View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Elsevier - Publisher Connector

Theoretical Computer Science 93 (1992) 43-74 43
Elsevier

Fundamental Study

Top-down tree transducers with
two-way tree walking look-ahead

Sandor Vagvolgyi
Research Group on Theory of Automata, Hungarian Academy of Sciences, Aradi tér [, H-6720
Szeged, Hungary

Communicated by M. Nivat
Received May 1989

Abstract

S. Vagvolgyi, Top-down tree transducers with two-way tree walking look-ahead, Theoretical
Computer Science 93 (1992) 43-74.

We consider top-down tree transducers with deterministic, nondeterministic and universal two-way
tree walking look-ahead and compare the transformational powers of their deterministic and
strongly deterministic versions by giving the inclusion diagram of the induced tree transformation
classes. We also study the closure properties of these transformation classes with respect to

composition.
Contents
Lo Introductiono e 44
2. Preliminaries 46
2.1, General NOtAtIONS e 46
2 TS vttt 47
2.3, Tree transducCersottt 47
2.4. Two-way tree walking automata 50
2.5. Top-down tree transducers with look-ahead S1
3. Top-down tree transducers with two-way tree walking look-ahead 53
4. An inclusion diagram for deterministic and strongly deterministic classes of top-down tree
transformations with look-ahead 65
5. Composition Tesults 71
6. ConCIUSIONot e e 73
References e 74

0304-3975/92/$05.00 © 1992—Elsevier Science Publishers B.V. All rights reserved

https://core.ac.uk/display/81924686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

44 5. Vageolgyi
1. Introduction

Top-down tree transducers were introduced by Rounds [21] and Thatcher [23] to
give an algebraic formalism for the theory of syntax-directed translation. The class of
top-down tree transformations is not closed under composition, in fact, the increasing
powers lead to an infinite hierarchy with respect to inclusion (cf. [4]).

Engelfriet [2] defined the notion of a top-down tree transducer with regular
look-ahead in order to get nice closure properties with respect to composition. It was
shown that both classes of linear and deterministic top-down tree transformations
with regular look-ahead are closed under composition. Moreover, the concept of
look-ahead turned out to be an elegant and efficient tool in tree language theory. In
[3] Engelireit showed that the class of deterministic top-down tree transformations
with regular look-ahead equals the class of partial functions that can be realized
by compositions of bottom-up or top-down tree transformations. Furthermore,
Engelfriet et al. [6] proved that the deterministic checking tree pushdown tree
transducer is equivalent to the deterministic top-down tree-to-string transducer with
regular look-ahead. Finally, Engelfriet and Vogler [7] showed that the Ol-macro tree
transducer with regular look-ahead is equivalent to the Ol-macro tree transducer.
The concept of look-ahead for storage types was studied in [5, 8, 9, 10].

A top-down tree transducer was equipped with deterministic top-down look-ahead
capability in [17]. It means that the look-ahead sets of this type of transducers are
restricted to tree languages recognizable by deterministic top-down tree automata.
The notion of determinism in the sense of [2] was also specialized and called strong
determinism in [17]. As a result, it was shown that the class of all strongly determinis-
tic top-down tree transformations with deterministic top-down look-ahead is also
closed under composition and it is the closure of the class of deterministic top-down
tree transformations under composition.

So, it turned out from [17] that both strong determinism and deterministic
top-down look-ahead are of theoretical interest. Therefore, in [12] we combined these
notions with the original concept of determinism and regular look-ahead (see [2]) and
obtained new tree transducers such as strongly deterministic top-down tree trans-
ducer with look-ahead, etc. In [13] the look-ahead tree languages for deterministic
top-down tree automata were iterated and in this way an infinite hierarchy of tree
language classes, between the class of tree languages recognized by deterministic
top-down tree automata and the class of regular tree languages, was obtained. Finally,
a characterization of irreducible sets modulo left linear term rewriting systems by
one-state deterministic top-down tree automata with prefix look-ahead was provided
in [14].

A top-down tree transducer may be equipped with other type of look-ahead
capacity as well. Two-way tree walking languages seem to be reasonable look-ahead
sets. Kamimura and Slutzki [19, 20, 227 introduced and studied three proper sub-
classes of recognizable tree languages: the class of deterministic two-way tree walking
languages, denoted by 2DTL, the class of nondeterministic two-way tree walking

Top-down tree transducers with two-way tree walking look-ahead 45

RECOG

2NTL 2UTL

2DTL DT-RECOG

Fig. 1.

languages (2NTL), and the class of universal two-way tree walking languages 2QUTL).
They have compared these tree language classes, the class of recognizable tree
languages and the class of tree languages recognizable by deterministic top-down tree
automata and presented an inclusion diagram for them (cf. Fig. 1).

We continue the research carried out in [12, 13, 14, 17]: we equip a top-down tree
transducer with deterministic, nondeterministic and universal two-way tree walking
look-ahead. The corresponding tree transformation classes are denoted by T2PTL.
FST, T*NT-FST and T2?Y":-FST, respectively, and their deterministic and strongly
deterministic subclasses are denoted by prefixing the denotations by D and D,
respectively. The goal of this work is to study systematically the deterministic and
strongly deterministic top-down tree transducers with some type of two-way tree
walking look-ahead and in this way to establish new connections between funda-
mental concepts and tools in tree language theory.

In Section 2, we provide some notations and notions of the theory of tree languages
which will be used in the paper.

In Section 3, we describe the recognizing capability of two-way tree walking
automata from a new point of view by showing that for any modifier
Ye{2DTT, 2NTT, 2UTT}, RECOG =dom(DT-FST - Id(Y)), where RECOG denotes
the class of all recognizable tree languages and DT-FST stands for the class of tree
transformations induced by deterministic top-down tree transducers. This result
intuitively means that the computation of a nondeterministic top-down tree automa-
ton A can be simulated in two steps. In the first step, a deterministic top-down tree
transducer computes in a paralle] way all computations of A on the input tree, and in

46 S. Vaguvolgyi

the second step, a two-way tree walking automaton looks for an accepting computa-
tion of A. Using this result we characterize the transformational power of top-down
tree transducers with two-way tree walking look-ahead. We obtain the following
decomposition results: for any modifiers Xe{ ,D} and Ye{2DTL, 2NTL,2UTL},
XTRFST=DT-FST> XT*-FST and FTA oDT-FST=DT-FST<D.TY-FST, where
(D)TR-FST denotes the class of (deterministic) top-down tree transformations with
regular look-ahead, FTA stands for the class of tree transformations induced by
top-down finite tree automata and FTA - DT-FST is the class of transformational
systems of Rounds (cf. [21]).

In Section 4, we present the inclusion diagram for the deterministic and strongly
deterministic top-down tree transformation classes with some type of look-ahead.

Section 5 is concerned with the closure properties of top-down tree transductions
with some type of two-way tree walking look-ahead under composition. We
shall prove the following results. For each modifier Ye{2DTL,2NTL, 2UTL},
D,T*-FST <(D,T*-FST)?*=(D,TY-FST)>*=FTA - DT-FST, DTY-FST < (DT!-FST)? =
(DTY-FST)* =DTR-FST and, for every k> 1, (TY-FST)*<(TY-FST)¢*1,

2. Preliminaries

We recall and invent some notations, basic definitions and terminology which will
be used in the paper. Nevertheless, the reader is assumed to be familiar with the basic
concepts of tree language theory (see, e.g. [1, 2, 18, 21]).

2.1. General notations

We identify the singleton set {a} with its unique element a. The set of nonnegative
integers is denoted by N. For every k, neN with k <n, [k, n] denotes the set {k, ..., n}.
For a set 4, | A] denotes the cardinality of A. We write w for | N|. We need a countably
infinite set X = {x;, x,, ... } of variable symbols, that will be kept fixed throughout the
paper. The set of the first m elements x,, ..., x,, of X is denoted by X,,.

A< B means that the set 4 is a subset of the set B. Proper inclusion is denoted by .
A & B abbreviates the formula —1 (4 = B).

Given any finite number of sets 4, ..., 4,, the Cartesian product 4; x --- X A, is
the set of ordered n-tuples {(a,, ..., a,)| a,€A;, ie[1, n]}.

A binary relation from A4 to B is any subset R of 4 x B. Given a binary relation
R between 4 and B, the set {xeA|(x, y)eR for some ye B} is called the domain of
R and denoted by dom(R). The composition of two relations R, and R;, denoted by
R, ° R,, is the set of pairs {(x, z)|(x, y)eR; and (y, z)eR, for some y}. R" is called the
n-fold composition of R with itself (R is the identity relation). The reflexive, transitive
closure of R is denoted by R*. All these notions can easily be transferred to classes of
relations for which we use the same notations.

Top-down tree transducers with two-way tree walking look-ahead 47

By an inclusion diagram we mean the Hasse diagram of a poset, of which the order
is the inclusion.

2.2. Trees

A ranked alphabet Z is a finite set in which each symbol has a unique rank in N. The
subset X, of X is the set of symbols of rank m (meN). Note that, for i#j, Z; and Z; are
disjoint. The maximal rank of X is the largest integer » such that X, is nonempty.

Given a ranked alphabet X and some set S, the set of all terms or trees over %
indexed by S, denoted by T:(S), is defined inductively as follows.

(@) S=Ts(S).

(b) If IeN, geX; and ¢, ..., t,Ts(S), then o(t,,...,1,)eT:(S).

Terms of the form o() are identified with ¢. If Y =9, then T3(Y) is written as 7.
Ts(X,,) is written as TT ,,,; thus, Ty o=Ty. It is well known that T is in an effective

one-to-one corre ‘p ndence with the set of all finite, rooted, ordered and directed trees,
whose nodes are la beled with the elements of X, in such a way that a node with
) descendams is 'ubvled by a symbol from Z;. Nodes labeled by elements of X are

referred to as leaves. A node is called internal if it is neither leaf nor root. The height
hg(t) and the set of subtrees sub(t) of a tree te Ty are defined as follows.

(a) If teX,uS, then hg(r)=0 and sub(t)={t}.

(b) If t=0(ty,..., t;) {IeN), then hg(z)— 1 +max(hg(t;)|ie[1,1]) and sub(t)=
(J(sub(t)) [ie[1, ITyu{t}.

Let meN, teTy ,, and ty,..., t,eTs. We denote by t[t,,...,t,] the tree obtained
from ¢ by substituting t; for each occurrence of x; in t for ie[1, m]. We obviously have
tlty,...,tm]eTs.

Now let 2 and 4 be ranked alphabets. A tree language L is a subset of T5. A tree

transformation z is a subset of Ty x T4, i.e. a binary relation from T to T,. For each
Lc Ty, 1d(L) is the ldCutlca} tree transformation {{¢, t){teL} on L. For a class & of
tree languages, Id(.¥)={Id(L)| Le ¥ }.

2.3. Tree transducers

We adopt the definition of a top-down finite state tree transducer (t-fst) from [1].
A t-fst is a system 7 =(Z, 4, Q, Q;,, R)>, where

(a) 2 and 4 are ranked alphabets;

(b) Q, the state set of 7, is a ranked alphabet consisting of 1-ary function symbols
with gn(ZuduX)=0;

(c) Qin is a subset of Q, the set of initial states;

(d R is a finite set of rules of the form g{o(xy, ..., x,,))—t, where meN, ceZ,,, g0

and 1€ T,(Q(X). (Here and in what follows, for a unary ranked alphabet Q and a set
L of trees f)(f‘i denotec the cat faltYl ac) and t=T \

of trees, Q(L) denotes the set {g(t}|geQ and teL}.
J can be used to induce a tree transformation from Ty to T, in the way described as
follows. Define the relation = on the set T,(Q(T%)) so that for any t,re T,(Q(Ts)),

48 S. Vaguélgyi

t =7r il and only if the next two conditions hold:
r arlle of the form qglo(xyg,...,x, Vo>t in R:

a2 LAY iy It ?

o

)
(b) r can be obtained from ¢ by substltutmg a subtree g(o(ty,...,t,)) of t by
t[t1,...,t,]. It should be clear that the relation = 5 can be interpreted as a method of
rewriting trees into trees.

The tree transformation induced by the t-fst 7 is defined as

(T)={(t,r)|teTs, reT, and q(t) =7%r for some qeQ;,}.

Ifg(a(xy,...,x,))—tis arule of 7, then it is called a (g, o)-rule, and g(a(x,, ..., X))
is called the left-hand side of this rule. We write ns(g, 6) to denote the number of
(g, o)-rules of 7. If there is no danger of confusion, then we simply write n(g, o) rather
than ns{(q, o).

For any qe@Q, we denote by 7 (q) the tree transducer 7 (q)=<Z, 4, Q,{q}, R).

Now we introduce three special types of t-fst’s. Let, to this end,
T ={2, A, Q, Qin, R> be a t-fst. We say that 7 is

(a) deterministic t-fst (dt-fst) if Q;, is a singleton set and there are no two different
wiilag 1 D th thn camnn 1afe Lhowd cida
TUICS iit R wWiln LllC same iCit-naiia siac.

(b) a top-down finite tree automaton (fta) if ¥ =4 and each rule in R is of the form
alolx......x.Noagla, (x:).....a.(x.) where g. g...... a.€0 (if 7 1is an fta. then the
by &Y LS b mysJ A\M LAYl »Mm\vvm/ VAV Myl * MmO\ A ORAAL ARy VARWAL VAW

tree transformation () is a partial identity on Ty);

(c) a deterministic top-down finite tree automaton (dfta) if it is deterministic and it
is an fta.

A standard construction shows that above (from (a) to (c)) we may assume without
loss of generality that 7 has only one initial state, i.e. Q;, = {go } holds. This is used in
the paper without any reference. Moreover, we write g, rather than {gq,}.

The tree language recognized by an fta 7 =(2, X, Q, qo, R) is

(.
il

‘\‘)

)=1{te
7 L

Moreover, the tree language recognized by J with state geQ as initial state is
L(T(q))={teTs|q(t) =31t}

Now let x be any modifier taken from {t-fst, dt-fst, fta, dfta}. A relation is called an
x transformation if it can be induced by some tree transducer of type x. The class of all
x transformations will be denoted by X; hence, we can speak about T-FST, DT-FST,
FTA and DFTA
RECOG: dom(DFTA). In
ass

T-
most works related to this topic, RECOG is called he ¢ of all recognizable (or

ragnlar) traa nnn uagses. w Ir-\avnnn thara ara na widagnr
ICgULdr) e figuages, wilicds uicic are no wiGespr

RECOG to the best of our knowledge.

A bottom-up finite tree automaton (bfta, cf. [1]) is a construct Z#=<{Z, Q, O, RD>
where

(a) X is the input, output ranked alphabet;

Top-down tree transducers with two-way tree walking look-ahead 49

(b) Q, the state set of 4, is a ranked alphabet consisting of 1-ary function symbols

with 0N (ZuX)=0;

(c) QO is a subset of Q, the set of final states;

(d) R is a finite set of rules of the form a(q,(xy),...,q;(x;))—q(c(x4, ..., x;)), where
oeX), leN, qy,...,q;,9€Q.

The rules in R turn into tree rewriting rules, as usual, by substituting trees in T’y for
the x’s. Define the relation =3 on the set T=(Q(T%)) so that for any t,re Tx(Q(T%)),
t =4r if and only if the next two conditions hold.

(a) There is a rule of the form a{q(x,), ..., q:(x;))—¢q(6{xy,...,x;)) in R.

(b) r can be obtained from ¢ by substituting a subtree a(q,(t,),...,q:(t;)) of t by
q(o(ty,....t;)). The tree language recognized by 4 is

L(#)={teTs|t=7%q(t) for some qeQ;}.
Moreover, the tree language recognized by # with state ge(Q, is

L(#q))={teTs|t=%q(1)}.

Thus,

L(#)=\J(L(2(q))| g€ Q).

4 is deterministic (dbfta) if there are no two different rules in R with the same
left-hand side. In this case, for any p,qeQ, p#q if and only if L(Z(p))~L(%(q))=0.

4 is total (tbfta) if, for each oeZ, (/>0) and q,,...,q,€0, there is at least one rule
with left-hand side a(g,(x,), ..., q:(x;)).

It should be clear what a tdbfta is.

It is well known from the literature [1, 18] that the recognizing capabilities of fta’s
dbfta’s tbfta’s and tdbfta’s are the same. On the other hand, the recognition power of
dfta’s is more limited, i.e. there are recognizable tree languages that cannot be
recognized by any dfta.

Proposition 2.1. The class of tree languages recognized by tdbfta’s is the same as
RECOG; moreover, DT-RECOG «RECOG (see [1, 18]).

We shall need the following observation.

Proposition 2.2. For any bfta #=(Z,Q,0;,R), one can construct an fia
T =<2, 2,0,0, R') such that for each state qeQ, L{(#(q))=L(T (q)).

Proof. R’ is constructed as follows. For any geZX,, [eN and ¢, q,, ...,q,€0Q, the rule

q(a(x1>""xl)) - a(ql(xl)""aql(xl))

50 S. Vagvolgyi
is in R’ if and only if the rule

o(gi(x1), ..., qulx)) = qlo(xy,...,x;)

is in R.
In th¢ proofs of Theorems 2.7 and 2.8 in [18, ch. IV] it was shown that, for each
state geQ, L(#(q))=L(7 (g)). U

2.4. Two-way tree walking automata

A finite two-way tree walking automaton (2-fta, cf. [22]) 7 is a construct
0, Z, 4, q9, F), where

(@) Q is the finite, nonempty set of states;

(b) X is the input ranked alphabet;

(c) goeQ is the initial state;

(d) F<=Q is the set of final states;

(e) 0 is a mapping from @ x X to the finite subsets of Q x [0, m] with m being the
maximal rank of X.

& is deterministic (2-dfta) if 5(q,

An instantaneous description (ID)

e

(n n,t), where nr:() and n1s a nod

s 7 nelec g ali(l ode O

tis(qo, r, t) with r being the root of t. The ID
and n=a.

We define a relation . between IDs of &/ on a tree te Ty as follows. For n#aq,
(g,n, Yo (p,m, t)if (p,i)ed(q, o), where g is the label of n and either of the following
holds.

(1} i=0, n is the root of t and m=ua,

(2) i=0, n is not the root of t and m is the father of n,

(3) i>0, m is the ith son of n.

Note if n=«, then there is no ID J with [+ J.

PERY
v)nu

A sequence of IDs P=<I;|0<i<k<w) with I, being the initial ID of &/ on t is
called 2 computation nath of o ontifI. =, I.. . foreveryv icN such that i+ 1 <k Pis
ALV UUluyutaL vl lJ VLI UL X UIL L 1L “l 1 {M ‘l+ 1 11 UV\JLJ POLN SJUWMLE L1l ¢t T 4 TN I 0

accepting if keN and I, _, is an accepting ID; otherwise, it is nonaccepting. A compu-
tation path is maximal if either it is infinite or there is no ID [for its last ID, I, ., , such
that I,_, +_,I. Obviously, every computation path can be extended to a maximal
computation path.

We now introduce two different ways to define the recognition by a 2-fta /. The
first one is the ordinary notion of acceptance by a nondeterministic device. The
nondeterministic two-way tree walking language recognized by < is

The class of all nondeterministic two-way tree walking languages is denoted by 2NTL.

Top-down tree transducers with two-way tree walking look-ahead 51

In the second type of recognition, we require that every computation path must be
accepting. The universal two-way tree walking language recognized by &/ is

Ly(o/)={teT;| every computation path of < on t is accepting}.

The class of all universal two-way tree walking languages is denoted by 2UTL.

If o is a 2-dfta, then Ly(.«/)= Lx{(«), which is called the deterministic two-way tree
walking language recognized by ./ and is denoted simply by L(./).

2DTL stands for the class of deterministic two-way tree walking languages.

We recall the inclusion diagram of Fig. 1 from [22].

2.5. Top-down tree transducers with look-ahead

First we recall the definition of the regular look-ahead from [2]. A t-fst with regular
look-ahead (t*-fst) is a system 7 =<{Z, 4, Q, Qi,, R), where X, 4, Q and Q,, are the
same as for a t-fst, while R is now a finite set of rules of the form {g(a(x,, ..., Xn))—1;
Ly,...,L,> such that g(o(xy, ..., x,))—t is an ordinary t-fst rule and L, is a recogniz-
able subset of T5, for every ie[1, m].

The relation =5 on the set T,(Q(T;)) is now defined in the following way: for
t,reT (Q(Ty)), t = 7r if and only if

(a) there is a rule {g(o(xy,...,X,))—=t Ly,...,L,> in R, and

(b) r can be obtained from t by substituting a subtree g(o(ty,...,t,)) of t by
t[ty,...,t,] such that t,e L, for each ie[1, m].

The tree transformation induced by 7 is

(T)={(t,r)|teTs, re T, and q(t) =% r for some gqeQ;,}.

We define the following versions of a t'-fst. We say that a t-fst
T =<2,4,0,0i,,R) is

(a) strongly deterministic (dgt'-fst) if @, is a singleton set and there are no two
different rules in R with the same left-hand side;

(b) deterministic (dt-fst) if Q;, is a singleton set and L;~L; holds for some ie[1, m]
whenever {q(o(xy,...,x,))—=t; Li,...,L,> and {q(c(x,,...,x,))—=t; Ly,..., L, > are
different rules in R;

(¢) a t-fst with deterministic top-down look-ahead (t¥"-fst) if L;e DT-RECOG for
each rule {q(a(xy,...,x,))—t; Ly,...,L,> and ie[1, m];

(d) a t-fst with deterministic two-way tree walking look-ahead (t2%"-fst) if L;e 2DTL
for each rule {q{o(xy,...,x,))—t; L,...,L,»> and ie[1, m].

The meaning of the abbreviations t2"-fst and t2*-fst should now be clear.

For any modifiers xe{deterministic, strongly deterministic} and ye{deterministic
top-down, deterministic two-way tree walking, nondeterministic two-way tree walk-
ing, universal two-way tree walking}, an xt-fst with y look-ahead is defined and
denoted in the natural way. For example, a strongly deterministic t-fst with determin-
istic two-way tree walking look-ahead is denoted by d t?9!-fst.

52 S. Vagvolgyi

As in the definition of a top-down tree transducer, a standard construction shows
that, for a t"fst & =<2, 4, @, Qi,, R) of any type defined above, we may assume

without loss of generality that I has only one initial state, i.e. Q;, ={qo } holds. This is

write g, rather than {g,}.

Let z be any type of tree transducers that is defined above. The class of all tree
transformations that can be induced by tree transducers of type z will be denoted by
the capital-letter correspondent Z. Thus, we have the classes TR-FST, DTR-FST,
D,TR-FST, T°™.FST, DTP™.FST, D,T°™-FST, T?°"L.FST, DT?PTL.FST, D, T2PTL.
FST, T2NTLFST, DTMLFST, D,T?NTL.FST, T?VT.FST, DT?VTL.FST and
D,T?VTL.FST as classes of tree transformations.

We recall the inclusion diagram of Fig. 2 from [12].

Note that FTA~DT-FST is the class of Rounds’ transformational systems (cf.

X7

used hereafter without anvy reference. Moreover. w

ed hereafter wathout IS BRIV A7 BLVSREBL SR 03 SV 4 o7 Y

-
[¢]
)

<

esult, but the proof was left to the

9]
=
oQ
[¢)]
4N
=
(]
&
[
=]
o
<
Q
1, 09
—
@
3
=
@
-
o
—
(D
U‘
=
::
=]
- E
=3

3 S, A,Q,496,R> be a dt'-fst. Then there are tdbfta
d=<2 S Sf, R> and dt'fst '=(2, 4,0, g0, R") such that 1(7)=1(J"') and that,
for each look-ahead set L that appears in some rule of 7, there is a state seS with

L=L(s(5)).

DT -FST

FTAoDT-FST / \

R
D T -FST \ /

Top-down tree transducers with two-way tree walking look-ahead 53

Proof. We only outline the construction of ./ and 9. Let L4, ..., L, be all the tree
languages that appear as look-ahead sets in some rule of 7. Assume that, for
each je[l,n], the tdbfta «7;=(S,%,S!, R;) recognizes L;. Consider the tdbfta

o =(2, 8, S¢, R), where

(i) S={<{5y,-ssuy|5,€SM, ... 5,€S"},

(ii) S¢=9,

(i) R is defined as follows. For every ceZX;, leN and s,,S14,...,5,ES?,
cees Sps Stny -0 Sn€S™, the rule

J(<Sllv-"asln>(x1)a---a <Slla --'asln>(xl))_><sl7 ...,S,,>(U'(X1, ""xl))
is in R if and only if the rule
o(s1j(x1), ..., 8550x)))=8;(0(xy, ..., X))

is in R; for each je[l,n].
The rules of the dt'-fst 7'=(Z, 4, Q, g5, R") are defined in the following manner.
The rule

(o (X1, ..y %)=t LA ({S115 s S1a0))s o s LESA(KSp1y o5 510 0))D
is in R', where sy, ...,5:€8", ..., 51,,...,5,€S™ if and only if the rule
{qlo(xXy,...,x))=t; Ly, Ly>
is in R with j,...,j,€[1, n] and
51, €87, .., 51, €887,

Now it can be easily seen that the tdbfta o/ and the dt'-fst 7 satisfy the conditions
of the proposition. [

From Propositions 2.2 and 2.3 we immediately obtain the following result.

Proposition 24. Let T =(X,A,0,q0,R> be a dit"-fst. Then there are fta
o =(2,2,8, 50, R) and dt*-fst T'={Z, A, Q, qo, R'> with 1(T)=1(T"') such that, for
each look-ahead set L that appears in some rule of J ', there is a state s€S with
L=L((s)); moreover, for any different states s,s' €S, L((s))NL(Z(s'))=0.

3. Top-down tree transducers with two-way tree walking look-ahead

In this section, we show how to simulate a finite top-down tree automaton by the
composition of a deterministic top-down tree transducer and a deterministic two-way
tree walking automaton. Using this result we decompose a (deterministic) top-down
tree transformation with regular look-ahead into a deterministic top-down tree

54 S. Vaguvélgyi

transformation and a (deterministic) top-down tree transformation with deterministic
two-way tree walking look-ahead. Moreover, we show that a transformational system
of Rounds appears as a composition of a deterministic top-down tree transformation
and a strongly deterministic top-down tree transformation with deterministic two-
way tree walking look-ahead.

Convention 3.1. We assume that, for any fta 7 =(Z, X, Q, ¢, R), there is given an
order on the set R and that whenever we list rewriting rules in R having some common
property we do that with respect to this order.

Definition 3.2. Let 7 =(Z, 2, 0, qo, R) be an fta. Consider the ranked alphabet
I'={x}u{c?@|ceZ,, d=1"n(g, o) for some qeQ}.

The rank of * is 0 and the rank of 6@ is d.

The parallel computation tree PC(.7, g, t)e T of 7 on t starting from the state q is
defined in the following way. Assume that t=06(ty,...,t;) and let k=n(q,).

() If k=0, then PC(J, g, t)==x.

(ii) If k>0 and the (g, o)-rules are

q(o-(xla "'axl))—)o-(qll(xl)a "'aqll(xl))a

glo(xy, ..., x))) =0 (qr (x1), ..., Gul(x1)),

then PC(7, ¢, t)=c(PC(T, q11, t1),...,PC(T, qui, t1), ..., PC(T, g1, t1), -,
PC(7, qu, 1)), where d=k- 1.

Note that, according to Convention 3.1, the definition of PC(7 g, t) is correct. The
parailel computation tree PC(.7, 1) of 7 on t is defined to be PC(.7, gy, t). Intuitively,
PC(7, g, t) contains all information about all computations of 7 on ¢ starting from
the state g. Now we present two examples of parallel computation trees because the
definition seems to be involved.

Example 3.3. Consider the fta 7 =(Z, X, Q, even, R), where
iy 2=2,02,, Zy={a} and ¥, ={0o},
(i) Q={even, odd},
(iii) R consists of the following rules, listed with respect to the order on R.

even(o{x, x,))—aleven(x,),even(x,)),
even(o(xy, x;))—o(odd(x,), odd(x,)),
odd(o(x,, x,))—o{even(x;), odd(x,)),
odd(a(x,, x;))—o(odd(x,), even(x,)),
odd(a)—a.

Top-down tree transducers with two-way tree walking look-ahead 55

It should be clear that L(.9") consists of all trees that contain an even number of a’s.
The parallel computation tree of 7 on a(a, @) is PC(, a(a, a)) =" (*, %, a, a) and the
parallel computation tree of 7 on a(a, o(a, a}) is

PC(J, 0(a, o(a, a)) =0 (x,6¥ (x, *,a,a), a, 6P (%, a, a, *)).

Definition 3.4. We introduce the special deterministic top-down tree transformation
ind; for each ranked alphabet X (cf. [19]). It changes a label 6e X of a node of an input
tree to (o, i) (i.e. attaches the subscript i to o), where ie[0, m] and m is the maximal
rank of X, if that node is the ith son (from left to right) of its father, in particular, i=0 if
the node is the root of the tree. The tree ind(t) is called the indexed copy of t. We shall
omit the subscript X from indg(¢) and simply write ind(¢).

It should be clear that ind(¢) is induced by the dt-fst 7 =<ZX, 4, Q,0, R), where

(1) 4={<o,i>|0oeZ, ie[0,m]} with m being the maximal rank of Z;

(2) @=10,m];

(3) R consists of the rules i(a(xy,...,x))=><{a, i) (1{x;),...,I(x;)), where ieQ and
oe;.

The indexed copy ind(PC(7, g, 1)) of the parallel computation tree PC(7, g, 1) is
called indexed parallel computation tree, is denoted by IPC(7,4q,t), and can be
computed by a deterministic top-down tree transducer; moreover, ind(PC(7, t)) is
denoted by IPC(7,).

Proposition 3.5. Let 7 =<(Z, %, Q, 4o, R) be an arbitrary fta. Then there is a di-fst T,
such that ©(7)={(t, IPC(Z,1))|teT}.

Proof. Set m=max(l'n(q,0)|qeQ, oeX,, leN). The dt-fst 7, =<(Z, 4,0, (g, 0),
R,) is constructed as follows.
(1) 4 is determined by (a) and (b).
(a) (6, ided, whenever ceX,, [eN, ie[0, m] and d=1"n(q, o) for some gqeQ.
(b) {x,i>eA, whenever ie[0, m].
Note that the maximal rank of 4 is m.
(2) QV={<q.i>|qeQ, ie[1,m]}U{<go, 0D}
(3) R, is defined as follows. For every geQ, 6eX,, [eN, ie[0, m] and for k=n(q,),
d=k-l,
(i) if k=0, then the rule

<q’ 1> (U(-xl’ ""xl))—><*’ l>

is in Ry, and
(1) if k>0 and the (g, o)-rules are

q(O’(X1 LR xl))_)o-(q1 1 (xl)s ERRE CIII(XI))a

glo(xy,....,x))=0(qey (X1), -, Gua(x1)),

56 S. Vaguvolgyi
then the rule
<q’ i>(O'(X1, -'-sxl))_)<o.(d), i>(<‘111, 1> (xl)a CERS

G D) o (s (K= 1) 1+ 1 (1), s (Gias K 1 (x1))

isin R, .
It is obvious that ©(71)={(t, IPC(J,t))|teTs}. O

In the proof of the next theorem we show how to simulate the computation of
a top-down finite tree automaton by the composition of a deterministic top-down tree
transducer and the identical tree transformation on a two-way tree walking language.

Theorem 3.6. For each modifier Xe{2DTT, 2NTT, 2UTT}, RECOG =dom(DT-
FST - Id(X)).

Proof. First we prove that dom(DT-FST-Id(X))=RECOG. By the inclusion
X <FTA (see Fig. 1), we obtain that

dom(DT-FST - Id(X))=dom(DT-FST » FTA)=dom(T-FST)? =RECOG

(see [1,2]).

Now we prove that RECOG cdom(DT-FST1Id(X)) holds as well. Let 7,7,
and m be the same as in the proof of Proposition 3.5. Thus, we have
1(T1)={(t,IPC(7,1))|teTs}. We define a 2-dfta 7, such that L(7)=
dom(t(7)° Id(L(73))).

Let te Ty be an arbitrary tree. Intuitively, a subtree p of IPC(.7, t), can be obtained
by indexing some subtree p of PC(7, t), where p=PC(7, q, r) for some subtree r of
t and state ge Q. 7, begins traversing p in state start and “falls off ” the subtree p (i.c.
moves up from its root) in state {yes, j> (where j>0 and the root of p is the jth son of
its father or j=0and p=1PC(7, t)) if and only if p contains a successful computation
q(r) =% r. Otherwise, 7, “falls off ” p in state (no, j).

The formal construction of 7, =<4, Q?, 4, start, {{yes, 0>} > is as follows:

(1) The ranked alphabet A and the nonnegative integer m are the same as in the
proof of Proposition 3.5.

(2) QP ={start}u{<yes, iy, (no,iy|ie[0, m]}.

(3) The mapping ¢ is defined by the following conditions:

(i) é(start, {a',j>)=(start, 1) for any (o), j>e4, such that d>0.
(7, begins traversing the subtree at the current node by visiting its first son.)

(i) S(start, <a®,j>)=({yes, j>, 0) for any (¢, j>ed,.
(7, reaches a leaf that is different from <{x, i), where ie[0, m] and, thus, finds a piece
of some successful computation of 7. Then, in order to complete it, 7, goes back to
the father of the leaf. In particular, 7, “falls off” the input tree IPC(7, 1) in state

{yes, 0> if j=0.)

Top-down tree transducers with two-way tree walking look-ahead 57

(i) d(start, (*,j>)=(<{no,j>,0) for any {*,jyed,.
(, arrives at a leaf which indicates the dead end of some derivation of 4. Then 7,
goes back to the father of this leaf indicating the failure of 7. In particular, &, “falls
off ” the input tree IPC(7, t) in state {(no, 0)> if j=0.)

(iv) 8(<yes, i), (a9, j>)=(start, i+ 1) whenever {(¢¥),j>eA,, oceZ,, d=I1"k, keN
and (u—1)-I<i<u-I for some ue[l, k].
(7, has found a piece of successful derivation of 7 in the subtree at the ith son of the
current node. Now, to complete it, 7, goes to the i+ 1th son.)

(v) 8({yes,id, (6, j>)=({yes, >, 0) whenever {(a'¥,j>ed,, ceX,, d=1"k, keN
and i=u-l for some ue[l, k].
(7 has found a piece of successful computation of J in the subtree at the current
node. Now, to complete it, 7, goes back to the father of the current node.)

(vi) 8(<{no,i>, <69, j>)=(start,u-l+1), where {(¢“),j>eA,, d>0, 6eZ,, d=k-I,
keN and ie[(u—1)-1+1,u-1] for some 1 <u<k.
(The subtree at the current node was obtained by indexing some subtree p of
PC(7, t), which is equal to PC(7, g, r} for some subtree » of ¢ and state ge Q. 7, has
found no piece of successful derivation of 4 in the subtree at the ith son. This means
that the application of the uth (g, o)-rule at the root of r results in .7 failing on r. Now
T, checks if the application of the next (g, o)-rule (with respect to the order on R) at
the root of r leads to a derivation g(r) =% r. This is being checked in the subtrees at the
u-l+1th,...,(u+1)-Ith sons of the current node.)

(vii) 6(<no, i), {69, j>)=({no,j>,0), where (6", j>eA,,d>0,0eX,,d=k I, keN
and ie[(k—1)-I+1, k-1].
(7, has traversed the subtree at the current node and realized that it contains only
failing computations of 7. If j >0, then 7, goes back to the father of the current node
in state {no, j>. If j=0, then the current node is the root of the input tree IPC(.7, ¢)
and 7, “falls oftf” IPC(Z, t) in state (no, 0).)

(viii) 6(<yes, >, (*,j>)=0 for any {yes, i>eQ® and {*,j >ed,.

(ix) 6(<{no, iy, (*,j>)=0 for every <{no, i>eQ'® and {*,j>eA,.

It is sufficient to prove that dom(t(7))=dom(t(7)°Id(L(«/)). To this end we
prove that, for all geQ and te Ty, the equivalence

(%) q(t) =71t if and only if (start, n, IPC(7, g, t)) =% ({yes, 0, o, IPC(7, g, 1))

holds with n being the root of IPC(7, g, t).

We proceed by induction on the height of r.

If hg(t)=0, then (*) obviously holds.

Assume that t=a(ty,...,t;) with 0eX, and />0 and that (x) has been proved for all
trees from T of height less than hg(t). In the rest of the proof we denote by n; the ith
son of the node n.

First we show that the left-hand side of (x) implies its right-hand side. For this
assume that we have

qlo(ty,....t)) =7 0(q (ty),...,q(t)) =>Fo(ty, ..., 1)

58 S. Vaguolgyi

Then by the induction hypothesis, for each ie[1, 1],
(Start, ﬁb IPC(y-’ qi, ti)) |_;"2 (<yeS, O>s o, IPC(F’ qi, tl))

with 7; being the root of IPC(7, g;, t;).
Assume that

qo(x, .., x))=>0(q11(x1)s .5 q1i(x))s

q(o(xi, s X)) =0 (G (X1)s -5 Gualxy))
are all the (g, o)-rules in R. Then for d=k -1,
PC(T,q,6(t(,---,.t)) =6 (PC(T, g11,t1), -, PC(T, q11, t1)s -,
PC(Z, qi1st1), ..., PC(T, qui, 1))

Without loss of generality we may assume that ¢,=¢q;,...,qi=qy for some
ie[1, k]; moreover, that, for je[1, i—1], it does not hold that a(gj; (), ..., qu(t:)) =%
a(ty,....t), e qla(xy,....x)))=>a(qgi1 (x1), ..., qulx;)) is the least rule, with respect to
the order on R, of which the application at the root of t results in a successful
computation of 7 on t.

Now we conclude with the accepting computation path of 7, on IPC(7, g, t). For
some integers j,e[1,17, joe[l+ 1,211, ..., ji-1e[(—=2)1+1,(i—1)-1],

(start, n, IPC(7, q, 1)) F 5 (start, n; , IPC(7, g, 1))
F5,(<no, ji >, n, IPC(T, q, 1))
}—j-z (start, n;,, IPC(7, g, 1))
F%. (Kno,j;>,n, IPC(7, q, t))
F% (start, n;,_,, IPC(7, g, 1))
l—;2(<n0,ji~1>, n, IPC(7, g, t))
F% (start, ng_ 1)1+, IPC(Z, g, 1))
% (<yes, (i— 1)1+ 13,0, IPC(T, 4, 1))
F% (start,ng_1y.142, IPC(7, g, 1))
% (Cyes, (i— 1)1+ 2), IPC(T, 4, 1))
F%. (start, n;.;, IPC(7, g, 1))
% (Kyes,i- 1>, n, IPC(T, g, 1))

F 7, (yes, 0, a, IPC(T, g, 1)).

Top-down tree transducers with two-way tree walking look-ahead 59

We now prove that the right-hand side of (x) implies its left-hand side. To this end,
consider the above accepting computation path of 7,. We denote the ith (g, o) rule of

g with respect to the order on R by g(a(xy,...,x;))—=a(q,(xy), ..., q;(x;)). According
ta the induction hunathecic the derivatinng
AV RS iv) lllUUUllUll II)’PULII\’DIO, LIV ULl IYaliviln

hold. Thus, we obtain that

q(a(tla --~,tl)):;' 5(‘]101), "'7ql(tl)):; U(tla ""tl)~ D

Later we shall need the 2-dfta 5= {4, Q, é, start, {{no, 0)} > that we define from
T, in the proof of Theorem 3.6 by changing the set of final states into {<no, 0> }. It
should be clear that L(7,)nL(T3)=0.

In the next theorem we decompose any top-down tree transduction with regular
look-ahead into a deterministic top-down tree transformation and a top-down tree
transformation with two-way tree walking look-ahead.

Theorem 3.7. For any values of the modifiers Xe{ ,D,, D} and Ye{2DTL, 2NTL,
2UTL}, XTX-FST<DT-FST° XT*-FST.

Proof. First we show that TR-FST< DT-FST o T?PTL.FST. Let o =<2, I', 0, g0, R)
be a t'-fst. Let L,,..., L, be all the tree languages that appear as look-ahead sets
in some rule of /. Let the tree language L; be recognized by the fia
T,=({%, 2, 89, s;, R, for each ic[1, n]. Now we define a dt-fst 7, and a t2%"-fst .o/,

ciich that —f o) Yo Tar each con 1 oof the Grs can o
such that t(&/)=1(«/;)°1(«/;). For each subtree p of the input tree with

p=0o(p, and />0, &/, computes the indexed parallel computation trees
IPC(7,, py \ IPC(7,, p:)), ..., IPC(7T; ... IPC(Z,, p;) and 1mnc them to the

1’[’1/" MRSk N (3-1 M- S b i L o SELANS g RAAT RESRRSS P was
root of p. Then .«/,, using its deterministic two-way tree walking look-ahead capabil-
ity on the indexed parallel computation trees, is able to count the look-ahead of .«/.

Hereafter for every ic[1,n], seS“ and oeZX, we write n;(s, 6) to denote the number

of (s, o)-rules rather than ny (s, o). Set
m=max(l ns, 6)|ie[1,n], seS®, geX,, IeN).

The dt-fst o7, =<2, Q, 0V, q, R, is defined as follows:
(1) The ranked alphabet 2 is the least set satisfying the following three conditions:

60 S. Vaguvolgyi

(i) for every oeZ,, leN and for d=(n+1)-1, 6 PeQy;
(i) for every oeZX,, leN, je[0, m], se S and for d=1-n(s, o), if n;(s, 6)>0, then
<O'(d),j>€Qd;
(iii) for each je[0, m], the symbol {x,j>€Q,.
(2) The state set for o7, is

QM ={<s,iy|seS™, ve[l, n], ie[0,m]}u{q, }.

(3) The rules set R, contains the following rules:
(a) For each e}, IeN and for d=(n+1)-,

ql(a(xls ""xl)) —)a(d)(ql(xl)a""ql(xl)’ <Sl70>(x1)7 e
<Sn7o>(x1)7 rers <SI’O>(XI)’ ""<Sn’0> (xl))

is arule in R;.
(If />0, then the application of this rule at the root of a subtree a(py,...,p:)
results in the computation of the indexed parallel computation trees
IPC(< ,py),....IPC(A, py), ..., IPC(A 1, py), ..., IPC(Z,, p;). These trees are being
substituted in the (I+ I)th,...,(I+n)th,....,/+({—1)-n+1th,..., I (n+ 1)th arguments
of ¢, respectively. If /=0, then we simply have the rule g,(c)—0.)
(b) For every seS®, ie[0, n], ceX,, IeN, je[0,m] and for k=n;(s, 0), d=k -1,
(1) if k=0, then {s,j>(o(xy,-..,x))><{*,jYER;
(it) if k>0 and the (s, o)-rules in R; are

s(a(xXy, .. X)) = o5y (xe), oo s10(x0)),

s(a(xy, .., x)) = o5k (x1)), -y Sia(x0))s

then the rule
<S,j>(0'(x1, "'sxl))_> <O'(d),j>(<S11, 1>(X1), "'9<Sllvl>(xl)’)

i (k=1 I+ 15 0r), oo, S ko 1 (%))

isin R,.

Now for ie[l,n], construct the 2-dfta 7 to Z; in the same way as 7, was
constructed to J in the proof of Theorem 3.6. The tree languages L(7), ie[1, n], will
appear as look-ahead sets of .7 ,, in fact, .2/, counts the regular look-ahead of .« on
the indexed parallel computation trees joined to the nodes of the input tree for .«/.

The rewriting rules for the t>%'-fst &/, =(Q, I', Q, g0, R,) are defined in the following
manner.

(i) For every qeQ and €2, q(6)—0c is in R, if and only if g(6)—0c is in R;.

Top-down tree transducers with two-way tree walking look-ahead 61

(ii) For every qeQ, oeZ, with [>0 and for d=(n+1)-1, {g(6P(x,,...,x4))=1;
Ny, ...,NgpeR,ifand only if {q(a(x,, ..., x;))=t; Li ..., L; yeRy with iy, ..., ije[1, n]
and

L(Z) if u=I+i;+(j—1)-n for some je[l,1],
Nu= TZU.Q if ue[lvl],

T, otherwise.

It can be seen that 1(o/)=1(o/;)o1(%,) and that the construction of .o, preserves
strong determinism. Thus, we have proved that

TR-FST< DT-FST o T?PTL.FST
and that
D, TR-FST=DT-FST - D,T?PT_FST.

Now we show that DTR-FST<DT-FST>DT?PTLFST. Let, to this end,
B=<2,T,0Q,q09, R)beadt-fstandlet L,,..., L, be all the tree languages that appear
as look-ahead sets in some rule of 4. By Proposition 2.4 we may assume, without loss
of generality, that there is an fta o/ =(Z, Z, S, 5,5, R) such that, for each look-ahead set
L; with ie[1, n], there is a state s;eS with L;=L(7(s;)) and such that, for any two
different states s, s'eS, L(o#(s))n L(=Z(s'))=0. Then put

m=max(l-n(s, o)|ses, oe,, [eN).

We define a dt-fst £, and a t?%-fst #, such that ©(#)=1(%#,)°1(#,). For
each subtree p of the input tree with p=o(py,...,p;) and [>0, #, computes the
indexed parallel computation trees IPC(%(s;), p1),..., [IPC(Z (5,), P1)s ...,
IPC((sy), pi)s ..., IPC(£Z(s,), p;) and joins them to the root of p. Then #,, using its
deterministic two-way tree walking look-ahead capability on these indexed parailel
computation trees, is able to count the look-ahead of £.

The dt-fst ,=<(Z, 2, 0'V, q,, R,) is defined as follows.

(1) The ranked alphabet €2 is the least set satisfying the following three conditions:

(i) For every 6eZ,, leN and for d=(n+1)-1, 6eQ,.

(i) For every o€}, IeN, je[0, m], seS and for d=1-n(s, 0), if n(s, ¢)>0, then
(o, jreQ,.

(1) For each je[0, m], the symbol {x,j>eQ,.

(2) The state set for &, is

QW ={<s, > |s€S, je[0,ml}ulg, .

(3) The rule set R, contains the following rules:
(a) For each ocX;, [eN and for d=(n+1)-1,

Q1(0(X1> ""xl)) - O(d)(ql(x1)9 ""Q1(xl)’ <S1,0> (x1)9 cees
<Sn’0> (xl)s "'7<51’O> (xl)’ '--’<Sn50> (xl))

62 S. Vagvélgyi

is a rule in R1
Pt Ar_" ,.__41_“.-- . N mmsalie an
root of a suotree g(py, ..., p;) results in
the computatlon of the 1ndexed parallel computation trees IPC(s/,p,),.
IPC(oZ. . p.) TPC(of/. . p:) IPC(.oZ . p;). These trees are bein ip

EENAKE gy PLpy s AR SAFE [y Py ey 2L ASE py P 2 BV
(I+ 1)th, ...,(l+n)th, ...,l+(l—1)-nth,. ,[*(n+ 1)th arguments of
1=0, then we simply have the rule g,(6)—0.)
(b) For every seS§, oe;, leN, je[0,m] and for k=n(s,g),d = k"1,
(i) if k=0, then <s,j>(0(x(,...,X;))—><{*,j> is in R;.
(i1) if k>0 and the (s, o)-rules are

{If />0, then the application

C)
o
._
73
—
C
o
0
=
o
(I)

<S’j>(o-(x1""’xl)) <G(d) >(<511,1>(X1)
$san D (ks s (S (k= 1) T+ 1000), ooy (Sas ko D (X0))

is a rule in R,.

Construct the 2-dfta’s 7, and 7, to J as in the proof of Theorem 3.6 and as in the
remark after the proof of Theorem 3.6, respectively. The tree languages L(Z,) and
L(7,) will appear as look-ahead sets of 4,, in fact, Z, counts the regular look-ahead
of # on the indexed paralilel computation trees that are joined to the nodes of the
input tree for 4.

Tha rarreitimeg w11lac ~AF +ha ¢ 't D _ (AT N o D Y ara Aafinad 10 tha fallagrimg
10€ FICWTIlING ruics o1 ine ISV, —=\4,1,4, o, INp) &€ QEIINCEA i1l NC IOLOWINE

manner.
(1) Forevery geQ and a3, the rule g(g)—>a is in R; if and only if the rule g(a)—>a

is in R;.
(i) For every geQ, ceZ, with [>0 and for d=(n+1)-/,

(@ (xy,...,x))=t; Ni,...,N,DeR,
if and only if
{qlo(xy,...,x;))—=t; Ly, ..., Ly)R,
with i,,...,5,e[1, n] and
(L(,Tz) if u=I+i;+(j—1)-n for some je[1,1],

Ny,=< Ts,o 1If uell, 1],
LL(,‘73) otherwise.

Here we show that %, is deterministic.

Top-down tree transducers with two-way tree walking look-ahead 63

Consider two different (g, c”)-rules

gD (xy,....,x4))=>t; Niy ..., No>
and
<q(0'(‘”(x1, -~-axd))_>tl; N/l» ,N:i>

of #, that are constructed from the different rules

<q(6(x17 ...,Xl))—)[; Lvl’ '”’Lv,>

and

<q(O'(X1, .-.,X[))—"t’; Lzla ""Lz,>

of 7, respectively. Since 7 is deterministic, L, "L, =0 for some ie[1,1]. Let
u=I+v;+(—1) n Then N,=L(J,) and N, = L(Z ;). After the proof of Theorem 3.6
we noted that L(7,)n L(3)=0, implying N, N, =0. Thus, we have proved that %,
is a dt29'-fst. It is left to the reader to show that t1(#)=1(%,)° 1(#,).

Thus, we have verified the inclusion DTR-FST < DT-FST - DT?P™..FST. Since
2DTL =2NTLN2UTL (see Fig. 1), all the other inclusions that are stated by the
theorem are true. U

In the next theorem we show how to simulate the composition of a deterministic
top-down tree transducer and of a top-down tree transducer with two-way tree
walking look-ahead by a top-down tree transducer with regular look-ahead.

Theorem 3.8. For any values of the modifiers Xe{ ,D} and Ye{2DTL, 2NTL, 2UTL},
DT-FST > XTY-FST < XT®-FST; moreover, DT-FST o D,TY-FST<FTA - DT-FST.

Proof.
(i) DT-FST > TY-FST = DTR-FST » T*-FST<=TR-FST (by Theorem 2.11 in [2]);
(i) DT-FST DTY-FST<DTR-FST - DTR-FST=DT®-FST (by Theorem 2.11 in
[(21%
(iii) DT-FST <D, TY-FST<DT-FST > D,T*-FST (by Fig. 1)
=FTA - DT-FST (by the proof of Lemma 6.3 in [12]).
O

Here we give a new decomposition of Rounds’ transformational system.

Theorem 3.9. For each Ye{2DTL, 2NTL, 2UTL}, FTA-DT-FST<DT-FST+D,T"-
FST.

Proof. Let &/ =(Z,Z, 0", q,,R,) be an fta and let &/,=(Z,T,0?, q;,R,) be
a dt-fst. We define the dtfst o/3=(Z, I, 0%, q;5,R;) and the dt?9fst
Ay=(T, 4,0, g4, Ry) such that 1(o/ () o 1(f5) =1(3)° 1(H).

64 S. Vaguvélgyi

Intuitively, for an input tree ¢, o/ 3 computes IPC(s/, t) and joins it to the root of t.
Then &/, using its deterministic two-way tree walking look-ahead capability on
IPC(s/, t), decides whether te L(.o/)). If te L(.e/,), then o, simulates ./, on .
Set m=max(I'n(q, 0)|qeQ, o2}, leN). The dt-fst Z3=<Z, 4,0, g5, Ry is
defined as follows:
(1) 4 is the least ranked alphabet satisfying (a), (b), (c) and (d).
(a) For every agel;, leN, ie[0,m], geQ such that n(g,0)>0 and for
d=1-n(g, 0), {9, i>ed,.

(b) For each ie[0,m], {*,i>ed,.
(c) For every o€}, ged, ..
(d) 2= 4.

(2) 0¥ ={gs.id}U{<q.i>|4€Q™, ie[0, m]).

(3) R; is defined in the following way.

(i) For every geQY), geZ,, lIeN, ie[0,m] and for k=n(q, o), d=k "1,

(a) if k=0, then {q,i) (o(xy,...,x;))><{*,i>ER,
(b) if k>0, and the (g, 0)-rules are

q(o(x1,...,x)) = 0(q11(xy1), ..., q1i(x;)),

Q@ (x1, ..o, X)) = 0 (qi1(x1), ..o, Galx))),

then the rule
<q’i>(0(xl’ "'axl))—’ <O-(dJa i>(<q11! 1>(x1)""’
<qllr l>(xl)’ ""<qk1>(k—1).l+1>(x1)’ ---,<le,k'l>(xz))

is in Rj.
(i) For every o€ X, such that />0 and for k=n(q, o), d=k -1, if the (g,, o)-rules
of R, are

qi(o(xy, ..., x)) = o(gr1(x1), ..., q1:(x1)),

qi(o(x1, ..., %)) = o(qua (X1), ..., galx1)),

then the rule
g3(@(x1, ..., %)) = a(id(xy),id (x;), <o, 0> ({g11, 1D (x1)s -0y
qus 1 (x1)s s {Gers (k= 1) I+ 15 (x1), o0, {Guas K 1 (x1)))

is in Rj.
(i) For each 0eZ2,, if the rule q,(c)—o is in Ry, then the rule g3(s)—>a is in R5.
(iv) For every geZ; and leN, id(a(x4, ..., x;)) = o(id(x,), ...,id(x;)) is in Rj.
It is an easy observation that t(o/;)={(;t)|teLl(A)nZo}0{(a(ty,-...t)),
G(ty,....t1, IPC(Zy,0(ty,...,0)))| >0, 6€Z), ty,...,1,€Ts}.

Top-down tree transducers with two-way tree walking look-ahead 65

The d t?%-fst o7, =4, T, 0¥, q4, R, is constructed as follows:

(1) Q¥=1{gs}uQ?.

(2) The rule set R, is determined by (i) and (i1).

(i) Define # to o/, in the same way as J, was defined to 7 in the proof of
Theorem 3.6. If 6eX,,, with I>0 and g,(c(x,,...,x;))—r is in R,, then the rule
{qa(d(xy, ..., x101))=7 Ts, ..., Ty, L(#) > is in R,. (This rule can be applied at the root
of the tree a(ty,....t, IPC(eZ,0(ty,....,1;))) if IPC(oty,0(ty,...,05))eL(B), ie. if
o(ty,....,t)eL(S).)

(i) If ceZon L(s/,) and g,(0)—r is in R,, then g4(0)—risin Ry.

(o7, simulates the computation of =/, on the tree ¢ of height 0 if e L(2Z,).)

(iii) For every oeX, and qeQ?, if gq(o(xy,...,x;))—r is in R,, then
{q(o(xy,...,x;))) =71 Tx,...,Tsy is in Ry. (After coming down from the root of the
input tree o(ty,...,t;, a{ty,....t;, IPC(Ay,0(ty,...,1))), /4 simulates o/, in the
natural way.)

It is easy to see that t(o/|)°1(/5)=1(3)°1(4). Thus, we have the inclusion
FTA c DT-FST<=DT-FST « D,T?PTL_FST. The other two inclusions of the theorem
are simple consequences of the above result. [

The main result of this section gives a characterization for the translation power of
top-down tree transducers with two-way tree walking look-ahead.

Theorem 3.10. For any value of the modifiers Xe{ ,D} and Ye{2DTL, 2NTL, 2UTL},
we have

XTR-FST=DT-FST e XTY-FST
and
FTA+DT-FST=DT-FST <D, TY-FST.

Proof. It follows from Theorems 3.7, 3.8 and 3.9. O

4. An inclusion diagram for deterministic and strongly deterministic classes
of top-down tree transformations with look-ahead

In this section we gather together the deterministic and strongly deterministic
classes of top-down tree transformations with some type of look-ahead and Rounds’
transformational system. We prove that Fig. 3 shows the inclusion diagram of these
classes.

To this end, we prove that all inclusions shown are proper and that all unrelated
classes are incomparable. Along the proof we verify the following five formulae.

(i) DT-FST < D, TP™*.FST;

(ii) for any modifier Ye{2DTL, 2NTL,2UTL},

D.TY-FST<DT?-FST (i.e. the vertical lines indicate proper inclusions);

66 S. Vaguélgyi

DTR—FST
DTZNTL—FST
DTZUTL—FST
DTDTR—FST
2
DT DTL—FST
FTAoDT-FST
Iy TR—FST
s

DSTZNTL-FST

DT-FST

Fig. 3.

(iii) D,TP™®-FST & DT?NTL.FST;
(iv) D.T?NTLEST & DT2VTL.FST;
(v) D.T?PTLFST £ DTP™®-FST.

To begin with we prove (i). In [17] it was shown that D,T°™®-FST =(DT-FST)? and
in [21] the example after Theorem I.2 shows that DT-FST = (DT-FST)?. Thus,
DT-FST c D, TPTR.FST.

We proceed by proving (ii). According to Fig. 2, D, T°™-FST =« DTP™-FST and
D.TR-FSTcFTADT-FSTcDT®-FST. By Theorem 3.10, for any modifier
Ye{2DTL, 2NTL, 2UTL},

DT-FST oD, T*-FST=FTA ¢« DT-FSTc DT®-FST=DT-FST o DT"-FST.

Top-down tree transducers with two-way tree walking look-ahead 67

Thus, D,TY-FST = DT?-FST.

Here we prove (iii). We adopt the two-way tree walking languages introduced in
Example 3.2 of [19]. Let Z=X,02%,, Xo={a,b} and £, ={0}. Thus, T is the set of all
binary trees in which every interior node is labeled by ¢ and every leaf is labeled
by a or b. Consider the following 2-fta €=({qo.qr}, 2,5, qo, {qr}), where
0(q0,0)=1{(q0, 1), (q0,2)}, 6(q0, a)=(gF.0), 8(gr,5)=(qr,0) and all other transitions
are undefined. Then

Ln(%)={teTy|t has a leaf labeled by a}
and

Ly(%)={teTy|every leaf of ¢ is labeled by a}.

The set of balanced binary trees over X is the least set BBT that satisfies the
following two conditions:
(i) a,beBBT.
(i) For any p, ge BBT such that hg(p)=hg(q), s(p, g)BBT.
We prove the following result by slightly modifying the proof of Theorem 5.6
in [20].

Proposition 4.1. For every 2-fta Z=(Q, 2,6, qo, F) such that Ly(B)< Ly(%) and for
every balanced binary tree t in Ly(%), hg(t)< Q|+ L.

Proof. Consider any balanced binary tree re Ly(4) of height greater than or equal to
|Q]+2. Let P be an arbitrary accepting computation path of Z on t. Along P, % must
visit all leaves of ¢ since otherwise # would also accept the tree obtained from ¢ by
changing the label of an unvisited node from a to b. Let a4, a,, ..., a, be the sequence
of leaves of ¢ visited by # along P in this order, some leaves may be repeated in the
sequence. For any two leaves, a; and aj, the distance between a; and q; is defined to be
the length of the path from g; (or a;) to their nearest common ancestor. If a;=aq;, then
the distance between them is O. It should be clear that there are two leaves a; and
a;+, with distance greater than or equal to |Q|+2 and that # goes from a; to
a; + through their nearest common ancestor n. In the transition process from q; to n,
% visits at least |Q|+1 different internal nodes, all of which are labeled by o.
Therefore, # must visit two different internal nodes, n; and n, say, n, being above n,,
in the same state. Since % does not visit any leaf between g; and g, ,, it must repeat
the computation between n; and n, until it arrives to the root of and “falls off ” . But
this is impossible since having “fallen off ” t, # cannot visit a;, ;. This contradiction
proves the proposition. O

The following result is immediate by Proposition 4.1.

68 S. Vagvélgyi

Consequence 4.2. Let n=1 and let, for each 1 <i<n, o/;=(0;, X}, 0, q;, F;) be a 2-fta
with Ly(sZ;) S Ly(%). Then, { J(Ln(7;)| 1 <i<n)< Ly(%).

Using Consequence 4.2 now we can prove (iii).
Theorem 4.3. D,TP™-FST & DTNTL.FST.

Proof. Consider the relation p={(t, a)|te Ly(%)}, which can be induced by a d t*"-fst.
Suppose that peDT2NTL.FST, ie. for some dt*"-fst 7 =(Z, 4, Q, o, RD, p=1(T).
Let L,,...,L, be all tree languages that appear as look-ahead sets in some rule of
7 such that L,= Ly(¥) for each ie[1, n]. According to Consequence 4.2, there exists
a tree ¢ such that teLU((é)—U(L,-He[l,n]). Since a(t, t)edom (1(J7)), there exists
a derivation go(a(t, t)) =% a. In the first step of this derivation .7 deletes at least one
occurrence of t, ie. the rewriting rule applied at the root of ¢ has the form
{qolo(xy, X3))=s, L;, L;,> with se{q(x,), q(x;) | qeQ}uia}, iy, i,€[1, n]. Since te L;,
and tel;,, L; §Ly(¥) and L;, & Ly(¥). Thus, there exist trees t; and t, with
tieL; —Ly(¥) and t,eL;,— Ly(%). If s=q(x,) for some geQ, then go(a(t, 1,))=%a
holds. If s=g(x,) for some geQ, then we have go(c(t;,t))=%a If s=a, then
we obtain qo(o(t;,t;))=%a. All three cases - contradict the assumption
dom(t(7)=Ly(®¥) O

Now we shall prove (iv). The proof of the following proposition is based on that of
Lemma 3.4 in [19].

Proposition 4.4. Let o7 ={Q, X, 6, qo, F> be a 2-fta such that Ly()< Ln(¥) and let
t be a binary balanced tree with hg(t)>1og, (2| Q|+ 2) in which every leaf is labeled by b.
Then there is a nonaccepting maximal computation path P of of on t such that </ visits at
most 2| Q|+ 2 leaves during P.

Proof. Note that ¢ has more than 2- k+ 2 leaves. Since t¢ Ly (.«/), there is a nonaccept-
ing maximal computation path P’'={I,|n<k<w} of o7 on t. Suppose that .« visits at
least 2| Q|+ 3 leaves during P’ and let {a;|i <k <w) be the sequence of leaves visited
in this order by ./ during P’. Since there are more than | Q| leaves, &/ must visit two
leaves during P’, say a; and a;, in the same state. Let a; and a; be the first such nodes in
the sequence. Hence, there are O</l;<l;<k and geQ such that I, =(q,a;t),
I,,=(q, a;,t) and I, =% I;,. Furthermore, o/ visits at most |Q|+ 1 leaves during the
sequence Io, ..., 1, ...,Ilj in P. Here we construct the sequence of ID’s such that
I,,-% 1, by applying the same transition at each step as in I, % 1,,, but by starting at
n; instead of n;. Note that this is possible because ¢ is a balanced tree in which all the
internal nodes together with the root and all leaves are labeled by the same symbols (¢
and b, respectively). Then, we can obtain a maximal computation path P by infinitely
repeating this sequence after Iy, ..., I;,. Clearly, P is not accepting; moreover, </ visits
at most 2+ Q|+ 2 leaves during P since it visits the same leaves, the number of which is
at most |Q|+1, in the repeated portion I; =¥ 1, of P. U

Top-down tree transducers with two-way tree walking look-ahead 69

From Proposition 4.4 we directly get the following result.

Corollary 4.5. Let n=1, and for each ie[1, n}, let o/;=<Q;, X, b, q;, F;) be a 2-fta such
that Ly(s7;)< Ln(%). Then { J(Ly(«#;)|ie[1, n])c La(%).

Proof. Let t be a binary balanced tree with hg(t)>log,(rn-max(2-|Q;||ie[1,n])+
2-n) in which every leaf is labeled by b. For ie{ 1, n], let P; be a nonaccepting maximal
computation path of «7; on t such that .o; visits at most 2-|Q;|+ 2 leaves during P; (cf.
Proposition 4.4). Since ¢ has more than n-max(2-|Q;||ie[1,n])+2-n leaves, there is
a leaf which is not visited by «; during P; for each ie[1, n]. Define r from ¢ by
changing the label of this leaf from b to a. Then re Ly(6) — U(Lu(di) lie[1,n]). O

Now we are able to prove (iv).
Theorem 4.6. D, T>NTL.FST & DT?VTL-FST.

Proof. Let us consider the tree transformation p = {(o(t, t,), a) | t;,t,€ Ly(%)}, which
can be induced by a dt*™"-fst and assume that pe DT2YTL-FST, i.e. that there exists
adt®.fst 7 =<(X, X, 0, qo, R>such that p=1(7). Let L., ..., L, be all tree languages
that appear as look-ahead sets in some rule of 4 such that L;= Ln(¥) for each
ie[1,n]. According to Corollary 4.5, there exists a tree ¢ such that
te Ln(6)— | J(Li|ie[1, n]). Now o(t, 1) is in Ln(%) as well. Thus, go(a(t, t)) =% a holds.
From now on the proof can be finished in the same way as that of Theorem 4.3 was
finished. O

Finally, we prove (v). Let X=X,uZX, where X,={a} and X,={c}. The tree
language Ko< T is the set of all trees over X that contain an even number of leaves
while K, is the complement of K, i.e. K; =7Ts—K,. Let IZO={ind(p)|peK0} and
K,= {ind(p)| peK,}. Using an argument similar to the proof of Lemma 5.9 in [12]
one can prove the following result.

Lemma 4.7. Let n>1, and for each ie[1,n], let &;=<(Z, X, Q, qo, R) be a dfta such
that L(sZ;)=K,. Then | J(L(s#;)|ie[1,n])=K,.

On the other hand, K, is in 2DTL.
Lemma 4.8. K,c2DTL.
Proof. We construct a 2-dfta .« with L(<«/)=K,; ./ traverses a subtree p=
{o,i>(p1, p2) with ie[1, 2] of the input tree in the following order:

(1) & visits the root of p,
(2) & traverses the subtree p,,

70 S. Vagualgyi

(3) & visits the root of p,

(4) o traverses the subtree p,,

(5) o “falls off ” the subtree p.

While .o/ is wandering up and down the input tree ¢, it examines if ¢ is an indexed
copy of some tree in 75 and counts the parity of the number of the already visited
leaves.

The formal construction of o7 is as follows.

o ={4, Q, 4, start, { yes} >, where

(1) 4=4qg04,, Ag={<a,i>|i€[0,2]} and 4,={<s.i)|ie[0,2]};
(2) 0={<i, even,0), <i, 0dd, 0}, {even,i), {odd,i>|ie[l,2]}u{start, yes}.
Intuitively the state i, even, 0> means that
(a) .o/ checks whether the current node is the ith son of its father (in this way
o/ examines whether the input tree is an indexed copy of some tree in 77), that
(b} the parity of the number of the already visited leaves is even, and that
(c) &/ came to the current node from its father. Similarly, the state <{even,j>
means that
(a) the number of the already visited leaves is even, and that
(b) o/ came to the current node from its jth son.
(3) ¢ 1s defined as follows:

ofstart, {a, 0>)=(<1, even, 03, 1),
o({1,even, 03, <o, 1>)=({1, even, 0}, 1),
o(<1, even, 03, <a, 1>)=(<odd, 13, 0),
0(<{2, even, 03, <(0,2>)=(<1, even, 03, 1),
0(<2, even, 0), <(a,2>)=(<odd, 2, 0),
o(<even, 13, (g, 1>)=(<2, even, 03, 2),
o(Leven, 13, {a,2>)=(<{2, even, 0}, 2),
o(<even, 13, {a,0>)=(£2, even, 0}, 2),
o(<even, 23, (o, 1>)=(<even, 1),0),
o(<even, 23, <o,2>)=(<even, 23, 0),
d(<even, 23, {7,0)=(yes, 0),

6{<1, odd, 0}, <{o,1>)=({1, odd, 0}, 1),
({1, 0dd, 0), <a, 1>)=(<even, 1),0),
0(<2, 0dd, 0), <{0,2>)=({1, 0dd, 0>, 1),

Top-down tree transducers with two-way tree walking look-ahead 71

0(<2, 0dd, 0), <a,2>)=(<even, 2, 0),
d(<odd, 15, {0, 1>)=((2, 0dd, 0}, 2),
d(<odd, 13, <a,2>)=(<2, odd, 0}, 2),
d(<odd, 1), <g,0>)=(2, odd, 0), 2),
d(<odd, 2>, <a, 1))=(<odd, 2),0),
d(<odd, 23, {a,2>)=(odd, 23,0),

and all other transitions are undefined.

It can be seen that, using the states {i,even,0)> and i, odd,0> with ie[l,2],
#/ checks whether the input tree is an indexed copy of a tree over 2. Having traversed
a proper subtree, &/ goes up to the father of its root in state {even, i) or {odd, i) with
ie[1, 2] depending on the number of leaves in it and on the position of its root with
respect to its brothers. The 2-dfta o “falls off ” the input tree in state yes if there are an
even number of leaves in it.

It is not hard to see that L(=#)=K,. []

Now we are able to prove (v).
Theorem 4.9. D, T?P"™-FST &£ DTPTR-FST.

Proof. Consider the tree transformation p={(a(r, t), a)|r, teK o}, which can be in-
duced by a dt?%"-fst. Similarly to the proof of Theorem 4.3, using Lemma 4.7, one can
show that p¢ DTPTR-FST. [

The correctness of the diagram of Fig. 3 immediately follows from (i), (ii), (iii), (iv)
and (v).

Theorem 4.10. The diagram of Fig. 3 is the inclusion diagram of the poset {{DT"-
FST, DT2NTL.FST, DT?VTL.FST, DT?PTL.FST, DTP™.FST, FTA - DT-FST, D,T*-
FST, D,T2NTLFST, D, T2V FST, D, T?PTL-FST, D,T°™.FST, DT-FST}, = .

Proof. The formulae (i), (ii), (iii), (iv) and (v) imply that all inclusions shown are proper
and that all unrelated classes are incomparable. Ul
5. Composition results

In this section we investigate the composition powers of top-down tree transforma-

tion classes with some type of two-way tree walking look-ahead. In the strongly
deterministic and deterministic cases the second powers properly contain the first

72 S. Vaguvélgyi

powers and equal the third powers while in the nondeterministic case we obtain
proper hierarchies.
First we study the strongly deterministic transformation classes.

Theorem 5.1. For any Ye{2DTL, 2NTL,2UTL}, D,T'-FST =(D,T"-FST)? =(D,T"-
FST)?=FTA - DT-FST.

Proof. D,T"-FST=FTA - DT-FST by Theorem 4.10. Thus,
(D, TY-FST)*<(FTA - DT-FST)?
=FTA-DT-FST {(by Lemma 4.3 and Theorem 6.2 of [12])
=DT-FST D, T¥-FST (by Theorem 3.10)
=(DTY-FST)>. g
Now we turn to the deterministic case.

Theorem 5.2. For each Ye{2DTL,2NTL,2UTL}, DT*-FST<(DT*-FST)*=(DT"-
FST)>=DTX-FST.

Proof. By Theorem 4.10, DTY-FST = DTX-FST. Moreover,
DTR-FST=DT-FST-DTY-FST by Theorem 3.10,
< (DTY-FSTY for k=2,
< (DTR-FST)}*
=DT®-FST (by Theorem 2.11 of [2]). U

Finally, we study the composition powers of nondeterministic tree transformation
classes.

Theorem 5.3. For every k=1 and Ye{2DTL,2NTL,2UTL}, (T*-FST)‘c(T’-
FST) .

Proof. Assume that (TY-FST)*=(TY-FST)**! for some Ye{2DTL,2NTL,2UTL}
and k>1. Then for every n>k, (TY-FST)"=(TY-FST)*. Using the fact that TX-
FST <(T-FST)? (see Corollary 2.13 of [2]), we have T-FST = TY-FST = T*-FST =(T-
FST)2. Thus, for n>k, (T'-FST)'<(T-FST)? "<(TY-FST)* "< (T-FST)*"< (T*-
FST)* "=(TY-FST)". Thus, we have (T-FST)> "=(T-FST)*"”, which contradicts
Theorem 3.14 of [4]. [

Top-down tree transducers with two-way tree walking look-ahead 73
6. Conclusion

We have investigated top-down tree transducers with two-way tree walking look-
ese devices are natural restrictions of top-down tree transducers with
regular look-ahead. We compared the transformational power of deterministic and
strongly deterministic versions of top-down tree transducers with some type of
two-way tree walking look-ahead by presenting the inclusion diagram for the tree
transformation classes induced by them. We also studied composition powers of the
above classes. In the strongly deterministic and deterministic cases the second powers
properly contain the first powers and equal the third powers while in the nondeter-
ministic case we obtain proper hierarchies.

Along this line of research we obtained new decompositions of the transformational
system of Rounds and of the top-down tree transformation with reguiar iook-ahead.

For further investigations many areas remain open:

(1) Show that DT-FST-DTPT™R.FST=D,TP™.FST - DTP™®.FST F
Give another proof for {v) in Section 4 using this result, Theorem 3.10 and the
noninclusion FTA-DT- FQTET)TDTR FST.

NTPIR QT
1 1.

(2) Give a finite presentation or a finite complete rewriting system for the composi-
tions of those tree transformation classes that appear in Fig. 3. Similar research work
was carried out in [11, 15, 16].

(3) For any modifier C taken from the set {2DTL,2NTL,2UTL}, iterate the
look-ahead tree languages as follows. Let Co=C and let, for n= 1, C, be the class of
tree languages recognizable by deterministic top-down tree automata with
C,_, look-ahead. (In [13] the iteration was started with C; = DTREC.) Do we obtain
an infinite hierarchy in this way?

4} 11e COIILCpL Ul lUUK d[lCdU on ar Ullfd[y stor:
operator on storage types, i.e. if S is a storage type, the
e}

S . icone too {cee S 81) The storage tvne S. . ic ohtained fro C hv addino ¢necial
Sia, 1s one too (see [5, 8]). The storage type Si 4 is obtained from S by adding special
predicates, the so called look-ahead tests. They have the form {q, o/)> where q is

a nonterminal of a CF(S) transducer .«/. The look-ahead test (g, .«/)> is true on
a configuration c if and only if the transducer .27 can derive a terminal string from g(c).
Since the domain of a top-down tree-to-string transducer is a regular tree language
(see [21]), it follows that the top-down tree transducer with regular look-ahead is the
T(TRy,) transducer, where RT abbreviates the modifier regular tree and TR denotes
the storage type tree (see [5, 8]).
Engelfriet presented the decomposition

TR-FST=T-FST-LH

as well.

74 S. Vagvaélgyi

Generalize the above result for arbitrary storage type S, ie. show the equality

RT(S, ,)=RT(S)° LH.

(5) The notion of a top-down tree transducer with regular check was introduced in
[12]. Introduce and study top-down tree transducers with some type of two-way tree
walking check.

References

[1] J. Engelfriet, Bottom-up and top-down tree transformations —a comparison, Math. Systems Theory
9 (1975) 198-231.

[2] J. Engelfriet, Top-down tree transducers with regular look-ahead, Math. Systems Theory 10 (1977)
289-303.

[3] J. Engelfriet, On tree transducers for partial functions, Inform. Process. Lett. T (1978) 170-172.

(4] J. Engelfriet, Three hierarchies of transducers, Math. Systems Theory I5 (1982) 95~-125.

{53 J. Engelfriet, Context-free grammars with storage, Report 86-11, University of Leiden, 1986.

[6] J. Engelfriet, G. Rozenberg, and G. Slutzki, Tree transducers, L-systems, and two-way machines, J.
Comput. System Sci. 20 (1980) 150-202.

[7] J. Engelfriet and H. Vogler, Macro tree transducers, J. Comput. System Sci. 31 (1985) 71-146.

[8] J. Engelfriet and H. Vogler, Pushdown machines for the macro tree transducer, Theoret. Comput. Sci.
42 (1986) 251-369.

[9] J. Engelfriet and H. Vogler, Look-ahead on pushdowns, Inform. and Comput. 73 (1987) 245-279.

[10] J. Engelfriet and H. Vogler, High level tree transducers and iterated pushdown tree transducers, Acta
Inform. 26 (1988) 131-192.

[11] Z. Fuldp, A complete description for a monoid of deterministic bottom-up tree transformation classes,
Theoret. Comput. Sci. 88 (1991) 253-268.

[12] Z. Fildp and S. Vagvolgyi, Variants of top-down tree transducers with look-ahead, Math. Systems
Theory 21 (1989) 125-145.

[13]1 Z. Filép and S. Vagvolgyi, Iterated deterministic top-down look-ahead, in: J. Csirik, J. Demetrovics
and F. Gécseg, eds., Proc. FCT '89, Lecture Notes in Computer Science Vol. 380 (Springer, Berlin,
1989) 175-184.

[14] Z. Fiil6p and S. Vagvolgyi, A characterization of irreducible sets modulo left-linear term rewriting
systems by tree automata, Fund. Inform. XIII (1990) 211-226.

[15] Z. Fildp and S. Vagvélgyi, A finite presentation for a monoid of tree transformation classes, in: Proc.
2nd Conf. on Automata, Languages and Programming systems (Karl Marx University of Economics,
Budapest, 1988) 115-124.

[16] Z. Fiilop and S. Vagvolgyi, A complete rewriting system for a monoid of tree transformation classes,
Inform. and Comput. 86 (1990) 195-212,

[17] Z. Filsp and S. Vagvélgyi, Top-down tree transducers with deterministic top-down look-ahead,
Inform. Process. Lett. 33 (1989/90) 3-5.

[18] F. Gécseg and M. Steinby, Tree Automata (Akadémiai Kiado, Budapest, 1984).

[19] T. Kamimura, Tree automata and attribute grammars, Inform. and Control 57 (1983) 1-20.

[20] T. Kamimura and G. Slutzki, Parallel and two-way automata on directed ordered acyclic graphs,
Inform. and Control 49 (1981) 10-51.

[21] W.C. Rounds, Mappings and grammars on trees, Math. Systems Theory 4 (1970) 257-287.

[22] G. Slutzki, Alternating tree automata, Theoret. Comput. Sci. 41 (1985) 305-318.

[23] J.W. Thatcher, Generalized sequential machine maps, J. Comput. System Sci. 4 (1970) 339-367.

