection 2.3. Here

$$
c_{\lambda, \mu}=q^{3} e\left[\mu, \widehat{-\lambda}, \mu^{-q}\right] e
$$

and

$$
c_{\lambda}=[\lambda, \lambda, \lambda] e .
$$

Call $c_{\lambda, \mu}$ a basis element of the first type and c_{λ} a basis element of the second type.
The next theorem gives the value of the coefficient $f_{T_{i}}\left(c_{\lambda}\right)(t)$ for $i=0,1$, or 2 when c_{λ} is a basis element of the second type.

Theorem 2.34. Let t be a fixed element of T_{i}, for $i=0,1$, or 2 . Let c_{λ} be a fixed element of the basis of the Hecke algebra of the second type. Then

$$
f_{T_{i}}\left(c_{\lambda}\right)(t)= \begin{cases}0, & \text { if t is not of type }(\lambda, \lambda, \lambda) \\ 1, & \text { if t is of type }(\lambda, \lambda, \lambda) .\end{cases}
$$

Proof. Within this proof c_{λ} will be denoted by just c and T_{i} will be denoted by just T. As before, let $n_{\lambda}=[\lambda, \lambda, \lambda]$, so that $c=n_{\lambda} e$. Fix an irreducible character, θ of T. Let χ be the unique irreducible character of G such that $\left\langle\chi, R_{T, \theta}^{G}\right\rangle \neq 0$ and $\langle\chi, \Gamma\rangle \neq 0$ (see Subsection 1.2). The character table for G shows that $\chi\left(n_{\lambda}\right)=\theta\left(n_{\lambda}\right) \chi(I)$. Thus

$$
\begin{aligned}
\chi\left(n_{\lambda} e\right) & =|U|^{-1} \sum_{u \in U} \psi\left(u^{-1}\right) \chi\left(n_{\lambda} u\right) \\
& =\theta\left(n_{\lambda}\right) \chi(e) \\
& =\theta\left(n_{\lambda}\right) .
\end{aligned}
$$

Thus $f_{T, \theta}(c)=\theta\left(n_{\lambda}\right)$. But also, by Curtis's theorem,

$$
f_{T, \theta}(c)=\sum_{t \in T} a_{t} \theta(t)
$$

for some coefficients a_{t}. (That is, Curtis's theorem writes $f_{T, \theta}(c)$ as $\sum_{t \in T} f_{T}(c)(t) \theta(t)$.) Thus

$$
\sum_{t \in T} a_{t} \theta(t)=\theta\left(n_{\lambda}\right) .
$$

But this is true for all irreducible characters θ of T. Thus $a_{n_{\lambda}}=1$ and $a_{t}=0$ for $t \neq n_{\lambda}$.

Theorem 2.35. Again let $t=\left[t_{1}, t_{2}, t_{1}^{-q}\right]$ be a fixed element of T_{0}. But now let $c_{\lambda, \mu}$ be a fixed element of the basis of the Hecke algebra of the first type. Suppose that $-\lambda$ is an eigenvalue of t. Then

$$
f_{T_{0}}\left(c_{\lambda, \mu}\right)(t)= \begin{cases}q+1 & \text { if t is of type }\left(-\lambda, t_{2},-\lambda\right) \\ 1 & \text { if t is not of type }\left(-\lambda, t_{2},-\lambda\right)\end{cases}
$$

if $\mu^{q-1}=\lambda t_{1}^{q-1} t_{2}^{-1}$. Otherwise, $f_{T_{0}}\left(c_{\lambda, \mu}\right)(t)=0$.
Proof. In this proof T_{0} will be denoted by T. First suppose t is of type (t_{1}, t_{1}, t_{1}). Then (1.2) becomes

$$
\begin{aligned}
f_{T}(c)(t) & =\frac{\operatorname{ind}(n)}{\left\langle Q_{T}^{G}, \Gamma\right\rangle|U|\left|C_{G}(t)\right|} \sum_{\substack{g \in G \\
u \in U \\
\left(\text { gung }^{-1}\right)_{s}=t}} \psi\left(u^{-1}\right) Q_{T}^{C_{G}(t)}\left(\left(\text { gung }^{-1}\right)_{u}\right) \\
& =q^{3} \cdot q^{-3}|G|^{-1} \sum_{\substack{g \in G \\
u \in U \\
\left(\text { gung }^{-1}\right)_{s}=t}} \psi\left(u^{-1}\right) Q_{T}^{G}\left(\left(\text { gung }^{-1}\right)_{u}\right)
\end{aligned}
$$

But we also have by Lemma 2.16 that the $(1,2)$ entry of the matrix u must be zero in order for u to satisfy the condition $\left(\text { gung }^{-1}\right)_{s}=t$ since $-\lambda$ is an eigenvalue of t. Thus $\psi\left(u^{-1}\right)=\chi(0)=1$ for every u in the above sum. A Iso by Corollary 2.10 the only u that meets the conditions of this sum is $\left[0,\left(3 t_{1}+\lambda\right) \mu^{q}\right]$. For this u we must have that $\left(\text { gung }^{-1}\right)_{s}=t$ for all $g \in G$, by Lemma 2.33. Thus

$$
f_{T}(c)(t)=|G|^{-1} \sum_{g \in G} Q_{T}^{G}\left(\left(g u n g^{-1}\right)_{u}\right),
$$

where $u=\left[0,\left(3 t_{1}+\lambda\right) \mu^{q}\right]$. First we will show that gung $^{-1}$ is not semisimple for any $g \in G$ such that $\left(g u n g^{-1}\right)_{s}=t$. So suppose that $g u n g^{-1}$ is semisimple for some g. Then gung $^{-1}=t$. But t is in the center of G. So this implies $u n=t$. But this is not possible. Thus gung ${ }^{-1}$ is not semisimple. But this implies $\left(\mathrm{gung}^{-1}\right)_{u} \neq I$. So $Q_{T}^{G}\left(\left(\mathrm{gung}^{-1}\right)_{u}\right)=1$. Thus

$$
f_{T}(c)(t)=|G|^{-1} \sum_{g \in G} Q_{T}^{G}\left(\left(\text { gung }^{-1}\right)_{u}\right)=1 .
$$

This proves the theorem when t is of type $\left(t_{1}, t_{1}, t_{1}\right)$.
Now suppose t is of type $\left(t_{1}, t_{2}, t_{1}^{-q}\right)$. Then

$$
\begin{aligned}
f_{T}(c)(t) & =\frac{\operatorname{ind}(n)}{\left\langle Q_{T}^{G}, \Gamma\right\rangle|U|\left|C_{G}(t)\right|} \sum_{\substack{g \in G \\
u \in U \\
\left(\text { gung }^{-1}\right)_{s}=t}} \psi\left(u^{-1}\right) Q_{T}^{C_{G}(t)}\left(\left(\text { gung }^{-1}\right)_{u}\right) \\
& =q^{3} \cdot q^{-3}|T|^{-1} \sum_{\substack{g \in G \\
\left(\text { gung }^{-1}\right)_{s}=t}} \psi\left(u^{-1}\right)
\end{aligned}
$$

since now $C_{G}(t)=T$ by Subsection 2.4, u is completely determined by the same argument as above, and $Q_{T}^{T}(x)=1$ for all x. But, as above $\psi\left(u^{-1}\right)=\chi(0)=1$. Thus

$$
f_{T}(c)(t)=|T|^{-1} \sum_{\substack{g \in G \\\left(\text { gung }^{-1}\right)_{s}=t}} 1 .
$$

This in turn implies

$$
f_{T}(c)(t)=|T|^{-1} \sum_{x \in C_{G}\left((u n)_{s}\right)} 1=1,
$$

by Lemma 2.33. This proves the theorem when t is of type $\left(t_{1}, t_{2}, t_{1}^{-q}\right)$.

Now suppose t is of type $\left(t_{1}, t_{2}, t_{1}\right)$. We still have that $\psi\left(u^{-1}\right)=1$ but now $C_{G}(t)=H_{2} \times S_{2}$ which has order $q(q+1)^{3}(q-1)$ by Subsection 2.4. Thus, in this case,

$$
\begin{aligned}
f_{T}(c)(t) & =\frac{\operatorname{ind}(n)}{\left\langle Q_{T}^{G}, \Gamma\right\rangle|U|\left|C_{G}(t)\right|} \sum_{\substack{g \in G \\
u \in U \\
\left(\text { gung }^{-1}\right)_{s}=t}} \psi\left(u^{-1}\right) Q_{T}^{C} G^{(t)}\left(\left(\text { gung }^{-1}\right)_{u}\right) \\
& =\left(q(q+1)^{3}(q-1)\right)^{-1} \sum_{\substack{g \in G \\
u \in U \\
\left(\text { gung }^{-1}\right)_{s}=t}} Q_{T}^{H_{2}}\left(\left(\text { gung }^{-1}\right)_{u}\right)
\end{aligned}
$$

(Here $\left(\mathrm{gung}^{-1}\right)_{u} \in C_{G}(t)$ so it is a matrix of the form $[0, x]$, by Subsection 2.4.) N ow

$$
Q_{T}^{H_{2}}\left(\left(\text { gung }^{-1}\right)_{u}\right)=q+1
$$

if and only if $x=0$. But this is true if and only if gung $^{-1}$ is semisimple. Suppose that gung $^{-1}$ is semisimple for some g in the above sum. Then gung ${ }^{-1}=t$ and thus gun $=t g$. That is,

$$
\begin{array}{r}
\left(\begin{array}{lll}
a s \mu^{-q}+c \mu^{-q} & -b \lambda & a \mu \\
d s \mu^{-q}+f \mu^{-q} & -e \lambda & d \mu \\
h s \mu^{-q}+j \mu^{-q} & -i \lambda & h \mu
\end{array}\right)=\left(\begin{array}{lll}
a t_{1} & b t_{1} & c t_{1} \\
d t_{2} & e t_{2} & f t_{2} \\
h t_{1} & i t_{1} & j t_{1}
\end{array}\right), \\
\text { where } g=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
h & i & j
\end{array}\right) .
\end{array}
$$

But $-\lambda$ is an eigenvalue, so first suppose that $-\lambda=t_{2}$ and thus $-\lambda \neq t_{1}$, since t is of type (t_{1}, t_{2}, t_{1}). A comparison of the second columns of these two matrices gives $b=i=0$. Then by comparing the first and third columns we get that both matrices must be equal to

$$
\left(\begin{array}{ccc}
a t_{1} & 0 & a \mu \\
d t_{2} & e t_{2} & d \mu \\
h t_{1} & 0 & h \mu
\end{array}\right) .
$$

B ut this matrix has determinant zero, a contradiction. Thus $-\lambda \neq t_{2}$. Thus if gung^{-1} is semisimple then $-\lambda=t_{1}$ and thus $-\lambda \neq t_{2}$. By Subsection $2.5, s=\left(2 t_{1}+t_{2}+\lambda\right) \mu^{q}=\left(t_{1}+t_{2}\right) \mu^{q}$. Now let

$$
g=\left(\begin{array}{ccc}
1 & 0 & t_{1}^{-1} \mu \\
1 & 0 & t_{2}^{-1} \mu \\
0 & 1 & 0
\end{array}\right)
$$

N ote that $\operatorname{det}(g)$ is not zero since $t_{2} \neq t_{1}$. N ow we will show that gung ${ }^{-1}=t$. Note that

$$
\begin{aligned}
\text { gun } & =\left(\begin{array}{ccc}
t_{1}+t_{2}+t_{1}^{-1} \mu^{-q+1} & 0 & \mu \\
t_{1}+t_{2}+t_{2}^{-1} \mu^{-q+1} & 0 & \mu \\
0 & -\lambda & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
t_{1}+t_{2}+t_{1}^{-1}\left(-t_{1} t_{2}\right) & 0 & \mu \\
t_{1}+t_{2}+t_{2}^{-1}\left(-t_{1} t_{2}\right) & 0 & \mu \\
0 & t_{1} & 0
\end{array}\right),
\end{aligned}
$$

since

$$
\mu^{-q+1}=\lambda^{-1} t_{1}^{2} t_{2}=-t_{1}^{-1} t_{1}^{2} t_{2}=-t_{1} t_{2}
$$

by Subsection 2.5 and since $-\lambda=t_{1}$. Thus

$$
g u n=\left(\begin{array}{ccc}
t_{1} & 0 & \mu \\
t_{2} & 0 & \mu \\
0 & t_{1} & 0
\end{array}\right)
$$

A Iso

$$
t g=\left(\begin{array}{ccc}
t_{1} & 0 & \mu \\
t_{2} & 0 & \mu \\
0 & t_{1} & 0
\end{array}\right)
$$

Thus gun $=t g$ as claimed. Thus when $-\lambda=t_{1}$ there exists a g such that $g_{u n g}{ }^{-1}$ is semisimple. But then $g(u n)_{s} g^{-1}=\left(g_{u n g}\right)_{s}=g u n g^{-1}$. Thus $(u n)_{s}=u n$. So un is semisimple. This implies $Q_{T}^{H_{2}}\left(\right.$ gung $\left.^{-1}\right)=q+1$ for all g in the above sum if t is of type $\left(-\lambda, t_{2},-\lambda\right)$, otherwise $Q_{T}^{H_{2}}\left(\right.$ gung $\left.^{-1}\right)=1$. Thus

$$
\begin{aligned}
f_{T}(c)(t) & =\left(q(q+1)^{3}(q-1)\right)^{-1} \sum_{\substack{g \in G \\
\left(\text { gung }^{-1}\right)_{s}=t}} Q_{T}^{H_{2}}\left(\left(\text { gung }^{-1}\right)_{u}\right) \\
& =\left(q(q+1)^{3}(q-1)\right)^{-1} \sum_{\substack{g \in G \\
\left(\text { gung }^{-1}\right)_{s}=t}} 1
\end{aligned}
$$

if t is of type $\left(t_{1}, t_{2}, t_{1}\right)$ but not of type $\left(-\lambda, t_{2},-\lambda\right)$ and

$$
f_{T}(c)(t)=\left(q(q+1)^{3}(q-1)\right)^{-1} \sum_{\substack{g \in G \\(g u n g \\-1)_{s}=t}}(q+1)
$$

if t is of type ($-\lambda, t_{2},-\lambda$). But by Lemma 2.33 these sums are over a set of size $\left|C_{G}\left((u n)_{s}\right)\right|=q(q+1)^{3}(q-1)$. Thus $f_{T}(c)(t)=1$ if t is of type $\left(t_{1}, t_{2}, t_{1}\right)$ but not of type $\left(-\lambda, t_{2},-\lambda\right)$ and $f_{T}(c)(t)=q+1$ if t is of type $\left(-\lambda, t_{2},-\lambda\right)$.
We will now prove a similar result where we instead assume that the $-\lambda$ entry of $n_{\lambda, \mu}=n$ is not an eigenvalue of the fixed $t \in T_{0}$.
Theorem 2.36. Let $t=\left[t_{1}, t_{2}, t_{1}^{-q}\right]$ be a fixed element of T_{0}. Let $c_{\lambda, \mu}$ be a fixed element of the basis of the Hecke algebra of the first type. Suppose that $-\lambda$ is not an eigenvalue of t. Let $s=\left(t_{1}+t_{2}+t_{1}^{-q}+\lambda\right) \mu^{q}$. Then

$$
f_{T}\left(c_{\lambda, \mu}\right)(t)=\sum_{\substack{r \in \mathbf{F}_{q^{2}} \\ N(r)=T(s)}} \psi([r, s])^{-1}=\sum_{\substack{r \in \mathbf{F}_{q^{2}} \\ N(r)=T(s)}} \chi(-r),
$$

if $\mu^{q-1}=\lambda t_{1}^{q-1} t_{2}^{-1}$. Otherwise, $f_{T}\left(c_{\lambda, \mu}\right)(t)=0$.
Proof. A gain consider (1.2),

$$
f_{T}(c)(t)=\frac{\operatorname{ind}(n)}{\left\langle Q_{T}^{G}, \Gamma\right\rangle|U|\left|C_{G}(t)\right|} \sum_{\substack{g \in G \\ u \in U \\\left(\text { gung }^{-1}\right)_{s}=t}} \psi\left(u^{-1}\right) Q_{T}^{C_{c}(t)}\left(\left(\text { gung }^{-1}\right)_{u}\right) .
$$

The proof of the previous theorem almost works here again except for the places where we used that $-\lambda$ is an eigenvalue. This was used in two different places. One was in determining the values of the G reen functions on $\left(g_{u n g}{ }^{-1}\right)_{u}$ and the other was to conclude that $\psi\left(u^{-1}\right)$ was 1 . First consider the first of these two. If t is of type $\left(t_{1}, t_{2}, t_{1}^{-q}\right)$ then $Q_{T_{0}}^{C_{G}(t)}(x)=$ $Q_{T_{0}}^{T_{0}}(x)=1$ for all x. Thus when t is of type $\left(t_{1}, t_{2}, t_{1}^{-q}\right)$ the G reen function in (1.2) will always take the value 1 . So suppose that t is of type $\left(t_{1}, t_{2}, t_{1}\right)$ or $\left(t_{1}, t_{1}, t_{1}\right)$ and that g is included in (1.2) with gung ${ }^{-1}$ semisimple. Then similar to the above argument we must have gun $=t g$. That is,

$$
\left(\begin{array}{ccc}
a s \mu^{-q}+b r^{q} \mu^{-q}+c \mu^{-q} & -a r \lambda-b \lambda & a \mu \\
d s \mu^{-q}+e q^{q} \mu^{-q}+f \mu^{-q} & -d r \lambda-e \lambda & d \mu \\
h s \mu^{-q}+i r^{q} \mu^{-q}+j \mu^{-q} & -h r \lambda-i \lambda & h \mu
\end{array}\right)=\left(\begin{array}{lll}
a t_{1} & b t_{1} & c t_{1} \\
d t_{2} & e t_{2} & f t_{2} \\
h t_{1} & i t_{1} & j t_{1}
\end{array}\right),
$$

where

$$
g=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
h & i & j
\end{array}\right)
$$

and we allow $t_{1}=t_{2}$. A comparison of the last columns of these two matrices shows that

$$
j=h \mu t_{1}^{-1} \quad \text { and } \quad c=a \mu t_{1}^{-1} .
$$

A comparison of the second columns shows that

$$
-h r \lambda=i t_{1}+i \lambda=i\left(t_{1}+\lambda\right) \quad \text { and } \quad-a r \lambda=b t_{1}+b \lambda=b\left(t_{1}+\lambda\right)
$$

But $-\lambda$ is not an eigenvalue of t so $t_{1}+\lambda \neq 0$. Thus $i=-h r \lambda\left(t_{1}+\lambda\right)^{-1}$ and $b=-\operatorname{ar} \lambda\left(t_{1}+\lambda\right)^{-1}$. Substituting these expressions for b, c, i, and j into the matrix on the right hand side we get

$$
\left(\begin{array}{ccc}
a t_{1} & -a r t_{1} \lambda\left(t_{1}+\lambda\right)^{-1} & a \mu \\
d t_{2} & e t_{2} & f t_{2} \\
h t_{1} & -h r t_{1} \lambda\left(t_{1}+\lambda\right)^{-1} & h \mu
\end{array}\right)
$$

But this matrix is singular since the first and third rows are multiples of each other. This is a contradiction. So gung^{-1} is not semisimple. Thus the values of the Green functions $Q_{T}^{H_{2}}\left(\left(\text { gung }^{-1}\right)_{u}\right), Q_{T}^{G}\left(\left(\text { gung }^{-1}\right)_{u}\right)$, and $Q_{T}^{T}\left(\left(\mathrm{gung}^{-1}\right)_{u}\right)$ will always be 1 .

N ow for the other adjustment that has to be made to the previous proof. By Corollary 2.10 in order for gung ${ }^{-1}$ to be included in (1.2) we must have that the entry $s=\left(t_{1}+t_{2}+t_{1}^{-q}+\lambda\right) \mu^{q}$. This corollary also showed that there are no restrictions on r except for the condition that $r^{q+1}=s+s^{q}$ (i.e., $N(r)=T(s)$) which just comes from the requirement that $u \in U$. Thus

$$
\begin{aligned}
f_{T}(c)(t) & =\frac{\operatorname{ind}(n)}{\left\langle Q_{T}^{G}, \Gamma\right\rangle|U|\left|C_{G}(t)\right|} \sum_{\substack{g \in G \\
u \in U \\
\left(g u n g^{-1}\right)_{s}=t}} \psi\left(u^{-1}\right) Q_{T}^{C}(t)\left(\left(\text { gung }^{-1}\right)_{u}\right) \\
& =q^{3} \cdot 1 \cdot q^{-3}\left|C_{G}(t)\right|^{-1} \sum_{\substack{x \in C_{G}\left((u n)_{s}\right) \\
u \in U \\
N(r)=T(s)}} \psi\left(u^{-1}\right) \\
& =\sum_{\substack{u \in U \\
N(r)=T(s)}} \psi\left(u^{-1}\right) .
\end{aligned}
$$

Note. In summary the coefficients $f_{T_{0}}(c)(t)$ are equal to:
If c is of the first type ($c=c_{\lambda, \mu}$),

$$
\begin{cases}q+1, & \text { if } t_{1}=-\lambda, t_{2} \neq-\lambda, \text { and } N\left(n_{\lambda, \mu}\right)=N(t) \\ 1, & \text { if } t_{2}=-\lambda \text { and } N\left(n_{\lambda, \mu}\right)=N(t) \\ \sum_{r \in \mathbf{F}_{q^{2}}} \chi(-r), & \text { if } t_{i} \neq-\lambda \text { and } N\left(n_{\lambda, \mu}\right)=N(t) \\ N(r) T(s) & \\ 0, & \text { if } N\left(n_{\lambda, \mu}\right) \neq N(t) .\end{cases}
$$

If c is of the second type $\left(c=c_{\lambda}\right)$,

$$
\begin{cases}0, & \text { if } t \text { is not of type }(\lambda, \lambda, \lambda) \\ 1, & \text { if } t \text { is of type }(\lambda, \lambda, \lambda) .\end{cases}
$$

2.8. The Homomorphism $f_{T_{1}}: H \rightarrow \mathbf{C} T_{1}$

Now we will compute the coefficients $f_{T_{i}}(c)(t)$ when $i=1$ by proving the analogues of the theorems in Subsection 2.7 when $T_{i}=T_{1}$. Note that Lemma 2.33 and Theorem 2.34 did not assume a particular maximal torus. Thus we will begin with the theorem parallel to Theorem 2.35.
Theorem 2.37. Let $t=\left[t_{1}, t_{1}^{q^{2}}, t_{1}^{-q}\right]$ be a fixed element of T_{1}. Let $c_{\lambda, \mu}$ be a fixed element of the basis of the Hecke algebra of the first type. Suppose that $-\lambda$ is an eigenvalue of t. Then $f_{T_{1}}\left(c_{\lambda, \mu}\right)(t)=-(q+1)$ if $\mu^{q-1}=\lambda t_{1}^{-q^{2}+q-1}$. Otherwise, $f_{T_{1}}\left(c_{\lambda, \mu}\right)(t)=0$.

Proof. Notice that since $-\lambda$ is an eigenvalue we must have that t is of type ($-\lambda,-\lambda,-\lambda$). This follows from the assumptions that $\lambda^{q+1}=1$ and $t_{1}^{q^{3}+1}=1$. For if $t_{1}=-\lambda$ then $t_{1}^{q+1}=1$ and so $t_{1}=t_{1}^{-q}$. But, as mentioned in Subsection 2.4, if any two of the diagonal elements of t are equal then all three are equal. Thus assuming $t_{1}=-\lambda$ forces t to be of type $(-\lambda,-\lambda,-\lambda)$. Similarly, if we assume $t_{1}^{q^{2}}=-\lambda$, then $t_{1}^{q^{3}+q^{2}}=1$. Thus $t_{1}^{-1+q^{2}}=1$ and thus $t_{1}^{q^{2}}=t_{1}$, again forcing t to be of type $(-\lambda,-\lambda,-\lambda)$. If we assume $t_{1}^{-q}=-\lambda$, then $t_{1}^{-q^{2}-q}=1$. Thus $t_{1}^{-q}=t_{1}^{q^{2}}$. So we again get that t is of type $(-\lambda,-\lambda,-\lambda)$. Now, as in the first part of the proof of Theorem 2.35 (with the adjustment $\left\langle Q_{T_{1}}^{G}, \Gamma\right\rangle=-1$ instead of 1), (1.2) becomes

$$
f_{T_{1}}(c)(t)=-|G|^{-1} \sum_{g \in G} Q_{T_{1}}^{G}\left(\left(\text { gung }^{-1}\right)_{u}\right),
$$

where $u=\left[0,(-2 \lambda) \mu^{q}\right]$. Also, as the proof of Theorem 2.35 shows, gung $^{-1}$ is not semisimple. Note that un is conjugate (in \tilde{G}) to

$$
x=\left(\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 0 \\
0 & 0 & -\lambda
\end{array}\right) .
$$

In fact, let

$$
g=\left(\begin{array}{ccc}
-\lambda^{-1} & 0 & 0 \\
1 & 0 & -\mu \lambda^{-1} \\
1 & 1 & -\mu \lambda^{-1}
\end{array}\right)
$$

But $\mu^{q-1}=\lambda t_{1}^{-3}=-\lambda^{-2}$. Thus

$$
\text { gun }=\left(\begin{array}{ccc}
2 & 0 & -\mu \lambda^{-1} \\
-\lambda & 0 & \mu \\
-\lambda & -\lambda & \mu
\end{array}\right)
$$

A Iso

$$
x g=\left(\begin{array}{ccc}
2 & 0 & -\mu \lambda^{-1} \\
-\lambda & 0 & \mu \\
-\lambda & -\lambda & \mu
\end{array}\right)
$$

Thus gung $^{-1}=x$. Thus $Q_{T_{1}}^{G}\left(\left(\text { gung }^{-1}\right)_{u}\right)=q+1$. So

$$
\begin{aligned}
f_{T_{1}}(c)(t) & =-|G|^{-1} \sum_{g \in G} Q_{T_{1}}^{G}\left(\left(\text { gung }^{-1}\right)_{u}\right) \\
& =-|G|^{-1} \sum_{g \in G}(q+1)=-(q+1) .
\end{aligned}
$$

Theorem 2.38. Again let $t=\left[t_{1}, t_{1}^{q^{2}}, t_{1}^{-q}\right]$ be a fixed element of T_{1}. Also let $c_{\lambda, \mu}$ be a fixed element of the basis of the Hecke algebra of the first type. But now suppose that $-\lambda$ is not an eigenvalue of t. Let $s=\left(t_{1}+t_{1}^{q^{2}}+\right.$ $\left.t_{1}^{-q}+\lambda\right) \mu^{q}$. Then

$$
f_{T}\left(c_{\lambda, \mu}\right)(t)=-\sum_{\substack{r \in \mathbf{F}_{q^{2}} \\ N(r)=T(s)}} \psi([r, s])^{-1}=-\sum_{\substack{r \in \mathbf{F}_{q^{2}} \\ N(r)=T(s)}} \chi(-r) .
$$

Proof. Now the proof of Theorem 2.36 almost translates to a proof of this theorem by just changing T_{0} to T_{1} except that in this case the Green functions are not determined to be 1 just by knowing that gung $^{-1}$ is not
semisimple. In the case $C_{G}(t)=T_{1}$ (i.e., t is of type $\left(t_{1}, t_{1}^{q^{2}}, t_{1}^{-q}\right)$) we still have that $Q_{T_{1}}^{C^{(t)}}=Q_{T_{1}}^{T_{1}}$ which is always 1 . But suppose that t is of type ($t_{1}, t_{\tilde{\sim}}, t_{1}$). In this case it is necessary to show that un is also not conjugate (in G) to

$$
\left(\begin{array}{ccc}
t_{1} & 1 & 0 \\
0 & t_{1} & 0 \\
0 & 0 & t_{1}
\end{array}\right)
$$

in order to conclude that the Green function is always 1 . So suppose un is conjugate to

$$
x=\left(\begin{array}{ccc}
t_{1} & 1 & 0 \\
0 & t_{1} & 0 \\
0 & 0 & t_{1}
\end{array}\right)
$$

and let

$$
g=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
h & i & j
\end{array}\right)
$$

be the matrix such that $g u n=x g$. This equation in matrices is

$$
\begin{gathered}
\left(\begin{array}{ccc}
a s \mu^{-q}+b r^{q} \mu^{-q}+c \mu^{-q} & -a r \lambda-b \lambda & a \mu \\
d s \mu^{-q}+e r^{q} \mu^{-q}+f \mu^{-q} & -d r \lambda-e \lambda & d \mu \\
h s \mu^{-q}+i r^{q} \mu^{-q}+j \mu^{-q} & -h r \lambda-i \lambda & h \mu
\end{array}\right) \\
=\left(\begin{array}{ccc}
a t_{1}+d & b t_{1}+e & c t_{1}+f \\
d t_{1} & e t_{1} & f t_{1} \\
h t_{1} & i t_{1} & j t_{1}
\end{array}\right) .
\end{gathered}
$$

A comparison of the last columns of these two matrices shows that $j=h \mu t_{1}^{-1}$ and $f=d \mu t_{1}^{-1}$. A comparison of the second columns shows that $-d r \lambda=e t_{1}+e \lambda=e\left(t_{1}+\lambda\right)$ and $h r \lambda=i t_{1}+i \lambda=i\left(t_{1}+\lambda\right)$. But $-\lambda$ is not an eigenvalue of t so $t_{1}+\lambda \neq 0$. So $i=-h r \lambda\left(t_{1}+\lambda\right)^{-1}$ and $e=-d r \lambda\left(t_{1}+\lambda\right)^{-1}$. Substituting these expressions for j, f, i, and e into the matrix on the right hand side gives

$$
\left(\begin{array}{ccc}
a t_{1}+d & b t_{1}+e & c t_{1}+f \\
d t_{1} & -d r t_{1} \lambda\left(t_{1}+\lambda\right)^{-1} & d \mu \\
h t_{1} & -h r t_{1} \lambda\left(t_{1}+\lambda\right)^{-1} & h \mu
\end{array}\right)
$$

But the second and third rows of this matrix are multiples of each other, so it is not invertible. This is a contradiction. So un is not conjugate to x. Thus as in Theorem 2.36, the values of the Green functions in (1.2) will always be 1 . The rest of the proof of Theorem 2.36 goes through here verbatim.

Note. In summary the coefficients $f_{T_{1}}(c)(t)$ are equal to:
If c is of the first type ($c=c_{\lambda, \mu}$),

$$
\begin{cases}-(q+1), & \text { if }-\lambda \text { an eigenvalue and } N\left(n_{\lambda, \mu}\right)=N(t) \\ -\sum_{\substack{r \in \mathbf{F}_{q^{2}} \\ N(r)=T(s)}} \chi(-r), & \text { if }-\lambda \text { not an eigenvalue and } N\left(n_{\lambda, \mu}\right)=N(t) \\ 0, & \text { if } N\left(n_{\lambda, \mu}\right) \neq N(t) .\end{cases}
$$

If c is of the second type $\left(c=c_{\lambda}\right)$,

$$
\begin{cases}0, & \text { if } t \text { is not of type }(\lambda, \lambda, \lambda) \\ 1, & \text { if } t \text { is of type }(\lambda, \lambda, \lambda) .\end{cases}
$$

2.9. The Homomorphism $f_{T_{2}}: H \rightarrow \mathbf{C} T_{2}$

Now we will compute the coefficients $f_{T_{i}}(c)(t)$ when $i=2$. Theorem 2.34 computed these coefficients when c is a basis element of the second type. The following two theorems compute these coefficients when c is of the first type.

Theorem 2.39. Let $t=\left[t_{1}, t_{2}, t_{3}\right]$ be a fixed element of T_{2}. Let $c_{\lambda, \mu}$ be a fixed element of the basis of the Hecke algebra of the first type. Suppose that $-\lambda$ is an eigenvalue of t. Then
$f_{T_{2}}\left(c_{\lambda, \mu}\right)(t)= \begin{cases}2 q-1 & \text { if the eigenvalue }-\lambda \text { occurs with multiplicity } 3 \\ -(q+1) & \text { if the eigenvalue }-\lambda \text { occurs with multiplicity } 2 \\ -1 & \text { if the eigenvalue }-\lambda \text { occurs with multiplicity } 1,\end{cases}$
if $\mu^{q-1}=\lambda t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$. Otherwise, $f_{T_{2}}\left(c_{\lambda, \mu}\right)(t)=0$.
Proof. First suppose t is of type (t_{1}, t_{1}, t_{1}). Then, as in the first part of the proof of Theorem 2.35 (with the adjustment $\left\langle Q_{T}^{G}, \Gamma\right\rangle=-1$ instead of 1), (1.2) becomes

$$
f_{T_{2}}(c)(t)=-|G|^{-1} \sum_{g \in G} Q_{T_{2}}^{G}\left(\left(\text { gung }^{-1}\right)_{u}\right),
$$

where $u=\left[0,\left(3 t_{1}+\lambda\right) \mu^{q}\right]$. Also, as the proof of Theorem 2.35 shows, gung $^{-1}$ is not semisimple. As shown in the proof of Theorem 2.37, un is conjugate to

$$
\left(\begin{array}{ccc}
t_{1} & 1 & 0 \\
0 & t_{1} & 0 \\
0 & 0 & t_{1}
\end{array}\right) .
$$

Thus $Q_{T_{2}}^{G}\left(\left(\text { gung }^{-1}\right)_{u}\right)=-2 q+1$. So that

$$
\begin{aligned}
f_{T_{2}}(c)(t) & =-|G|^{-1} \sum_{g \in G} Q_{T_{2}}^{G}\left(\left(\text { gung }^{-1}\right)_{u}\right) \\
& =-|G|^{-1} \sum_{g \in G}(-2 q+1)=2 q-1 .
\end{aligned}
$$

This proves the theorem when t is of type $\left(t_{1}, t_{1}, t_{1}\right)$.
Now suppose t is of type $\left(t_{1}, t_{2}, t_{3}\right)$. For t of this type the proof of Theorem 2.35 translates to prove this theorem by just changing everywhere you see T_{0} to T_{2} and adjusting by a multiple of -1 .

Similarly the proof when t is of type (t_{1}, t_{2}, t_{1}) is exactly the same as the proof of Theorem 2.35 where we showed that gung $^{-1}$ is semisimple. Thus $Q_{T_{2}}^{H_{2}}=q+1$. Also by symmetry that proof translates into a proof of this theorem when t is of type (t_{1}, t_{1}, t_{3}) or of type (t_{1}, t_{2}, t_{2}).

Theorem 2.40. Again let $t=\left[t_{1}, t_{2}, t_{3}\right]$ be a fixed element of T_{2}. Also let $c_{\lambda, \mu}$ be a fixed element of the basis of the Hecke algebra of the first type. But now suppose that $-\lambda$ is not an eigenvalue of t. Let $s=\left(t_{1}+t_{2}+t_{3}+\lambda\right) \mu^{q}$. Then

$$
f_{T}\left(c_{\lambda, \mu}\right)(t)=-\sum_{\substack{r \in \mathbf{F}_{q^{2}} \\ N(r)=T(s)}} \psi([r, s])^{-1}=-\sum_{\substack{r \in \mathbf{F}_{q^{2}} \\ N(r)=T(s)}} \chi(-r),
$$

if $\mu^{q-1}=\lambda t_{1}^{-1} t_{2}^{-1} t_{3}^{-1}$. Otherwise, $f_{T}\left(c_{\lambda, \mu}\right)(t)=0$.
Proof. Now the proofs of Theorems 2.36 and 2.38 almost translate to a proof of this theorem by just changing T_{0} or T_{1} to T_{2}. In the case $C_{G}(t)=T_{2}$ (i.e., t is of type $\left(t_{1}, t_{2}, t_{3}\right)$) we still have that $Q_{T_{1}}^{C_{G}(t)}=Q_{T_{2}}^{T_{2}}=1$. In the case t is of type $\left(t_{1}, t_{2}, t_{1}\right)$, $\left(t_{1}, t_{1}, t_{3}\right)$, or $\left(t_{1}, t_{2}, t_{2}\right)$ it is enough to show gung $^{-1}$ is not semisimple to conclude $Q_{T_{2}}^{C_{G}(t)}=Q_{T_{2}}^{H_{i}}=1$ as was done in Theorem 2.36. In Theorem 2.38 it was shown that if t is of type (t_{1}, t_{1}, t_{1}), the value of the G reen functions in (1.2) will still always be 1 . Thus as in Theorem 2.36, the values of the Green functions in (1.2) will always be 1 . The rest of the proof of Theorem 2.36 goes through here verbatim.

Note. In summary the coefficients $f_{T_{2}}(c)(t)$ are equal to:
If c is of the first type ($c=c_{\lambda, \mu}$),
$\begin{cases}2 q-1, & \text { if }-\lambda \text { a multiplicity } 3 \text { eigenvalue and } N\left(n_{\lambda, \mu}\right)=N(t) \\ -(q+1), & \text { if }-\lambda \text { a multiplicity } 2 \text { eigenvalue and } N\left(n_{\lambda, \mu}\right)=N(t) \\ -1, & \text { if }-\lambda \text { a multiplicity } 1 \text { eigenvalue and } N\left(n_{\lambda, \mu}\right)=N(t) \\ -\sum_{\substack{r\left(\mathbf{F}_{q^{2}} \\ N(r)=T(s)\right.}} \chi(-r), & \text { if } t_{i} \neq-\lambda \text { and } N\left(n_{\lambda, \mu}\right)=N(t) \\ 0, & \text { if } N\left(n_{\lambda, \mu}\right) \neq N(t) .\end{cases}$

If c is of the second type $\left(c=c_{\lambda}\right)$,

$$
\begin{cases}0, & \text { if } t \text { is not of type }(\lambda, \lambda, \lambda) \\ 1, & \text { if } t \text { is of type }(\lambda, \lambda, \lambda) .\end{cases}
$$

The results of Subsections 2.7, 2.8, and 2.9 give us the homomorphisms $f_{T_{i}}: H \rightarrow \mathbf{C} T_{i}$. Composing these homomorphisms with the irreducible characters of T_{i} will give all the irreducible characters of H, by Curtis's theorem, Theorem 1.1.

3. THE STRUCTURE CONSTANTS OF THE HECKE ALGEBRA H

In this section we will continue to use the notation given in Section 2. A s explained in Subsection 2.3, if

$$
c_{u, t}=q^{3} e\left[t, \widehat{-u}, t^{-q}\right]
$$

and

$$
c_{u}=[u, u, u] e
$$

then

$$
\left\{c_{u, t}, c_{u} \mid t, u \in \mathbf{F}_{q^{2}}^{*} \text { and } u^{q+1}=1\right\}
$$

is a basis for H.
To simplify notation, let J be an index set of cardinality $(q+1)+$ $\left(q^{2}-1\right)(q+1)=(q+1)\left(q^{2}\right)$. For $j \leq q+1$ let

$$
x_{j}=\left[u_{j}, u_{j}, u_{j}\right]
$$

where u_{j} runs over the elements of $\mathbf{F}_{q^{2}}^{*}$ such $N\left(u_{j}\right)=1$. For $j>q+1$ let

$$
x_{j}=\left[t_{j}, \widehat{-u_{j}}, t_{j}^{-q}\right],
$$

where again u_{j} runs over the elements of $\mathbf{F}_{q_{2}^{*}}^{*}$ such $N\left(u_{j}\right)=1$ and t_{j} runs over the elements of $\mathbf{F}_{q}{ }^{2}$. N ote that $\operatorname{ind}\left(x_{j}\right)=1$ for j less than or equal to $q+1$ and $\operatorname{ind}\left(x_{j}\right)=q^{3}$ for j greater than $q+1$. Now let $a_{j}=\operatorname{ind}\left(x_{j}\right) e x_{j} e$. Then $\left\{a_{j}\right\}_{j \in J}$ is the same basis of H as described above.

Now given two basis elements a_{i} and a_{j} of the H ecke algebra H, their product

$$
a_{i} a_{j}=\sum_{k \in J} \mu_{i j k} a_{k}
$$

for some structure constants $\mu_{i j k}$. The purpose of this section is to explicitly compute these constants.

In the three cases, (1) $i \leq q+1, j \leq q+1$, (2) $i \leq q+1, j>q+1$, and (3) $i>q+1, j \leq q+1$, this computation is trivial. First note that the Hecke algebra is commutative so that cases (2) and (3) are the same. Clearly in case (1), $a_{i} a_{j}=a_{k}$ where $u_{i} u_{j}=u_{k}$. That is, $c_{u_{i}} c_{u_{j}}=c_{u_{i} u_{j}}$. In case (2) we have that

$$
a_{i} a_{j}=a_{k}, \quad \text { where } x_{k}=\left[u_{i} t_{j}, \overline{-u_{i} u_{j}}, u_{i} t_{j}^{-q}\right] .
$$

That is, $c_{u_{i}} c_{u_{j}, t_{j}}=c_{u_{i} u_{j} u_{i} t_{j}}$. Thus the only interesting case is when both i and j are greater than $q+1$. So in the remainder of this section assume that i and j are both greater than $q+1$.

The elements of the group algebra $\mathbf{C} G$ can be identified with the set of functions $f: G \rightarrow \mathbf{C}$, where $\sum_{x \in G} \alpha_{x} x \in \mathbf{C} G$ corresponds to the function $f: G \rightarrow \mathbf{C}$ defined by $f(x)=\alpha_{x}$. U sing this correspondence, the structure constants

$$
\mu_{i j k}=|U| \sum_{y \in D_{i} \cap x_{k} D_{j}^{-1}} a_{i}(y) a_{j}\left(y^{-1} x_{k}\right),
$$

where D_{i} is the double coset $U x_{i} U$ and D_{j}^{-1} is the double coset $U x_{j}^{-1} U$ (see, for example, [4, p. 280]).

First we will compute $\mu_{i j k}$ when $k \leq q+1$. To do this we need to determine when $y \in D_{i} \cap x_{k} D_{j}^{-1}$. Now since $i>q+1$ we have that $x_{i}=\left[t_{i}, \widehat{-u_{i}} t_{i}^{-q}\right]$. Thus $D_{i}=U x_{i} U=$

$$
\left\{\begin{array}{ccc}
\left\{\begin{array}{ccc}
b t_{i}^{-q} & b c t_{i}^{-q}-a u_{i} & b d t_{i}^{-q}-a c^{q} u_{i}+t_{i} \\
a^{q} t_{i}^{-q} & a^{q} c t_{i}^{-q}-u_{i} & a^{q} d t_{i}^{-q}-c^{q} u_{i} \\
t_{i}^{-q} & c t_{i}^{-q} & d t_{i}^{-q}
\end{array}\right) \\
& \mid N(a)=T(b), N(c)=T(d)
\end{array}\right\} .
$$

A lso since $k \leq q+1$ and $j>q+1$ we have that

$$
x_{k}=\left[u_{k}, u_{k}, u_{k}\right]
$$

and

$$
x_{j}^{-1}=\left[t_{j}^{q}, \overline{-u_{j}^{-1}}, t_{j}^{-1}\right] .
$$

Thus $x_{k} D_{j}^{-1}$ equals

$$
\left.\begin{array}{r}
\left\{\begin{array}{ccc}
\begin{array}{cc}
y u_{k} t_{j}^{-1} & -x u_{k} u_{j}^{-1}+y z u_{k} t_{j}^{-1} \\
x_{k}^{q} t_{j}^{q}-x z^{q} u_{k} u_{j}^{-1}+y w u_{k} t_{j}^{-1} \\
x_{k} t_{j}^{-1} & -u_{k} u_{j}^{-1}+x^{q} z u_{k} t_{j}^{-1} \\
u_{j}^{-1} & z u_{k} t_{j}^{-1}
\end{array} & -z^{q} u_{k} u_{j}^{-1}+x^{q} w u_{k} t_{j}^{-1}
\end{array}\right) \\
\\
\mid N(x)=T(y), N(z)=T(w)\}
\end{array}\right\} .
$$

A comparison of the $(3,1)$ entries reveals that $t_{i}^{-q}=u_{k} t_{j}^{-1}$ for an element to be in both D_{i} and $x_{k} D_{j}^{-1}$. Then using the fact that none of t_{i}, t_{j}, u_{k} are zero we get from comparison of the first columns and third rows that $b=y, a^{q}=x^{q}, c=z$, and $d=w$. But we already have that $a^{q+1}=b+b^{q}$. Thus $a^{q+1}=y+y^{q}=x^{q+1}=a^{q} x$. Thus $a=0$ or $a=x$. But if $a=0$ then $a^{q}=0$ so that $x^{q}=0$ and thus $x=0$. So $a=x$. Thus if $u_{1} x_{i} u_{2}=$ $x_{k} u_{3} x_{j}^{-1} u_{4}$ for some $u_{i} \in U$ then $u_{1}=u_{3}$ and $u_{2}=u_{4}$. But x_{k} is central. Thus $x_{i}=x_{k} x_{j}^{-1}$. That is,

$$
\left[t_{i}, \widehat{-u_{i}}, t_{i}^{-q}\right]=\left[u_{k} t_{j}^{q}, \widehat{-u_{k} u_{j}^{-1}}, u_{k} t_{j}^{-1}\right] .
$$

Thus $u_{k}=u_{i} u_{j}=t_{i} t_{j}^{-q}=t_{i}^{-q} t_{j}$. But $u_{i} u_{j}=t_{i}^{-q} t_{j}$ implies $u_{i} u_{j} t_{i}^{q}=t_{j}$. So that $u_{i}^{-1} u_{j}^{-1} t_{i}=t_{j}^{q}$ since $u_{i}^{q}=u_{i}^{-1}, u_{j}^{q}=u_{j}^{-1}$ and $t_{i}^{q^{2}}=t_{i}$. This implies $t_{i} t_{j}^{-q}=u_{i} u_{j}$. Thus $u_{i} u_{j}=t_{i}^{-q} t_{j}$ implies $u_{i} u_{j}=t_{i} t_{j}^{-q}$. Similarly $u_{i} u_{j}=t_{i} t_{j}^{-q}$ implies $u_{i} u_{j}=t_{i}^{-q} t_{j}$. Thus $D_{i} \cap x_{k} D_{j}^{-1}=\varnothing$ unless $u_{k}=u_{i} u_{j}=t_{i}^{-q} t_{j}$. That is, $D_{i} \cap x_{k} D_{j}^{-1}=\varnothing$ unless $x_{k}=\left[u_{i} u_{j}, u_{i} u_{j}, u_{i} u_{j}\right]$.

So from now on assume $u_{k}=u_{i} u_{j}=t_{i}^{-q} t_{j}$. Then by directly multiplying the matrices we see that $D_{i}=x_{k} D_{j}^{-1}$. Thus $D_{i} \cap x_{k} D_{j}^{-1}=D_{i}$. So $\mu_{i j k}=$ $|U| \Sigma_{y \in D_{i}} a_{i}(y) a_{j}\left(y^{-1} x_{k}\right)$.

Now

$$
\begin{aligned}
a_{i} & =q^{3} e x_{i} e=q^{3}|U|^{-1} \sum_{v \in U} \psi\left(u^{-1}\right) u x_{i}|U|^{-1} \sum_{v \in U} \psi\left(v^{-1}\right) v \\
& =q^{-3} \sum_{u, v} \psi\left(u^{-1} v^{-1}\right) u x_{i} v .
\end{aligned}
$$

Also if $y \in D_{i}$ then $y=u_{y} x_{i} v_{y}$ for some $u_{y}, v_{y} \in U$. Thus $a_{i}(y)=$ $q^{-3} \psi\left(u_{y}^{-1} v_{y}^{-1}\right)$. Also notice that $y^{-1} x_{k}=\left(u_{y} x_{i} v_{y}\right)^{-1} x_{k}=v_{y}^{-1} x_{i}^{-1} u_{y}^{-1} x_{k}$ $=v_{y}^{-1} x_{i}^{-1} x_{k} u_{y}^{-1}=v_{y}^{-1} x_{j} u_{y}^{-1}$, since x_{k} is central and $x_{j}=x_{i}^{-1} x_{k}$ by above. Thus $a_{j}\left(y^{-1} x_{k}\right)=q^{-3} \psi\left(v_{y} u_{y}\right)$. Thus $a_{i}(y) a_{j}\left(y^{-1} x_{k}\right)=$ $q^{-3} \psi\left(u_{y}^{-1} v_{y}^{-1}\right) q^{-3} \psi\left(v_{y} u_{y}\right)=q^{-6}$. Thus $\mu_{i j k}=q^{3} \sum_{y \in D_{i}} q^{-6}=q^{3}$ when u_{k} $=u_{i} u_{j}=t_{i}^{-q} t_{j}$, and $\mu_{i j k}=0$ otherwise. Let

$$
\delta(r, s)= \begin{cases}0 & \text { if } r \neq s \\ 1 & \text { if } r=s\end{cases}
$$

Then $\mu_{i j k}=\delta\left(u_{i} u_{j}, t_{i}^{-q} t_{j}\right) q^{3}$ only for the one index number $k \leq q+1$ such that $u_{k}=u_{i} u_{j}$. Otherwise $\mu_{i j k}=0$ when $k \leq q+1$.

It remains to consider $\mu_{i j k}$ when i, j, and k are all greater than $q+1$. In this case we have

$$
\begin{gathered}
D_{i}=U x_{i} U=U\left[t_{i}, \widehat{-u_{i}}, t_{i}^{-q}\right] U, \\
D_{j}^{-1}=U x_{j}^{-1} U=U\left[t_{j}^{q}, \widehat{-u_{j}^{-1}}, t_{j}^{-1}\right] U
\end{gathered}
$$

and

$$
x_{k}=\left[t_{k}, \widehat{-u_{k}}, t_{k}^{-q}\right] .
$$

Suppose that $y \in D_{i} \cap x_{k} D_{j}^{-1}$. Then $y=w x_{i} z=x_{k} u x_{j}^{-1} v$ for some $u, v, w, z \in U$. So $y v^{-1}=w x_{i} z^{\prime}=x_{k} u x_{j}^{-1}$ for some $u, v, w, z^{\prime} \in U$. Thus

$$
[a, b]\left[t_{i}, \widehat{-u_{i}}, t_{i}^{-q}\right][c, d]=\left[t_{k}, \widehat{-u_{k}}, t_{k}^{-q}\right][r, s]\left[t_{j}^{q}, \widehat{-u_{j}^{-1}}, t_{j}^{-1}\right],
$$

for some $a, b, c, d, r, s \in U$ such that $N(a)=T(b), N(c)=T(d)$, and $N(r)=T(s)$. Then

$$
\begin{aligned}
& \left(\begin{array}{ccc}
b t_{i}^{-q} & b c t_{i}^{-q}-a u_{i} & b d t_{i}^{-q}-a c^{q} u_{i}+t_{i} \\
a^{q} t_{i}^{-q} & a^{q} c t_{i}^{-q}-u_{i} & a^{q} d t_{i}^{-q}-c^{q} u_{i} \\
t_{i}^{-q} & c t_{i}^{-q} & d t_{i}^{-q}
\end{array}\right) \\
& \quad=\left(\begin{array}{ccc}
t_{j}^{-1} t_{k} & 0 & 0 \\
-r^{q} t_{j}^{-1} u_{k} & u_{j}^{-1} u_{k} & 0 \\
s t_{j}^{-1} t_{k}^{-q} & -r u_{j}^{-1} t_{k}^{-q} & t_{j}^{q} t_{k}^{-q}
\end{array}\right)
\end{aligned}
$$

Thus $s=t_{i}^{-q} t_{j} t_{k}^{q}, b=t_{i}^{q} t_{j}^{-1} t_{k}$, and $d=t_{i}^{q} t_{j}^{q} t_{k}^{-q}$. Also $b c t_{i}^{-q}-a u_{i}=0$ so that $a u_{i}=b c t_{i}^{-q}=c t_{i}^{q} t_{j}^{-1} t_{k} t_{i}^{-q}=c t_{j}^{-1} t_{k}$. Thus $a=c t_{j}^{-1} t_{k} u_{i}^{-1}$. Also $r=$ $-c t_{i}^{-q} t_{k}^{q} u_{j}$. Substituting these values for a, b, d, r, and s in the above matrix equation gives the new equation

$$
\begin{aligned}
& \left(\begin{array}{ccc}
t_{j}^{-1} t_{k} & 0 & t_{i}^{q} t_{j}^{q-1} t_{k}^{-q+1}-c^{q+1} t_{j}^{-1} t_{k}+t_{i} \\
c^{q} t_{i}^{-q} t_{j}^{-q} t_{k}^{q} u_{i} & c^{q+1} t_{i}^{-q} t_{j}^{-q} t_{k}^{q} u_{i}-u_{i} & 0 \\
t_{i}^{-q} & c t_{i}^{-q} & t_{j}^{q} t_{k}^{-q}
\end{array}\right) \\
& \quad=\left(\begin{array}{ccc}
t_{j}^{-1} t_{k} & 0 & 0 \\
c^{q} t_{i}^{-1} t_{j}^{-1} t_{k} u_{j}^{-1} u_{k} & u_{j}^{-1} u_{k} & 0 \\
t_{i}^{-q} & c t_{i}^{-q} & t_{j}^{q} t_{k}^{-q}
\end{array}\right)
\end{aligned}
$$

But $c^{q+1}=d+d^{q}=t_{i}^{q} t_{j}^{q} t_{k}^{-q}+t_{i} t_{j} t_{k}^{-1}$. Thus $t_{i}^{q} t_{j}^{q-1} t_{k}^{-q+1}-c^{q+1} t_{j}^{-1} t_{k}+t_{i}$ $=t_{i}^{q} t_{j}^{q-1} t_{k}^{-q+1}-t_{i}^{q} t_{j}^{q-1} t_{k}^{-q+1}-t_{i}+t_{i}=0$ and $c^{q+1} t_{i}^{-q} t_{j}^{-q} t_{k}^{q} u_{i}-u_{i}=u_{i}$ $+t_{i}^{-q+1} t_{j}^{-q+1} t_{k}^{q-1} u_{i}-u_{i}=t_{i}^{-q+1} t_{j}^{-q+1} t_{k}^{q-1} u_{i}$. So

$$
\begin{aligned}
& \left(\begin{array}{ccc}
t_{j}^{-1} t_{k} & 0 & 0 \\
c^{q} t_{i}^{-q} t_{j}^{-q} t_{k}^{q} u_{i} & t_{i}^{-q+1} t_{j}^{-q+1} t_{k}^{q-1} u_{i} & 0 \\
t_{i}^{-q} & c t_{i}^{-q} & t_{j}^{q} t_{k}^{-q}
\end{array}\right) \\
& \quad=\left(\begin{array}{ccc}
t_{j}^{-1} t_{k} & 0 & 0 \\
c^{q} t_{i}^{-1} t_{j}^{-1} t_{k} u_{j}^{-1} u_{k} & u_{j}^{-1} u_{k} & 0 \\
t_{i}^{-q} & c t_{i}^{-q} & t_{j}^{q} t_{k}^{-q}
\end{array}\right) .
\end{aligned}
$$

Thus $u_{k}=t_{i}^{-q+1} t_{j}^{-q+1} t_{k}^{q-1} u_{i} u_{j}$. Notice that now the $(2,1)$ entries can both be simplified to $c^{q} t_{i}^{-q} t_{j}^{-q} t_{k}^{q} u_{i}$ by substituting in this expression for u_{k}. Also note that the requirements $N(a)=T(b), N(c)=T(d)$, and $N(r)=T(s)$ are satisfied when we take the above formulas for a, b, c, d, r, and s. Thus the above shows that $\mu_{i j k}$ will be nonzero only when x_{k} is of the form $\left[t_{k},-t_{i}^{-q+1} t_{j}^{-\widetilde{q+1}} t_{k}^{q-1} u_{i} u_{j}, t_{k}^{-q}\right]$, i.e., when the u_{k} entry of x_{k} is $t_{i}^{-q+1} t_{j}^{-q+1} t_{k}^{q-1} u_{i} u_{j}$. So we fix an x_{k} of this form.

Let

$$
\begin{aligned}
A_{c} & =\left[c t_{j}^{-1} t_{k} u_{i}^{-1}, t_{i}^{q} t_{j}^{-1} t_{k}\right]=[a, b] \\
B_{c} & =\left[c, t_{i}^{q} t_{j}^{q} t_{k}^{-q}\right]=[c, d]
\end{aligned}
$$

and

$$
C_{c}=\left[-c t_{i}^{-q} t_{k}^{q} u_{j}, t_{i}^{-q} t_{j} t_{k}^{q}\right]=[r, s],
$$

where $c \in \mathbf{F}_{q^{2}}$ is such that $c^{q+1}=t_{i}^{q} t_{j}^{q} t_{k}^{-q}+t_{i} t_{j} t_{k}^{-1}$.
Then the above calculations show that

$$
\begin{aligned}
\left(U x_{i} U\right) & \cap\left(x_{k} U x_{j}^{-1} U\right) \\
= & \left\{y \mid y v^{-1} \in\left(U x_{i} U\right) \cap\left(x_{k} U x_{j}^{-1}\right), v \in U\right\} \\
= & \left\{y \mid y v^{-1} \in A_{c} x_{i} B_{c}, v \in U, c^{q+1}=t_{i}^{q} t_{j}^{q} t_{k}^{-q}+t_{i} t_{j} t_{k}^{-1}\right\} \\
& =\left\{y \mid y v^{-1} \in x_{k} C_{c} x_{j}^{-1}, v \in U, c^{q+1}=t_{i}^{q} t_{j}^{q} t_{k}^{-q}+t_{i} t_{j} t_{k}^{-1}\right\} .
\end{aligned}
$$

So suppose that y is in the above set. So $y=A_{c} x_{i} B_{c} v=x_{k} C_{c} x_{j}^{-1} v$ for some $v \in U$ and for some c such that $c^{q+1}=t_{i}^{q} t_{j}^{q} t_{k}^{q}+t_{i} t_{j} t_{k}^{-1}$. Now, using the notation explained earlier,

$$
a_{i}=|U|^{-1} \sum_{u, w \in U} \psi\left(u^{-1} w^{-1}\right) u x_{i} w .
$$

Thus $a_{i}(y)=|U|^{-1} \psi\left(A_{c}^{-1}\right) \psi\left(\left(B_{c} v\right)^{-1}\right)$. A lso

$$
a_{j}=|U|^{-1} \sum_{u, w \in U} \psi\left(u^{-1} w^{-1}\right) u x_{j} w
$$

and $y=x_{k} C_{c} x_{j}^{-1} v$. So that $y^{-1} x_{k}=v^{-1} x_{j} C_{c}^{-1}$. Thus

$$
a_{j}\left(y^{-1} x_{k}\right)=a_{j}\left(v^{-1} x_{j} C_{c}^{-1}\right)=|U|^{-1} \psi(v) \psi\left(C_{c}\right) .
$$

Thus

$$
\begin{aligned}
\mu_{i j k}= & |U| \sum_{D_{i} \cap x_{k} D_{j}^{-1}} a_{i}(y) a_{j}\left(y^{-1} x_{k}\right) \\
= & |U| \sum_{v \in U} \sum_{c_{c}^{c}} \sum_{c^{q+1}=t_{i}^{q} t_{j}^{q} t_{k}^{-q}+t_{i} t_{j} t_{k}^{-1}}|U|^{-1} \psi\left(A_{c}^{-1}\right) \psi\left(v^{-1}\right) \\
& \times \psi\left(B_{c}^{-1}\right)|U|^{-1} \psi(v) \psi\left(C_{c}\right) \\
= & |U|^{-1} \sum_{v \in U} \sum_{c} \psi\left(A_{c}^{-1} B_{c}^{-1} C_{c}\right) \\
= & \sum_{c} c^{q+1}=t_{i}^{q} t_{j}^{q} t_{k}^{-q}+t_{i} t_{j} t_{k}^{1}
\end{aligned} \psi\left(A_{c}^{-1} B_{c}^{-1} C_{c}\right) .
$$

But $A_{c}^{-1} B_{c}^{-1} C_{c}=\left[-c\left(1+t_{j}^{-1} t_{k} u_{i}^{-1}+t_{i}^{-q} t_{k}^{q} u_{j}\right), *\right]$, where the $*$ entry is an expression involving $t_{i}, t_{j}, u_{i}, u_{j}, t_{k}$, and c. Recall there exists an additive character χ of $\mathbf{F}_{q^{2}}$ such that $\psi([a, b])=\chi(a)$. Thus

$$
\begin{aligned}
\mu_{i j k} & =\sum_{\substack{c \\
c^{q+1}=t_{i}^{q} t_{j} t_{k}^{-q}+t_{i} j_{j} t_{k}^{-1}}} \psi\left(A_{c}^{-1} B_{c}^{-1} C_{c}\right) \\
& =\sum_{c^{q+1}=t_{i}^{q} c_{j}^{c} t_{\bar{k}}^{q}+t_{i} t_{j} t_{k}^{-1}} \chi\left(-c\left(1+t_{j}^{-1} t_{k} u_{i}^{-1}+t_{i}^{-q} t_{k}^{q} u_{j}\right)\right) \\
& =\sum_{N(x)=1} \chi\left(-a_{k} x\left(1+t_{j}^{-1} t_{k} u_{i}^{-1}+t_{i}^{-q} t_{k}^{q} u_{j}\right)\right),
\end{aligned}
$$

where in the last summation a_{k} is a fixed element of $\mathbf{F}_{q^{2}}$ such that $a_{k}^{q+1}=t_{i}^{q} t_{j}^{q} t_{k}^{-q}+t_{i} t_{j} t_{k}^{-1}$.

Combining all of the above calculations gives the following proposition, which describes the structure constants.

Proposition 3.1. Let $\left\{c_{u, t}, c_{u}\right\}$ be the basis for the Hecke Algebra described above. Then

$$
\begin{align*}
c_{u} c_{v}= & c_{u v} \tag{3.2}\\
c_{u, t} c_{v}= & c_{v u, v t} \tag{3.3}\\
c_{u_{1}, t_{1}} c_{u_{2}, t_{2}}= & q^{3} \delta\left(u_{1} u_{2}, t_{1}^{-q} t_{2}\right) c_{u_{1} u_{2}} \\
& +\sum_{t_{k} \in \mathbf{F}_{q^{2}}^{*}} \sum_{N(x)=1} \chi\left(-a_{k} x\left(1+t_{2}^{-1} t_{k} u_{1}^{-1}+t_{1}^{-q} t_{k}^{q} u_{2}\right)\right) c_{u_{k}, t_{k}} \tag{3.4}
\end{align*}
$$

where in (3.4), $u_{k}=t_{1}^{-q+1} t_{2}^{-q+1} t_{k}^{q-1} u_{1} u_{2}$ and a_{k} is fixed for a fixed t_{k} and is such that $a_{k}^{q+1}=t_{1}^{q} t_{2}^{q} t_{k}^{-q}+t_{1} t_{2} t_{k}^{-1}$.

For a possibly more usable form of (3.4) of this proposition make the change of variable $r=t_{1}^{-1} t_{2}^{-1} t_{k}$ in the equation

$$
\begin{aligned}
c_{u_{1}, t_{1}} c_{u_{2}, t_{2}}= & q^{3} \delta\left(u_{1} u_{2}, t_{1}^{-q} t_{2}\right) c_{u_{1} u_{2}}+\sum_{t_{k} \in \mathbf{F}_{q^{*}}^{*}} \\
& \times \sum_{c^{q+1}=t_{1}^{q} t_{2} t_{k}^{q}+t_{1} t_{2} t_{k}^{1}} \chi\left(-c\left(1+t_{2}^{-1} t_{k} u_{1}^{-1}+t_{1}^{-q} t_{k}^{q} u_{2}\right)\right) c_{u_{k}, t_{k}} .
\end{aligned}
$$

Then $u_{k}=r^{q-1} u_{1} u_{2}$ and (3.4) becomes

$$
\begin{aligned}
c_{u_{1}, t_{1}} c_{u_{2}, t_{2}}= & q^{3} \delta\left(u_{1} u_{2}, t_{1}^{-q} t_{2}\right) c_{u_{1} u_{2}}+\sum_{r \in \mathbf{F}_{q^{2}}^{*}} \\
& \times \sum_{\substack{c \in \mathbf{F}_{q^{2}} \\
N(c)=T\left(r^{-1}\right)}} \chi\left(-c\left(1+r t_{1} u_{1}^{-1}+r^{q} t_{2}^{q} u_{2}\right)\right) c_{r^{q-1} u_{1} u_{2}, r t_{1} t_{2}} .
\end{aligned}
$$

For another form of (3.4) we can rewrite the preceding equation in terms of matrices. Let

$$
\begin{aligned}
K_{i} & =\left[t_{i}, u_{i}, t_{i}^{-q}\right], \\
R & =\left[r, 1, r^{-q}\right],
\end{aligned}
$$

and

$$
\tilde{R}=\left[r, r^{q-1}, r^{-q}\right] .
$$

A lso let $U_{r}=\{A \in U \mid$ the (1,3) entry of A is $r\}$.
Then $A_{c}=\left(K_{1} R\right) B_{c}\left(K_{1} R\right)^{-1}$ and $C_{c}=\left(K_{2} R\right)^{q} B_{c}^{-1}\left(K_{2} R\right)^{-q}$. Thus (3.4) becomes

$$
\begin{aligned}
c_{u_{1}, t_{1}} c_{u_{2}, t_{2}}=c_{K_{1}} c_{K_{2}}= & q^{3} \delta\left(u_{1} u_{2}, t_{1}^{-q} t_{2}\right) c_{u_{1} u_{2}} \\
+ & \sum_{r \in \mathbf{F}_{q^{2}}^{*}} \sum_{B \in U_{r}^{-1}} \psi\left(\left(K_{1} R\right) B^{-1}\left(K_{1} R\right)^{-1}\right) \psi\left(B^{-1}\right) \\
& \quad \times \psi\left(\left(K_{2} R\right)^{q} B^{-1}\left(K_{2} R\right)^{-q}\right) c_{\tilde{R} K_{1} K_{2}} .
\end{aligned}
$$

Thus (3.4) becomes

$$
\begin{aligned}
c_{K_{1}} c_{K_{2}}= & q^{3} \delta\left(u_{1} u_{2}, t_{1}^{-q} t_{2}\right) c_{u_{1} u_{2}}+\sum_{r \in \mathbf{F}_{q^{*}}^{*}} \sum_{B \in U_{r}^{-1}} \psi^{K_{1} R}\left(B^{-1}\right) \\
& \times \psi\left(B^{-1}\right) \psi^{\left(K_{2} R\right)^{q}}\left(B^{-1}\right) c_{\tilde{R} K_{1} K_{2}} .
\end{aligned}
$$

REFERENCES

1. R. W. Carter, "Finite Groups of Lie Type: Conjugacy Classes and Complex Characters," W iley-Interscience, N ew Y ork, 1985.
2. R. W. Carter, Cuspidal matrix representations for $G L_{2}(q)$ and $G L_{3}(q)$, Proc. London Math. Soc. (3) 64 (1992), 487-523.
3. C. W. Curtis, On the Gelfand-Graev representations of a reductive group over a finite field, J. Algebra 157 (1993), 517-533.
4. C. W. Curtis and I. Reiner, "M ethods of Representation Theory," V ol. 1, W iley-Interscience, New Y ork, 1981.
5. F. Digne and J. Michel, "Representations of Finite Groups of Lie Type," London M athematical Society Student Texts, V ol. 21, Cambridge U niv. Press, London/N ew Y ork, 1991.
6. V. Ennola, On the characters of the finite unitary groups, Ann. Acad. Sci. Fenn. Ser. A 323 (1963), 1-35.
7. R. Steinberg, Lectures on Chevalley groups, mimeographed notes, Y ale U niversity, 1967.
8. D. Surowski, On a class of principal series characters of $\operatorname{SU}\left(3, q^{2}\right)$, preprint, K ansas State U niversity, 1976.

[^0]: * E-mail address: R ainbolt@ math.uic.edu.

