
Theoretical Computer Science 93 (1992) 43-74

Elsevier

43

P

Fundamental Study

Top-down tree transducers with
two-way tree walking look-ahead

Shdor VBgviilgyi
Research Group on Theory qf Automata, Hungarian Academy of Sciences, Aradi tCr I. H-6720
Szeged. Hungary

Communicated by M. Nivat

Received May 1989

Abstract

S. Vagvolgyi, Top-down tree transducers with two-way tree walking look-ahead, Theoretical

Computer Science 93 (1992) 43374.

We consider top-down tree transducers with deterministic, nondeterministic and universal two-way

tree walking look-ahead and compare the transformational powers of their deterministic and

strongly deterministic versions by giving the inclusion diagram of the induced tree transformation

classes. We also study the closure properties of these transformation classes with respect to

composition.

Contents

1. Introduction ...

2. Preliminaries ..

2.1. General notations ...
2.2. Trees ...

2.3. Tree transducers ..
2.4. Two-way tree walking automata ...
2.5. Top-down tree transducers with look-ahead

3. Top-down tree transducers with two-way tree walking look-ahead
4. An inclusion diagram for deterministic and strongly deterministic classes of top-down tree

transformations with look-ahead ...
5. Composition results ...
6. Conclusion. ...

References ..

44

46
46

47

47

50

51

53

65

71

73
74

0304-3975/92/$05.00 0 1992-Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81924686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

44

1. Introduction

Top-down tree transducers were introduced by Rounds [21] and Thatcher [23] to

give an algebraic formalism for the theory of syntax-directed translation. The class of

top-down tree transformations is not closed under composition, in fact, the increasing

powers lead to an infinite hierarchy with respect to inclusion (cf. [4]).

Engelfriet [2] defined the notion of a top-down tree transducer with regular

look-ahead in order to get nice closure properties with respect to composition. It was

shown that both classes of linear and deterministic top-down tree transformations

with regular look-ahead are closed under composition. Moreover, the concept of

look-ahead turned out to be an elegant and efficient tool in tree language theory. In

[3] Engelfreit showed that the class of deterministic top-down tree transformations

with regular look-ahead equals the class of partial functions that can be realized

by compositions of bottom-up or top-down tree transformations. Furthermore,

Engelfriet et al. [6] proved that the deterministic checking tree pushdown tree

transducer is equivalent to the deterministic top-down tree-to-string transducer with

regular look-ahead. Finally, Engelfriet and Vogler [7] showed that the 01-macro tree

transducer with regular look-ahead is equivalent to the OT-macro tree transducer.

The concept of look-ahead for storage types was studied in [S, 8, 9, lo].

A top-down tree transducer was equipped with deterministic top-down look-ahead

capability in [17]. It means that the look-ahead sets of this type of transducers are

restricted to tree languages recognizable by deterministic top-down tree automata.

The notion of determinism in the sense of [2] was also specialized and called strong

determinism in [17]. As a result, it was shown that the class of all strongly determinis-

tic top-down tree transformations with deterministic top-down look-ahead is also

closed under composition and it is the closure of the class of deterministic top-down

tree transformations under composition.

So, it turned out from [17] that both strong determinism and deterministic

top-down look-ahead are of theoretical interest. Therefore, in [121 we combined these

notions with the original concept of determinism and regular look-ahead (see [2]) and

obtained new tree transducers such as strongly deterministic top-down tree trans-

ducer with look-ahead, etc. In [131 the look-ahead tree languages for deterministic

top-down tree automata were iterated and in this way an infinite hierarchy of tree

language classes, between the class of tree languages recognized by deterministic

top-down tree automata and the class of regular tree languages, was obtained. Finally,

a characterization of irreducible sets modulo left linear term rewriting systems by

one-state deterministic top-down tree automata with prefix look-ahead was provided

in [14].

A top-down tree transducer may be equipped with other type of look-ahead

capacity as well. Two-way tree walking languages seem to be reasonable look-ahead

sets. Kamimura and Slutzki [19,20,22] introduced and studied three proper sub-

classes of recognizable tree languages: the class of deterministic two-way tree walking

languages, denoted by 2DTL, the class of nondeterministic two-way tree walking

Top-down tree transducers with two-way tree walking look-ahead 45

RECOG

2NTL

2DTL DT-RECOG

Fig. 1.

languages (2NTL), and the class of universal two-way tree walking languages (2UTL).

They have compared these tree language classes, the class of recognizable tree

languages and the class of tree languages recognizable by deterministic top-down tree

automata and presented an inclusion diagram for them (cf. Fig. 1).

We continue the research carried out in [12, 13, 14, 171: we equip a top-down tree

transducer with deterministic, nondeterministic and universal two-way tree walking

look-ahead. The corresponding tree transformation classes are denoted by TZDTL-

FST, TZNTL-FST and T2”TL -FST, respectively, and their deterministic and strongly

deterministic subclasses are denoted by prefixing the denotations by D and D,,

respectively. The goal of this work is to study systematically the deterministic and

strongly deterministic top-down tree transducers with some type of two-way tree

walking look-ahead and in this way to establish new connections between funda-

mental concepts and tools in tree language theory.

In Section 2, we provide some notations and notions of the theory of tree languages

which will be used in the paper.

In Section 3, we describe the recognizing capability of two-way tree walking

automata from a new point of view by showing that for any modifier

YE {2DTT, 2NTT, 2UTT}, RECOG= dom(DT-FST 0 Id(Y)), where RECOG denotes

the class of all recognizable tree languages and DT-FST stands for the class of tree

transformations induced by deterministic top-down tree transducers. This result

intuitively means that the computation of a nondeterministic top-down tree automa-

ton A can be simulated in two steps. In the first step, a deterministic top-down tree

transducer computes in a parallel way all computations of A on the input tree, and in

the second step, a two-way tree walking automaton looks for an accepting computa-

tion of A. Using this result we characterize the transformational power of top-down

tree transducers with two-way tree walking look-ahead. We obtain the following

decomposition results: for any modifiers XE{ , D} and YE{~DTL, 2NTL, 2UTL},

XTR-FST = DT-FST 0 XTY-FST and FTA 0 DT-FST = DT-FST 0 D,T’-FST, where

(D)TR-FST denotes the class of (deterministic) top-down tree transformations with

regular look-ahead, FTA stands for the class of tree transformations induced by

top-down finite tree automata and FTAoDT-FST is the class of transformational

systems of Rounds (cf. [21]).

In Section 4, we present the inclusion diagram for the deterministic and strongly

deterministic top-down tree transformation classes with some type of look-ahead.

Section 5 is concerned with the closure properties of top-down tree transductions

with some type of two-way tree walking look-ahead under composition. We

shall prove the following results. For each modifier YE{~DTL, 2NTL, 2UTL},

D,TY-FST c (D,TY-FST)’ = (D,TY-FST)3 = FTA 0 DT-FST, DTY-FST c (DTY-FST)2 =

(DTY-FST)3 = DTR-FST and, for every k 3 1, (TY-FST)k c(T~-FST)~+ ‘.

2. Preliminaries

We recall and invent some notations, basic definitions and terminology which will

be used in the paper. Nevertheless, the reader is assumed to be familiar with the basic

concepts of tree language theory (see, e.g. [l, 2, 18, 213).

2.1. General notations

We identify the singleton set (u} with its unique element a. The set of nonnegative

integers is denoted by N. For every k, ~EN with k d n, [k, n] denotes the set (k, . . , n}.

For a set A, 1 A 1 denotes the cardinality of A. We write cc) for IN 1. We need a countably

infinite set X={x,, x2, . . . } of variable symbols, that will be kept fixed throughout the

paper. The set of the first m elements xi, . , x, of X is denoted by X,.

A c B means that the set A is a subset of the set B. Proper inclusion is denoted by c .

A $ B abbreviates the formula 1 (A E B).

Given any finite number of sets A 1, . . , A,, the Cartesian product Ai x ... x A, is

the set of ordered n-tuples {(ai, ,.., a,))a+Ai, i~[l, n]}.
A binary relation from A to B is any subset R of A x B. Given a binary relation

R between A and B, the set {x~Al(x, ~)ER for some y6B) is called the domain of

R and denoted by dam(R). The composition of two relations RI and R2, denoted by

RI 0 R2, is the set of pairs {(x, z) 1 (x, y)~ RI and (y, Z)E R2 for some y }. R” is called the

n-fold composition of R with itself (R” is the identity relation). The reflexive, transitive

closure of R is denoted by R*. All these notions can easily be transferred to classes of

relations for which we use the same notations,

Top-down tree transducers with two-way tree walking look-ahead 41

By an inclusion diagram we mean the Hasse diagram of a poset, of which the order

is the inclusion.

2.2. Trees

A ranked alphabet C is a finite set in which each symbol has a unique rank in N. The

subset Z, of C is the set of symbols of rank m (meN). Note that, for i #j, Ci and Cj are

disjoint. The maximal rank of C is the largest integer n such that C, is nonempty.

Given a ranked alphabet Z and some set S, the set of all terms or trees over C

indexed by S, denoted by T,(S), is defined inductively as follows.

(a) S s T,(S).

(b) If [EN, a&, and ti, . . . , t,~T,(s), then o(t,, tl)eTr(S).

Terms of the form o() are identified with 0. If Y=@, then Tr(Y) is written as T,.

T,(X,) is written as T,,,; thus, T T z,o = r. It is well known that T, is in an effective

one-to-one correspondence with the set of all finite, rooted, ordered and directed trees,

whose nodes are labeled with the elements of C, in such a way that a node with

I descendants is labeled by a symbol from Ct. Nodes labeled by elements of C,, are

referred to as leaves. A node is called internal if it is neither leaf nor root. The height

hg(t) and the set of subtrees sub(t) of a tree JET, are defined as follows.

(a) If t~C,us, then hg(t)=O and sub(t)={t}.

(b) If t=a(ti,..., tr) (IEN), then hg(t)=l+max(hg(ti)Iie[l,I]) and sub(t)=

U(sub(ri) I iEC1, U)u{t}.
Let mEN, FETE,,, and ti, . . . , ~,ET~. We denote by t[tl, . . . , t,] the tree obtained

from t by substituting ti for each occurrence of Xi in t for i~[l, m]. We obviously have

rCt1 ,...,t,l~T~.

Now let C and A be ranked alphabets. A tree language L is a subset of TI. A tree

transformation T is a subset of T, x T, , i.e. a binary relation from T, to T,,. For each

LG T,, Id(L) is the identical tree transformation {(t, t) 1 MEL} on L. For a class 9 of

tree languages, Id(Y)= {Id(L) 1 LET}.

2.3. Tree transducers

We adopt the definition of a top-down finite state tree transducer (t-fst) from [l].

A t-fst is a system y = (C, A, Q, Qin, R), where

(a) C and A are ranked alphabets;

(b) Q, the state set of y, is a ranked alphabet consisting of I-ary function symbols

with Qn(ZuAuX)=~;

(c) Qin is a subset of Q, the set of initial states;

(d) R is a finite set of rules of the form 4(0(x1, . . ,x,))+< where mEN, CEC,, qEQ

and kT,(Q(X,)). (Here and in what follows, for a unary ranked alphabet Q and a set

L of trees, Q(L) denotes the set {q(t) 1 qEQ and tgL}.)

F can be used to induce a tree transformation from TI to Td in the way described as

follows. Define the relation ~3 on the set T,(Q(T,)) so that for any t,rcT,(Q(T,)),

t *r--r if and only if the next two conditions hold:

(a) there is a rule of the form q(o(xl, . . . ,x,))+tin R;

(b) r can be obtained from t by substituting a subtree q((r(t,, . . . , t,)) of t by

FCt1 , . . . , t,]. It should be clear that the relation =T can be interpreted as a method of

rewriting trees into trees.

The tree transformation induced by the t-fst Y is defined as

z(F)={(t,r)It~T~, rET, and q(t) a,>r for some qEQin}.

Ifq(a(x,, . . . , x,))-+tis a rule of Y-, then it is called a (q, a)-rule, and q(a(x,, . . . ,x,))

is called the left-hand side of this rule. We write a~,-(q, a) to denote the number of

(q, a)-rules of Y. If there is no danger of confusion, then we simply write n(q, a) rather

than n,-(q, 0).

For any qEQ, we denote by F(q) the tree transducer F(q)=(C, A, Q,{q}, R).

Now we introduce three special types of t-fst’s. Let, to this end,

Y= (C, A, Q, Qin, R) be a t-fst. We say that Y is

(a) deterministic t-fst (dt-fst) if Qin is a singleton set and there are no two different

rules in R with the same left-hand side.

(b) a top-down finite tree automaton (fta) if Z = A and each rule in R is of the form

4(4x,,x.))+4q,(x,), ... ,q,,,(x,,,)),whereq,q,,...,q,EQ(ifYisanfta,thenthe

tree transformation r(Y) is a partial identity on T,);

(c) a deterministic top-down finite tree automaton (dfta) if it is deterministic and it

is an fta.

A standard construction shows that above (from (a) to (c)) we may assume without

loss of generality that Y has only one initial state, i.e. Qin = {qo} holds. This is used in

the paper without any reference. Moreover, we write q. rather than {qo}.

The tree language recognized by an fta Y = (C, C, Q, q,,, R) is

L(F)={t~T,Iq~(t)a,>t} (=dom(r(r))).

Moreover, the tree language recognized by F with state qEQ as initial state is

Now let x be any modifier taken from {t-fst, dt-fst, fta, dfta}. A relation is called an

x transformation if it can be induced by some tree transducer of type x. The class of all

x transformations will be denoted by X; hence, we can speak about T-FST, DT-FST,

FTA and DFTA.

We introduce the notations RECOG = dom(FTA), DT-RECOG = dom(DFTA). In

most works related to this topic, RECOG is called the class of all recognizable (or

regular) tree languages, whereas there are no widespread names for the class DT-

RECOG to the best of our knowledge.

A bottom-up finite tree automaton (bfta, cf. [l]) is a construct B= (C, Q, Qr, R)

where

(a) C is the input, output ranked alphabet;

Top-down tree transducers with two-way tree walkinq look-ahead 49

(b) Q, the state set of g’, is a ranked alphabet consisting of I-ary function symbols

with Qn(CuX)=@;

(c) Qf is a subset of Q, the set of final states;

(d) R is a finite set of rules of the form g(ql(xl),ql(xl))+q(o(x.,xl)). where

=C,, IEN, 41,qi. qEQ.
The rules in R turn into tree rewriting rules, as usual, by substituting trees in T, for

the x’s. Define the relation ja on the set T,(Q(T,)) so that for any t, rE T,(Q(T,)),

t =z-&r if and only if the next two conditions hold.

(a) There is a rule of the form a(q,(xl), . , ql(xl))+q(a(xl,x.)) in R.

(b) Y can be obtained from t by substituting a subtree a(q,(tl),ql(tl)) of t by

q(o(t,, tl)). The tree language recognized by $3 is

L(B)=jt~T,lt -2 q(t) for some qEQf}

Moreover, the tree language recognized by g with state qEQ, is

Thus,

B is deterministic (dbfta) if there are no two different rules in R with the same

left-hand side. In this case, for any p,qEQ, ,u#q if and only if L(~(p))nL(B(q))=0.

B is total (tbfta) if, for each ~EC, (/30) and ql,. . . ,ql~Q, there is at least one rule

with left-hand side o(q, (x,), . . , qt(x,)).

It should be clear what a tdbfta is.

It is well known from the literature [l, 183 that the recognizing capabilities of fta’s

dbfta’s tbfta’s and tdbfta’s are the same. On the other hand, the recognition power of

dfta’s is more limited, i.e. there are recognizable tree languages that cannot be

recognized by any dfta.

Proposition 2.1. The class of tree languages recognized by tdbfta’s is the same as

RECOG; moreover, DT-RECOGc RECOG (see [l, 181).

We shall need the following observation.

Proposition 2.2. For any bfta B=(Z, Q, Qf, R), one can construct an fta

Y = (C, C, Q, Qf, R’) such that for each state ~EQ, L(@(q))=L(Y(q)).

Proof. R’ is constructed as follows. For any o~C,, IEN and q, ql, q[eQ, the rule

q(dx1,Xl)) + 441(x1), ‘..3dXd)

50 S. Vcigvdgyi

is in R’ if and only if the rule

~(ql(x,),qdxJ) + 4(0(x1,x*))

is in R.

In the proofs of Theorems 2.7 and 2.8 in [lS, ch. IV] it was shown that, for each

state qEQ, L@(q)) = L(Y(q)). 0

2.4. Two-way tree walking automata

A finite two-way tree walking automaton (2-fta, cf. [22]) S! is a construct

<Q, .& 6, qo, F), where
(a) Q is the finite, nonempty set of states;

(b) C is the input ranked alphabet;

(c) qOEQ is the initial state;

(d) F G Q is the set of final states;

(e) 6 is a mapping from Q x C to the finite subsets of Q x [0, m] with m being the

maximal rank of C.

d is deterministic (2-dfta) if 6(q, 0) has at most one element for every qEQ and CSEC.

An instantaneous description (ID) of d on a tree t in TX is a triple of the form

(q, n, t), where qEQ and n is a node oft or a special symbol LX. The initial ID of ZZZ on

t is (qo, r, t) with r being the root oft. The ID I =(q, n, t) is said to be accepting if qEF

and n=x.

We define a relation +,& between IDS of G! on a tree TV T, as follows. For n # ~1,

(q, n, t) F,d (p, m, t) if (p, i)Eh(q, o), where g is the label of n and either of the following

holds.

(1) i=O, n is the root oft and m=x,

(2) i=O, n is not the root of t and m is the father of n,

(3) i>O, m is the ith son of n.

Note if n=u, then there is no ID J with I b~dJ.

A sequence of IDS P = (ri / 0 <i < k <w) with I0 being the initial ID of .sJ on t is

called a computation path of & on t if Ii TV d Ii + 1 for every HEN such that i + 1~ k. P is

accepting if keN and I,_ 1 is an accepting ID; otherwise, it is nonaccepting. A compu-

tation path is maximal if either it is infinite or there is no ID I for its last ID, I, _ 1, such

that lk_ 1 t,& I. Obviously, every computation path can be extended to a maximal

computation path.

We now introduce two different ways to define the recognition by a 2-fta JZ!. The

first one is the ordinary notion of acceptance by a nondeterministic device. The

nondeterministic two-way tree walking language recognized by J&’ is

L,(d) = { tE Tz 1 there is an accepting computation path of & on t}.

The class of all nondeterministic two-way tree walking languages is denoted by 2NTL.

Top-dowsn tree transducers with two-way tree walking look-ahead 51

In the second type of recognition, we require that every computation path must be

accepting. The universal two-way tree walking language recognized by & is

L,(d)= {LET, 1 every computation path of & on t is accepting}.

The class of all universal two-way tree walking languages is denoted by 2UTL.

If d is a 2-dfta, then L,(d) = LN(&), which is called the deterministic two-way tree

walking language recognized by ~2 and is denoted simply by L(d).

2DTL stands for the class of deterministic two-way tree walking languages.

We recall the inclusion diagram of Fig. 1 from [22].

2.5. Top-down tree transducers with look-ahead

First we recall the definition of the regular look-ahead from [2]. A t-fst with regular

look-ahead (V-fst) is a system Y = (C, A, Q, Qin, R), where C, A, Q and Qin are the

same as for a t-fst, while R is now a finite set of rules of the form (q(a(x, , . . . , x,))+<

L 1,L.) such that q(c(x
-.

1, . . . , x,))+ t 1s an ordinary t-fst rule and Li is a recogniz-

able subset of T,, for every i~[l, m].

The relation +,‘7 on the set T,(Q(T,)) is now defined in the following way: for

t,reT,(Q(T,)), t +,Fr if and only if

(a) there is a rule (q(o(x 1, x,))-6 L1, L,) in R, and

(b) r can be obtained from t by substituting a subtree q(a(t,, . . . , t,)) of t by

FCt1 , . .., t,] such that ti~Li for each ie[l, m].

The tree transformation induced by 9 is

z(F)=((t, r)I tET,, rET, and q(t)*,>r for some qEQin).

We define the following versions of a t’-fst. We say that a t’-fst

y=(C, A, Q, Qin, R) is
(a) strongly deterministic (d,t’-fst) if Qin is a singleton set and there are no two

different rules in R with the same left-hand side;

(b) deterministic (dt’-fst) if Qin is a singleton set and LinLf holds for some i~[l, m]

whenever (q(o(x,, x,))+t; L1, L,) and (q(a(x,, x,))-+< L;, Lh) are

different rules in R;

(c) a t-fst with deterministic top-down look-ahead (td’r-fst) if L,EDT-RECOG for

each rule (q(a(x,, x,))+t; L1, L,) and i~[l, m];

(d) a t-fst with deterministic two-way tree walking look-ahead (t2d’1-fst) if L,E~DTL

for each rule (q(a(x,, x,))-+t; L1, L,) and i~[l, m].

The meaning of the abbreviations t2”“-fst and t’““-fst should now be clear.

For any modifiers xejdeterministic, strongly deterministic} and ~~{deterministic

top-down, deterministic two-way tree walking, nondeterministic two-way tree walk-

ing, universal two-way tree walking}, an xt-fst with y look-ahead is defined and

denoted in the natural way. For example, a strongly deterministic t-fst with determin-

istic two-way tree walking look-ahead is denoted by d,tzd”-fst.

As in the definition of a top-down tree transducer, a standard construction shows

that, for a t’-fst S=(C, A, Q, Qinr R) of any type defined above, we may assume

without loss of generality that Y has only one initial state, i.e. Qin= {qO} holds. This is

used hereafter without any reference. Moreover, we write q. rather than {qo}.
Let z be any type of tree transducers that is defined above. The class of all tree

transformations that can be induced by tree transducers of type z will be denoted by

the capital-letter correspondent Z. Thus, we have the classes TR-FST, DTR-FST,

D TR-FST, TDTR-FST, DTDTR-FST, D,TDTR-FST, T2DTL-FST, DT2DTL-FST, DBTZDTL-

FST, TZNTL-FST, DTZNTL-FST, D,T2NTL-FST, T2”TL-FST, DT2”TL-FST and

D TzUTL-FST s as classes of tree transformations.

We recall the inclusion diagram of Fig. 2 from [12].

Note that FTA 0 DT-FST is the class of Rounds’ transformational systems (cf.

Pll).
Engelfriet and Vogler [7] stated the following result, but the proof was left to the

reader (see the remark after Definition 4.18 in [7]).

Proposition 2.3. Let F= (1, A, Q, qo, R) be a dt’-fst. Then there are tdbfta
&=(C, S, Sf, l?) and dt’-fst F’=(C, A, Q, qo, R’) such that z(F)=z(F’) and that,
for each look-ahead set L that appears in some rule of .Y-‘, there is a state SES with
L= L(&(s)).

Fig. 2.

Top-down tree transducers with two-way tree walkiny look-ahead 53

Proof. We only outline the construction of d and Y’. Let L1, L, be all the tree

languages that appear as look-ahead sets in some rule of Y. Assume that, for

each j~[l, n], the tdbfta &j=(S”‘,Z,Sj”,Rj) recognizes Lj. Consider the tdbfta

JZZ =(C, S, Sr, R), where

(i) S={(sr ,..., s,)Isl~S(l) ,..., s,ES(“)},

(ii) S,=O,
(iii) R is defined as follows. For every OEC,, /EN and sir sllr . . . ,sI1 ES(‘),

..’ > s,, sin, s~,,ES(“), the rule

4<Sll,Sln)(Xl). ...> (st1,Sl.>(Xl)b<Sl,s.>(4x,,Xl))

is in R” if and only if the rule

is in Rj for each jE[l, n].

The rules of the dt’-fst Y-’ = (C, A, Q, qO, R’) are defined in the following manner.

The rule

(4(4x,,..., xr))-+t; L(~r4((~ll,...,~l,~)),...,L(~((~ll,...,~l,~))~

is in R’, where sii, SAKES ,..., s In, . . ,s~,ES(“) if and only if the rule

is in R with j 1,j.E[l, n] and

Slj,ESp, . ..) sl,,ESp.

Now it can be easily seen that the tdbfta d and the dt’-fst Y’ satisfy the conditions

of the proposition. 0

From Propositions 2.2 and 2.3 we immediately obtain the following result.

Proposition 2.4. Let F = (C, A, Q, qO, R) be a dt’-fst. Then there are fta

&=(C, Z, S, so, R) and dt’-fst F’=(C, A, Q, qo, R’) with ~(F)=r(F-)) such that,for

each look-ahead set L that appears in some rule of F-‘, there is a state SES with

L= L(&(s)); moreover, for any difSerent states s, s’ES, L(&(s))n L(&(s’))=@.

3. Top-down tree transducers with two-way tree walking look-ahead

In this section, we show how to simulate a finite top-down tree automaton by the

composition of a deterministic top-down tree transducer and a deterministic two-way

tree walking automaton. Using this result we decompose a (deterministic) top-down

tree transformation with regular look-ahead into a deterministic top-down tree

transformation and a (deterministic) top-down tree transformation with deterministic

two-way tree walking look-ahead. Moreover, we show that a transformational system

of Rounds appears as a composition of a deterministic top-down tree transformation

and a strongly deterministic top-down tree transformation with deterministic two-

way tree walking look-ahead.

Convention 3.1. We assume that, for any fta 5 = (C, C, Q, qo, R), there is given an

order on the set R and that whenever we list rewriting rules in R having some common

property we do that with respect to this order.

Definition 3.2. Let F = (C, Z, Q, qo, R) be an fta. Consider the ranked alphabet

~={*}u{~‘~‘I~EC,, d=l.n(q,o) for some qEQ}.

The rank of * is 0 and the rank of 0(d) is d.

The parallel computation tree PC(F, q, t)~ T,- of F on t starting from the state q is

defined in the following way. Assume that t =o(tl, tl) and let k=n(q, a).

(i) If k=O, then PC(F, q, t)=*.

(ii) If k>O and the (q, a)-rules are

44x1, ...,xJ)+4q11(x1),411(x.)),

dO(Xl 3 ...>xl)b4qkl(xl),dXI)).

then PC(F, q, ~)=cJ’~)(PC(F, qll, tl), PC(F, qll, tL), PC(F, qkl,tl),

PC(F, q,,, tl)), where d = k. !.

Note that, according to Convention 3.1, the definition of PC(F q, t) is correct. The

parallel computation tree PC(F’, t) of F on t is defined to be PC(F-, qo, t). Intuitively,

PC(F, q, t) contains all information about all computations of F on t starting from

the state q. Now we present two examples of parallel computation trees because the

definition seems to be involved.

Example 3.3. Consider the fta 3 = (C, Z, Q, even, R), where

(i) C=Z,uZ,, Z,={a} and Z,={a},

(ii) Q = {even, odd},

(iii) R consists of the following rules, listed with respect to the order on R.

even(a(x,, x2))+a(even(x,), even(x,)),

evcn(o(xi, xJ)+(odd(xi), odd(xJ),

odd(o(x,, x2))+4even(x1), odd(x,)),

odd(o(xl,x,))~a(odd(x,),even(x,)),

odd(a)-ia.

Top-down tree transducers with two-way tree walking look-ahead 55

It should be clear that L(5) consists of all trees that contain an even number of a’s

The parallel computation tree of r on ~(a, a) is PC(Y, a(a, a)) = oc4)(*, *, a, a) and the

parallel computation tree of r on ~(a, a(u, a)) is

WY-, a(u, a(u, u)))=d4’(*, d4) (*, *,a, a), a, d4)(*, a, a, *)),

Definition 3.4. We introduce the special deterministic top-down tree transformation

ind, for each ranked alphabet C (cf. [191). It changes a label OEC of a node of an input

tree to (a, i) (i.e. attaches the subscript i to g), where i~[0, m] and m is the maximal

rank of C, if that node is the ith son (from left to right) of its father, in particular, i = 0 if

the node is the root of the tree. The tree ind,(t) is called the indexed copy oft. We shall

omit the subscript C from ind,(t) and simply write ind(t).

It should be clear that ind(t) is induced by the dt-fst S=(C, A, Q, 0, R), where

(1) A = {(c, i) 1 CJE.Z, ic[O, m] > with m being the maximal rank of C;

(2) Q = CO, ml;
(3) R consists of the rules i(a(~i,...,x~))+(~,i)(l(x~),...,/(x~)), where ieQ and

CJEC,.

The indexed copy ind(PC(Y, q, t)) of the parallel computation tree PC(Y, q, t) is

called indexed parallel computation tree, is denoted by IPC(F, q, t), and can be

computed by a deterministic top-down tree transducer; moreover, ind(PC(Y, t)) is

denoted by IPC(r, t).

Proposition 3.5. Let F = (Z, C, Q, qo, R) be an arbitrary ftu. Then there is a dt-fst Fl
such that z(Y1)={(t,IPC(r,t))It~Tz}.

Proof. Set m=max(l. n(q, 0) 1 qEQ, OEC,, 1cN). The dt-fst Y1 = (C, A, Q”‘, (qo, 0),

R,) is constructed as follows.

(1) A is determined by (a) and (b).

(a) (acd’, i)EAd whenever UEC~, IEN, ie[O, m] and d=l.n(q, a) for some qEQ.

(b) (*, ~)EA~ whenever i~[0, m].

Note that the maximal rank of A is m.

(2) Q”‘=(<q,i)lq~Q, i~Cl,ml}u{(qo,W).
(3) RI is defined as follows. For every qEQ, OEC,, IEN, i~[O,m] and for k=n(q, o),

d=k.l,

(i) if k=O, then the rule

(q,i)(o(x,,...,x,))~(*,i)

is in RI, and

(ii) if k>O and the (q, a)-rules are

4(4x1, .f., xt))‘acl(xl)rq&t)).

56 s. vcigIl6lgyi

then the rule

(4, i>(4Xl, ...rxl))+<~(d), 9((q11, l>(x1), ...>

is in RI.
It is obvious that t(Y1)={(t, IPC(Y, t))I tar,}. 0

In the proof of the next theorem we show how to simulate the computation of

a top-down finite tree automaton by the composition of a deterministic top-down tree

transducer and the identical tree transformation on a two-way tree walking language.

Theorem 3.6. For each modifier XE {2DTT, 2NTT, 2UTT}, RECOG = dom(DT-

FST 0 Id(X)).

Proof. First we prove that dom(DT-FSTO Id(X))GRECOG. By the inclusion

XEFTA (see Fig. l), we obtain that

(see CL 21).
Now we prove that RECOG cdom(DT-FST 0 Id(X)) holds as well. Let Y-, Y1

and m be the same as in the proof of Proposition 3.5. Thus, we have

z(Y1)={(t,IPC(~,t))lt~TZ}. We define a 2-dfta Fz such that L(Y)=

dom(s(Y1)oId(L(.Yz))).

Let tE Tz be an arbitrary tree. Intuitively, a subtree fi of IPC(Y, t), can be obtained

by indexing some subtree p of PC(Y, t), where p = PC(Y, q, r) for some subtree r of

t and state qEQ. r2 begins traversing pin state start and “falls off” the subtree p (i.e.

moves up from its root) in state (yes, j) (where j > 0 and the root of p is the jth son of

its father or j = 0 and p = IPC (Y, t)) if and only if p contains a successful computation

q(r) *g r. Otherwise, Yz “falls off” p in state (no, j).

The formal construction of Yz = (d, Q”‘, 6, start, {(yes, 0) >) is as follows:

(1) The ranked alphabet d and the nonnegative integer m are the same as in the

proof of Proposition 3.5.

(2) Q’2’={start}u((yes, i), (no, i) 1 iE[O, ml}.
(3) The mapping 6 is defined by the following conditions:

(i) G(start, (atd’, j))=(start, 1) for any (acd), j)Edd such that d>O.
(Y2 begins traversing the subtree at the current node by visiting its first son.)

(ii) G(start, (o(O), j))=((yes, j), 0) for any (a”‘, j)Edo.

(Y-, reaches a leaf that is different from (*, i), where ie[O, m] and, thus, finds a piece

of some successful computation of FT. Then, in order to complete it, Y-Z goes back to

the father of the leaf. In particular, Y2 “falls off” the input tree IPC(Y, t) in state

(yes, 0) if j = 0.)

Top-down tree transducers with two-way tree walking look-ahead 51

(iii) G(start, (*,j))=((no, j), 0) for any (*, j)EdO.

(F2 arrives at a leaf which indicates the dead end of some derivation of Y. Then F2

goes back to the father of this leaf indicating the failure of F. In particular, Y2 “falls

off” the input tree IPC(Y, t) in state (no, 0) if j =O.)

(iv) s((yes, i), (Ocd), j))=(start, i+ 1) whenever (a’d’,j)Edd, aeLI, d=l.k, keN
and (u-l).l<i<u.l for some uE[l, k].
(F2 has found a piece of successful derivation of Y in the subtree at the ith son of the

current node. Now, to complete it, Y2 goes to the i+ lth son.)

(v) &(yes, i>, <a (d),j))=((yes,j),O) whenever (a’d’,j)Edd, UEC[, d=l.k, kEN

and i=u.l for some uc[l, k].
(F2 has found a piece of successful computation of Y in the subtree at the current

node. Now, to complete it, r2 goes back to the father of the current node.)

(vi) 6((no, i), (o’“‘,j))=(start, u.l+ l), where (a’d’,j)Edd, d>O, ~EC,, d=k.l,
kEN and i~[(tl-l).l+l,u.l] for some l<u<k.

(The subtree at the current node was obtained by indexing some subtree p of

PC(F, t), which is equal to PC(F-, 4, r) for some subtree Y oft and state qEQ. F2 has

found no piece of successful derivation of r in the subtree at the ith son. This means

that the application of the uth (q, cr)-rule at the root of y results in Y failing on r. Now
F2 checks if the application of the next (q, a)-rule (with respect to the order on R) at

the root of r leads to a derivation q(r) =z-> r. This is being checked in the subtrees at the

u.l+ lth,(u+ l).lth sons of the current node.)

(vii) G((no,i), (cr’d’,j))=((no,j),O), where (o’d’,j)Edd,d>O,o~C~,d=k’l, keN
and iE[(k-l).l+ 1, k.11.
(F2 has traversed the subtree at the current node and realized that it contains only

failing computations of r. If j > 0, then r2 goes back to the father of the current node

in state (no, j). If j=O, then the current node is the root of the input tree IPC(Y, t)

and Y2 “falls off” TPC(Y, t) in state (no, O).)

(viii) G((yes, i), (*,j))=g for any (yes, i)EQ(‘) and (*,j)EdO.

(ix) 6((no, i), (*, j))=@ for every (no, ~)EQ”’ and (*, j)EdO.

It is sufficient to prove that dom(~(~))=dom(~(Y1)~Id(L(&‘)). To this end we

prove that, for all qEQ and tcT,, the equivalence

(*) q(t) *,$ t if and only if (start, II, IPC(S, q, t)) E>, ((yes, 0), a, IPC(Y, q, t))

holds with n being the root of IPC(F, q, t).
We proceed by induction on the height of t.

If hg(t)=O, then (*) obviously holds.

Assume that t = a(t, , . . . , tl) with aGI and l> 0 and that (*) has been proved for all

trees from Tz of height less than hg(t). In the rest of the proof we denote by ni the ith

son of the node n.
First we show that the left-hand side of (*) implies its right-hand side. For this

assume that we have

58 S. Vbgvdgyi

Then by the induction hypothesis, for each i~[l, 11,

(start, tii, IPC(Y, qi, ti)) E,gz ((yes, O), c(, IPC(Y, qi, ti))

with ni being the root of IPC(Y, qi, ti).

Assume that

4(4x1, ...> x,))+4q11(x1),41&))~

4(4x1, ...> xl))+~(qkl(xl), . ..3qkl(xI))

are all the (q, a)-rules in R. Then for d = k. I,

PC(T-,q,o(tl, . ..) tl))=a’d’(PC(Y, 411, Ll), PC(F,q,,,t,), . ..)

Pc(r> qkl, tl), ...,pc(r_, qkl, tl)).

Without loss of generality we may assume that q1 =qil) .) ql= qil for some

i~[l, k]; moreover, that, forjE[l, i- 11, it does not hold that a(qji(ti),qjl(tl)) 3;

a(r1, rr), i.e. q(+i, ..~,xl))+a(qil(xl), qil(X,)) is the least rule, with respect to

the order on R, of which the application at the root of t results in a successful

computation of r on t.
Now we conclude with the accepting computation path of Tz on IPC(Y, q, t). For

some integersj,E[l,/], jzE[1+1,2~I],...,ji_iE[(i-2).1+1,(i-l).I],

(start, n, IPC(Y, q, t)) t-,>l (start, nj,, IPC(Y, q, t))

t-g, (<no,ji >, n, IPC(Y, 4, t))

E,>, (start, flj2, IPC(Y, q, t))

t>z ((no,j,>, n, IPC(Y, 4, r))

k,>* (start, ?Zj,_ ,, IPC(Y, q, t))

t>z ((n%ji- I>, 4 IPC(r, 4, t))

ä ~,(start,n(i-,,.~+,, IPC(3,% t))

k,>,((yes,(i-1).1+1),n, IPC(Y,q,t))

~~~(start,n(i-,,.,+*,IPC(~_,q,t)) 

1->2((yes,(i-1).1+2), IPC(Y,q, t)) 

k>z (start, ni.i, IPC(Y, q, t)) 

I->* ((yes, i. I), n, IPC(F, q, t)) 

fT2 (< yes,O), a, IPC(F, 4, t)). 



Top-dam tree transducers with two-way tree walking look-ahead 59 

We now prove that the right-hand side of (*) implies its left-hand side. To this end, 

consider the above accepting computation path of yZ. We denote the ith (q, a) rule of 

y with respect to the order on R by q(o(x,, . . ., xl))+a(q,(xl), . . . . ql(x,)). According 

to the induction hypothesis, the derivations 

42(t2) =?; f2, 

hold. Thus. we obtain that 

Later we shall need the 2-dfta r3 = (d, Q, 6, start, {(no, 0))) that we define from 

r2 in the proof of Theorem 3.6 by changing the set of final states into {(no, O)}. It 

should be clear that L(y2)nL(rj)=Q). 

In the next theorem we decompose any top-down tree transduction with regular 

look-ahead into a deterministic top-down tree transformation and a top-down tree 

transformation with two-way tree walking look-ahead. 

Theorem 3.7. For any values of the modifiers XE{ , D,, D} and YE{~DTL, 2NTL, 

2UTL}, XTR-FST G DT-FST 0 XTY-FST. 

Proof. First we show that TR-FSTG DT-FSTOT~~~~-FST. Let &‘= (C, r, Q, qO, R) 
be a t’-fst. Let L,, . . . . L, be all the tree languages that appear as look-ahead sets 

in some rule of &. Let the tree language Li be recognized by the fta 

pi= (C, C, S”‘, si, Ri) for each i~[l, n]. NOW we define a dt-fst dr and a t2d”-fst &$2 

such that z(,d)=r(dl) 0 ~(zz’~). For each subtree p of the input tree with 

P=O(P, , . . . ,pr) and I>O, ~2~ computes the indexed parallel computation trees 

IPC(~,P,),...,IPC(~~,P,),...,IPC(~~,P,), . . . . IPC(y,,, pl) and joins them to the 

root of p. Then d2, using its deterministic two-way tree walking look-ahead capabil- 

ity on the indexed parallel computation trees, is able to count the look-ahead of &‘. 

Hereafter for every in [ 1, n], SES(‘) and ~EC, we write ni(s, a) to denote the number 

of (s, a)-rules rather than nr,(s, f~). Set 

m=max(l. ni(s, a) 1 i~[l, n], SES”‘, ~EC[, IEN). 

The dt-fst &i = (Z, Sz, Q”‘, ql, RI) is defined as follows: 

(1) The ranked alphabet 52 is the least set satisfying the following three conditions: 



(i) for every (TEZ~, HEN and for d =(n+ 1). 1, @‘EL&,; 

(ii) for every DECO, IEN,~E[O, m], SES”’ and for d = 1. ni(s, a), if ni(s, 0) > 0, then 

(ocd’, j)&?,; 

(iii) for each .~E[O, m], the symbol (*,j)~a,. 

(2) The state set for &‘i is 

Q"'= {(s, i) 1 s&“), a~[l, n], %[O, m]}u{q,}. 

(3) The rules set R, contains the following rules: 

(a) For each acC,, IEN and for d =(n+ 1). I, 

41(4x1, . ..>XZ)) -+ ~‘d’(ql(xl), . . ..41(xz). (Sl,O)(Xl), ...> 

is a rule in RI. 
(If I>O, then the application of this rule at the root of a subtree a( pr, . . . . pl) 

results in the computation of the indexed parallel computation trees 

IPC(di,Pl), ...,IPC(d;9,,P,), . . ..IPCW.,P,), . . . , IPC(d,, pl). These trees are being 

substituted in the (1+ l)th, . . . . (l+n)th, . . . . 1+(1- l).n+ lth, . . . . I.(n+ l)th arguments 

of CJ(~), respectively. If I=O, then we simply have the rule ql(a)+o.) 
(b) For every SES”‘, z~[O,n], a~Z1, I~N,j~[o,rn] and for k=ni(s,o), d=k.1, 

(i) if k=O, then (s,j)(~(xi, . . ..xI))+(*.j)~R1; 
(ii) if k>O and the (s, o)-rules in Ri are 

S(dXl > . . ..xz)) + dSll(Xl), . . ..SldXZ)h 

44x1 > . . ..xz))+ 4%1(x1)), . . ..sdxz)). 

then the rule 

<S,j>(4Xl, . . . . xz))+<~‘d)~~)(<sll? 1)(x1), . . ..<SlZ.~)(XZ), ..‘, 

is in RI. 
Now for i~[l, n], construct the 2-dfta Y: to Yi in the same way as Yz was 

constructed to Y in the proof of Theorem 3.6. The tree languages L( Y_i), ic [ 1, n], will 

appear as look-ahead sets of _ti2, in fact, J& counts the regular look-ahead of .d on 

the indexed parallel computation trees joined to the nodes of the input tree for d. 

The rewriting rules for the tzd” -fst .d2 = (s2, r, Q, qo, R,) are defined in the following 

manner. 

(i) For every qEQ and ~EC,, q(o)-+a is in R2 if and only if q(o)+a is in R,. 



Top-down tree transducers with two-way tree walking look-ahead 61 

(ii) For every qEQ, a&[ with I>0 and for d=(n+l).I, (q(dd’(xl,...,xd))+t; 
N,, . . . . N,)ER, ifand only if (q(o(x,, ...) Xl))~t; Lil, ...) Li,)ER1 with il, . . . . &E[l, n] 

and 

1 
L(Fj) if U=1+ij+(j-l)‘n for some jG[l, I], 

N,= Tzun if u~[l, 11, 

T, otherwise. 

It can be seen that z(Az~)=z(&‘~)oT(&‘~) and that the construction of dz preserves 

strong determinism. Thus, we have proved that 

TR-FST G DT-FST 0 T2DTL-FST 

and that 

D,TR-FST z DT-FST 0 D,TZDTL-FST. 

Now we show that DTR-FSTG DT-FST 0 DT2DTL-FST. Let, to this end, 

g = (Z, r, Q, q,,, R) be a dt’-fst and let L1,. . . , L, be all the tree languages that appear 

as look-ahead sets in some rule of 93. By Proposition 2.4 we may assume, without loss 

of generality, that there is an fta d =(Z, C, S, so, R) such that, for each look-ahead set 

Li with i~[l, n], there is a state Sips with Li=L(d(Si)) and such that, for any two 

different states s, YES, L(d(s)) n L(d(s’)) = 8. Then put 

m=max(l.n(s, g) 1 SE& OEC,, IEN). 

We define a dt-fst &?I and a t2d” -fst g2 such that r(5?)=r(991)o~(912). For 

each subtree p of the input tree with p= O( pl,. . .,pl) and 1 >O, %?r computes the 

indexed parallel computation trees IPC(.d(sI), pl), . . . . IPC(d((s,),p,), . . . . 
IPC(&‘(s,), pl), , IPC(ZZ’(S,), p,) and joins them to the root of p. Then g2, using its 

deterministic two-way tree walking look-ahead capability on these indexed parallel 

computation trees, is able to count the look-ahead of 93. 

The dt-fst 3YI = (C, Sz, Q(l), ql, R,) is defined as follows. 

(1) The ranked alphabet n is the least set satisfying the following three conditions: 

(i) For every DECO, IEN and for d=(n+ 1).1, otd)~SZd. 

(ii) For every FEZ,, IEN, j~[0, m], SES and for d= I. n(s, a), if n(s, a)>O, then 

(gtd),j)E&. 

(iii) For each je[O, m], the symbol (*,j)~fi,. 

(2) The state set for 3JI is 

Q"'=~(~,j)I~~S,j~CO,~l}u{ql}. 

(3) The rule set RI contains the following rules: 

(a) For each cr~C,, HEN and for d = (n + 1). 1, 

41(a(x,,...,xl))~a’d)(q,(x,),...,q,(xl), <Sl,O)bl),~~., 

~~,,~~~~1~~...~~~1,~~~~~~,...,~~,,~~(~~)) 



62 S. VbgvBlgyi 

is a rule in R, . 

(If I> 0, then the application of this rule at the root of a subtree a( pi, . . . , pl) results in 

the computation of the indexed parallel computation trees IPC(&i, pl), . . . , 

IPC(J4, PI), . . . . IPC(dl, pi), ., IPC(&,,, pl). These trees are being substituted in the 

(I+ l)th, . . . . (l+n)th, . . . . 1+(/L l).nth, . . . . I.(n+ 1)th arguments of crcd), respectively. If 

1=0, then we simply have the rule ql(o)+c.) 

(b) For every SES, CJEC~, 1~N,j~[0, m] and for k=n(s, a), d = k.1, 

(i) if k=O, then (s,j)(~(xi, . . . . x,))+(*, j) is in RI. 

(ii) if k > 0 and the (s, o)-rules are 

S(@l > . . ..x.)) -+ 4Skl(Xl), . . ..%l(XJ). 

then 

(s,j)b(x1, . . . . ~J+(~(~),j)((s~~, l>h),..., 

is a rule in RI. 

Construct the 2-dfta’s CT2 and Yj to Y as in the proof of Theorem 3.6 and as in the 

remark after the proof of Theorem 3.6, respectively. The tree languages L(Fz) and 

L(Fj) will appear as look-ahead sets of Bz, in fact, 98z counts the regular look-ahead 

of 98 on the indexed parallel computation trees that are joined to the nodes of the 

input tree for 98. 

The rewriting rules of the t2d” -fst g2 = (A, r, Q, qo, R2) are defined in the following 

manner. 

(i) For every qeQ and ~EC,, the rule q(a)+a is in R2 if and only if the rule q(a)+a 

is in R,. 

(ii) For every qEQ, CJEC, with 1>0 and for d=(n+ l).I, 

(q(dd’(x,, . . . . xd))+t; N1, . . . . Nd)ER2 

if and only if 

with i 1, . . ..irE[l. n] and 

L(.F2) if u=l+ij+(j-l).n for some jE[l,/], 

if u~[l, 11, 

L(.Y3) otherwise. 

Here we show that Bz is deterministic. 



63 Top-down tree transducers with two-way tree walking look-ahead 

Consider two different (q, a’d’)-rules 

(q(o’d’(xl, . . ..Xd))-+t. N1, . . ..Nd) 

and 

(q(aCd’(xl, . . . . xd))+t’; N;, . . . . N;) 

of g!2 that are constructed from the different rules 

<Mx,,...,x,))-+t; LC.,,...‘L”,) 

and 

<q(4x,,...,xJ)-+t’; Lz,,...,Lz,) 

of 9, respectively. Since Y is deterministic, Lui n Lzi =f~ for some i~[l, I]. Let 

u = I+ Ui + (i - 1). n. Then N, = L(y2) and Nh = L(T3). After the proof of Theorem 3.6 

we noted that L(F2) n L(r3) = 0, implying N, n N: = 0. Thus, we have proved that Bz 

is a dt2d”-fst. It is left to the reader to show that r(B)=~(99i)or(B~). 

Thus, we have verified the inclusion DTR-FST E DT-FST 0 DT2DTL-FST. Since 

2DTLc2NTLn2UTL (see Fig. l), all the other inclusions that are stated by the 

theorem are true. 0 

In the next theorem we show how to simulate the composition of a deterministic 

top-down tree transducer and of a top-down tree transducer with two-way tree 

walking look-ahead by a top-down tree transducer with regular look-ahead. 

Theorem 3.8. For any values of the modifiers X E { , D} and YE { 2DTL, 2NTL, 2UTL}, 

DT-FST 0 XTY-FST G XTR-FST; moreover, DT-FST 0 D,TY-FSTG FTA 0 DT-FST. 

Proof. 

(9 
(ii) 

(iii) 

DT-FST 0 TY-FST c DTR-FST 0 TR-FST G TR-FST (by Theorem 2.11 in [2]); 

DT-FST 0 DTY-FST c DTR-FST 0 DTR-FST E DTR-FST (by Theorem 2.11 in 

L-21 ); 
DT-FST 0 D,TY-FST c_ DT-FST 0 D,TR-FST (by Fig. 1) 

=FTA oDT-FST (by the proof of Lemma 6.3 in [12]). 

0 

Here we give a new decomposition of Rounds’ transformational system. 

Theorem 3.9. For each YE { 2DTL, 2NTL, 2UTL}, FTA 0 DT-FST G DT-FST 0 D,TY- 

FST. 

Proof. Let &i=(C, C, QC1),ql,R1) be an fta and let d2=(C,r, Qc2’, q2,R2) be 

a dt-fst. We define the dt-fst &, =(C, I-, Qc3’, q3, R3) and the d,t2d”-fst 

&b=(r, A, QC4’, q4, R4) such that ~(~C81)05(~2)=~(~3)ot(~4). 



64 S. Vdgvdlgyi 

Intuitively, for an input tree t, d3 computes IPC(&i, t) and joins it to the root oft. 

Then ,sl,, using its deterministic two-way tree walking look-ahead capability on 

IPC(di, t), decides whether tEL(dl). If tEL(dl), then L&‘~ simulates dz on t. 

Set m=max(l.n(q, 0) 1 qcQ, OEC~, /EN). The dt-fst &j= (C, A, Qc3’, q3, R3) is 

defined as follows: 

(1) A is the least ranked alphabet satisfying (a), (b), (c) and (d). 

(a) For every OEC~, IEN, i~[O,m], qEQ such that n(q,a)>O and for 

d=l’n(q, a), (ocd), i)Edd. 

(b) For each ie[O, m], (*, i)~d,,. 

(c) For every FEZ,, DELI,,,. 

(d) CGA. 

(2) Qc3’= (q3, id)u{ (4, i> I qEQ(l), WI, ml}. 
(3) R, is defined in the following way. 

(9 

then the 

is in R,. 

For every q E Q(r), OEC~, IEN, i~[O,m] and for k=n(q,a), d=k.l, 
(a) if k=O, then (q, i) (a(~,, . . ..xJ)+(yi)~R~ 
(b) if k > 0, and the (q, cr)-rules are 

q(o(x1, .,.,x1)) + a(q,,(x1), . . ..411(x.)), 

4(4x1 3 . ..>Xl)) -+ 467kl(Xl), . . ..qdxJ). 

rule 

(49 0 (4x l,...,xl))-,(a(d),i)((qll, 1)(x1),..., 

(41~,I)(x,),...,(qkl,(k-l).1+l)(x1),...,(qkl,k.1)(x1)) 

(ii) For every GEC~ such that I > 0 and for k = n(q, a), d = k. 1, if the (ql, a)-rules 

of RI are 

41(4x1 > . . ..Xl)) + 467,1(x1), . ...4&)), 

41(4X1> . ..txt)) + 4q!d(x1), ~~~>clkl(XJ), 

then the rule 

q3(& ,...,~~))~~(id(x~),...,id(x~), <a’d),O)(<qll, 1) (xl),..., 

<411,1)(x,),...,(q,,,(k-1).1+1) (~l),...,<qkl,k.l)(xI))) 

is in R3. 
(iii) For each GEE,, if the rule ql(a)+a is in RI, then the rule q3(g)+o is in R,. 
(iv) For every ~E,Y! and IEN, id(a(x,, . . ..x[)) -+ o(id(x,), . . ..id(x.)) is in R3. 

It is an easy observation that t(d3)={(t,t)~t~L(d’l)nC,}u{(a(t,,...,t,), 
cr(t1, . ..) t[, IPC(Jzzi, a(t,, . ..) 4))) I i>O, -C,, t1, . . . . WTr}. 



Top-down tree transducers with two-way tree walking look-ahead 65 

The d,t2d’1-fst ~2~ = (d, r, Qc4), q4, R4) is constructed as follows: 

(1) Qt4)= (q4}uQc2’. 
(2) The rule set R4 is determined by (i) and (ii). 

(i) Define B to &i in the same way as y2 was defined to 9 in the proof of 

Theorem 3.6. If ~EC~+~ with I>0 and q2(o(xl, . . ..x~))+T is in R2, then the rule 

(44(a(x,, ..., x[+~))+c TX, . . . . T,, L(g)) is in R4. (This rule can be applied at the root 

of the tree 5(tl, . . . . t,, IPC(dl,o(t,, . . . . tl))) if IPC(&i,o(t,, . . . . rI))~L(54?), i.e. if 

o(r1,...,r&L(~1).) 
(ii) If a~Z,,n7(&‘~) and q2(c)+r is in R,, then q4(o)+r is in R4. 

(.d4 simulates the computation of .d2 on the tree CJ of height 0 if awl.) 

(iii) For every GEZ, and qEQc2’, if q(o(x,,...,xl))+r is in R2, then 

(q(o(x,, . . . . xl)) + r; T,, . . . . Tz) is in R4. (After coming down from the root of the 

input tree a(ti, . . . . tl, 5(t1, . . . . t,, IPC(A,,a(tl, . . . . tr))), ~52, simulates d2 in the 

natural way.) 

It is easy to see that r(~l)ot(d2)=z(d,)o~(~4). Thus, we have the inclusion 

FTA 0 DT-FST G DT-FST 0 D,T ZDTL-FST The other two inclusions of the theorem . 
are simple consequences of the above result. 0 

The main result of this section gives a characterization for the translation power of 

top-down tree transducers with two-way tree walking look-ahead. 

Theorem 3.10. For any value ofthe modijiers XE { , D} and YE{~DTL, 2NTL, 2UTL}, 

we have 

and 

XTR-FST = DT-FST 0 XT’-FST 

FTA 0 DT-FST = DT-FST 0 D,TY-FST. 

Proof. It follows from Theorems 3.7, 3.8 and 3.9. 0 

4. An inclusion diagram for deterministic and strongly deterministic classes 

of top-down tree transformations with look-ahead 

In this section we gather together the deterministic and strongly deterministic 

classes of top-down tree transformations with some type of look-ahead and Rounds’ 

transformational system. We prove that Fig. 3 shows the inclusion diagram of these 

classes. 

To this end, we prove that all inclusions shown are proper and that all unrelated 

classes are incomparable. Along the proof we verify the following five formulae. 

(i) DT-FST c D,TDTR-FST; 

(ii) for any modifier YE { 2DTL, 2NTL, 2UTL}, 

D,TY-FST c DTY-FST (i.e. the vertical lines indicate proper inclusions); 



S. VbgvBlgyi 

DTR-FST 

DT2 

PTAoDT-FST 

.FST 

,2UTL_FST Dl 

i TR 
-FST 

DT-FST 

Fig. 3. 

(iii) D,TDTR-FST $ DTzNTL-FST; 

(iv) D,TzNTL-FST $ DT2”TL-FST; 

(v) D,T2DTL-FST If DTDTR-FST. 

To begin with we prove (i). In [17] it was shown that D,TDTR-FST=(DT-FST)2 and 

in [21] the example after Theorem I.2 shows that DT-FSTc(DT-FST)2. Thus, 

DT-FST c D,TDTR-FST. 

We proceed by proving (ii). According to Fig. 2, D,TDTR-FSTC DTDTR-FST and 

D,TR-FST c FTA 0 DT-FST c DTR-FST. By Theorem 3.10, for any modifier 

YE{~DTL, 2NTL, 2UTL}, 

DT-FST 0 D,TY-FST = FTA 0 DT-FST c DTR-FST = DT-FST 0 DTY-FST. 



Top-down tree transducers with two-way tree walking look-ahead 67 

Thus, D,T*-FST c DT*-FST. 

Here we prove (iii). We adopt the two-way tree walking languages introduced in 

Example 3.2 of [19]. Let C =Z0uC2, C, = {a, b} and C2 = (0). Thus, T, is the set of all 

binary trees in which every interior node is labeled by 0 and every leaf is labeled 

by a or b. Consider the following 2-fta %7=((q,,,qF},C,S,q,,, {qF)), where 

d(q,, o)={(q~, l), (qo,2)}, a(q,, a)=(qF,O), d(qF,c)=&,O) and all other transitions 
are undefined. Then 

Lo = {TV T, 1 t has a leaf labeled by a} 

and 

L,(g)= {TV T, 1 every leaf of t is labeled by u}. 

The set of balanced binary trees over C is the least set BBT that satisfies the 

following two conditions: 

(i) a, bEBBT. 

(ii) For any p, qcBBT such that hg( p)= hg(q), a( p, q)EBBT. 

We prove the following result by slightly modifying the proof of Theorem 5.6 

in [20]. 

Proposition 4.1. For every 2-ftta B=(Q, C, 6, qo, F) such that LN(B)~Lu(%‘) and for 
every balanced binary tree t in I&.(%?), hg(t)d 1 QI + 1. 

Proof. Consider any balanced binary tree tEL,(g) of height greater than or equal to 

1 Q / + 2. Let P be an arbitrary accepting computation path of a on t. Along P, a must 

visit all leaves of t since otherwise g would also accept the tree obtained from t by 

changing the label of an unvisited node from a to b. Let a,, u2, . . . , ak be the sequence 

of leaves of t visited by a along P in this order, some leaves may be repeated in the 

sequence. For any two leaves, ai and aj, the distance between Ui and aj is defined to be 

the length of the path from ai (or Uj) to their nearest common ancestor. If ai = aj, then 

the distance between them is 0. It should be clear that there are two leaves ai and 

ai+ 1 with distance greater than or equal to IQ1 + 2 and that g goes from ai to 

ai+ 1 through their nearest common ancestor n. In the transition process from Ui to n, 
g visits at least IQ I + 1 different internal nodes, all of which are labeled by c. 

Therefore, g must visit two different internal nodes, nl and n2 say, n2 being above n,, 
in the same state. Since 5? does not visit any leaf between ai and ai+ 1, it must repeat 

the computation between n, and n2 until it arrives to the root oft and “falls off” t. But 

this is impossible since having “fallen off” t, 93 cannot visit Ui + 1. This contradiction 

proves the proposition. 0 

The following result is immediate by Proposition 4.1 



Consequence 4.2. Let n> 1 and let, for each 1 d i<n, &i=(Qit .Zi, 6i, qi, FL) be a 2-fia 

with LN(zfi) s L,(V). Then, u (LN(di) 1 1 d id n) c L,(W). 

Using Consequence 4.2 now we can prove (iii). 

Theorem 4.3. D,TDTR-FST 9 DTzNTL-FST. 

Proof. Consider the relation p = {(t, a) 1 t~L,(g)}, which can be induced by a d,td”-fst. 

Suppose that ~EDT 2NTL-FST i e. for some dt*““-fst Y= (C, d, Q, qO, R), p=z(Y). 

Let L1, ., L, be all tree lang;ages that appear as look-ahead sets in some rule of 

Y such that Li c L,(V) for each iE[l, n]. According to Consequence 4.2, there exists 

a tree t such that tEL,(%?- u(L$ i~[l, n]). S ince a(t, t)Edom (z(r)), there exists 

a derivation qO(a(t, t)) a,$ a. In the first step of this derivation Y deletes at least one 

occurrence of t, i.e. the rewriting rule applied at the root of h has the form 

<qo(a(xl, xz))+s, Lil, Li,) with sE{q(x,), 4(x2) I qEQ>u{a}, in, izgCL nl. Since tell, 
and t~Li2, Lil $ L,(g) and Li, $L,(W). Thus, there exist trees tl and t2 with 

tIeLi, -L,(V) and t*ELi,-L”(~). If s=q(xI) for some qEQ, then qo(a(t, t2)) =-,>a 

holds. If s= q(x2) for some qEQ, then we have qo(a(t,, t)) => a. If s=a, then 

we obtain qo(o(tI, t2)) +> a. All three cases ’ contradict the assumption 

dom(z(Y)) = L,(V). 0 

Now we shall prove (iv). The proof of the following proposition is based on that of 

Lemma 3.4 in [19]. 

Proposition 4.4. Let .d = (Q, C, 6, qO, F) be a 2-fta such that L,(d) c LN(%‘) and let 

t be a binary balanced tree with hg(t) > log,(2. IQ I + 2) in which every leaf is labeled by b. 

Then there is a nonaccepting maximal computation path P of d on t such that JZ! visits at 

most 2. (Q I + 2 leaves during P. 

Proof. Note that t has more than 2. k + 2 leaves. Since t.$L,(&), there is a nonaccept- 

ing maximal computation path P’ = {I, I n <k d CO} of d on t. Suppose that Pe visits at 

least 2. IQ I + 3 leaves during P’ and let (ai I i < k < o) be the sequence of leaves visited 

in this order by s4 during P’. Since there are more than IQ1 leaves, d must visit two 

leaves during P’, say ai and aj, in the same state. Let ai and aj be the first such nodes in 

the sequence. Hence, there are 0< Ii< lj< k and qEQ such that Zli =(q, ai, t), 

Zlj=(q, aj, t) and Zli Eb Zlj. Furthermore, d visits at most IQ1 + 1 leaves during the 

sequence IO, . . . , lli, . . . , llj in P. Here we construct the sequence of ID’s such that 

Zlj tt II, by applying the same transition at each step as in II, +$ IL,, but by starting at 

nj instead of n,. Note that this is possible because t is a balanced tree in which all the 

internal nodes together with the root and all leaves are labeled by the same symbols (a 

and b, respectively). Then, we can obtain a maximal computation path P by infinitely 

repeating this sequence after I,,, . . . , I[,. Clearly, P is not accepting; moreover, & visits 

at most 2.1 Q / + 2 leaves during P since it visits the same leaves, the number of which is 

at most IQ I + 1, in the repeated portion II, Ef Zlj of P. q 



Top-down tree transducers with two-way tree walking look-ahead 69 

From Proposition 4.4 we directly get the following result. 

Corollary 4.5. Let n> 1, andfor each i~[l, n], let di=(Qi, .Z, hi, qi> Fi) be a 2-fta such 
that Lu(di)C_LN(W). Then U(L”(~i)(i~[l,nl)cL,(~). 

Proof. Let t be a binary balanced tree with hg(t)>log,(n.max(2./QijIiE[1,n])+ 

2. n) in which every leaf is labeled by b. For i~[l, n], let Pi be a nonaccepting maximal 

computation path of pi on t such that -c4i visits at most 2.1 Qi I+ 2 leaves during Pi (cf. 

Proposition 4.4). Since t has more than It. max(2.1 Qi I I in [ 1, n]) + 2. n leaves, there is 

a leaf which is not visited by di during Pi for each i~[l, n]. Define r from t by 

changing the label of this leaf from b to a. Then rELN(%?)- U(L”(~i) 1 i~[l, n]). 0 

Now we are able to prove (iv). 

Theorem 4.6. D,T2NTL-FST $ DTzUTL-FST. 

Proof. Let us consider the tree transformation p = ‘)}, which 

can be induced by a dstZ”” -fst and assume that ~GDT’“~~-FST, i.e. that there exists 

a dt2”“-fst Y = (C, Z, Q, qo, R) such that p = t(Y). Let L1, . . . , L, be all tree languages 

that appear as look-ahead sets in some rule of 5 such that Li c LN(%‘) for each 

i~[ 1, n]. According to Corollary 4.5, there exists a tree t such that 

tEL,(%?)- U(Li I i~[l, n]). NOW o(t, t) is in LN(%‘) as well. Thus, qo(o(t, t)) *%a holds. 

From now on the proof can be finished in the same way as that of Theorem 4.3 was 

finished. 0 

Finally, we prove (v). Let C=CouZ2 where C,, = (a> and C2 = {o}. The tree 

language K. G T, is the set of all trees over C that contain an even number of leaves 

while K1 is the complement of Ko, i.e. K1 = TX-K,. Let K”,={ind(p)Ip~K~} and 

K”, = (ind( p) ) ~EK 1}. Using an argument similar to the proof of Lemma 5.9 in [12] 

one can prove the following result. 

Lemma 4.1. Let n>, 1, and for each iE[l, n], let di=<C, C, Q, qo, R) be a dfta such 

that Lag,. Then IJ(L(di)Ii~[l,n])~ZZo. 

On the other hand, I?, is in 2DTL. 

Lemma 4.8. K”,E~DTL. 

Proof. We construct a 2-dfta ~2 with L(d)= I?,; d traverses a subtree p= 

(0, i) ( pl, pz) with ie[l, 23 of the input tree in the following order: 

(1) &’ visits the root of p, 

(2) d traverses the subtree pl, 



70 S. Vbgudgyi 

(3) d visits the root of p, 

(4) d traverses the subtree p2, 

(5) d “falls off” the subtree p. 

While JZZ is wandering up and down the input tree t, it examines if t is an indexed 

copy of some tree in TX and counts the parity of the number of the already visited 

leaves. 

The formal construction of d is as follows. 

d = (A, Q, 6, start, { yes)), where 

(1) A=A,uA,, A,={(a,i)Ii~[O,2]} and A2={(o.i)Ii~[0,2]}; 

(2) Q= { (i, even, 0), (i, odd, 0), (even, i), (odd, i) 1 i~[l, 2]}u{start, yes}. 

Intuitively the state (i, even, 0) means that 

(a) & checks whether the current node is the ith son of its father (in this way 

&’ examines whether the input tree is an indexed copy of some tree in T,), that 

(b) the parity of the number of the already visited leaves is even, and that 

(c) & came to the current node from its father. Similarly, the state (even, j) 

means that 

(a) the number of the already visited leaves is even, and that 

(b) & came to the current node from itsjth son. 

(3) 6 is defined as follows: 

G(start,(a,O))=((l,even,O), l), 

d(<l, even, 0 (a, l))=(<l, even, W, l), 

d( (1, even, 0 (a, 1)) = ((odd, I>, Oh 

&CL even, (0, <a, V)=(<L even, (0, l), 

6( (2, even, 0 <a, 2)) = ((odd, 2),0), 

6( (even, I>, (5 1)) = ((2, even, 0 4, 

d((even, I>, <~,2))=(<2, even, 0>,2), 

&(even, I>, (o,O))=((Z even, 0 21, 

6( (even, 23, Co,1 >) = ((even, l>, Oh 

&<even, 2), (0,2))=(<even, 2),0), 

d((even, 2), (u, O>)=(yes, 01, 

h((l, odd, O>, (0, l))=(<L odd, O>, l), 

d(<L odd, 0 <a, l>)=(<eves l),O), 

6(<2, odd, O>, (0,2))=((1, odd, O>, 11, 



Top-down tree transducers with two-way tree walking look-ahead 71 

d( (2, odd, O>, (a, 2)) = ((even, 2), O), 

G((odd, I>, <a, 2))=((2, odd, O>, 21, 

G(<odd, I>> (a,O))=(<2, odd, O>, 3, 

6( (odd, 2), Co,1 >) =( (odd, 2), O), 

6( (odd, 2), <0,2)) = ((odd, 2), Oh 

and all other transitions are undefined. 

It can be seen that, using the states (i, even, 0) and (i, odd, 0) with i~[l, 21, 

JZZ’ checks whether the input tree is an indexed copy of a tree over C. Having traversed 

a proper subtree, d goes up to the father of its root in state (even, i) or (odd, i) with 

i~[l, 21 depending on the number of leaves in it and on the position of its root with 

respect to its brothers. The 2-dfta d “falls off” the input tree in state yes if there are an 

even number of leaves in it. 

It is not hard to see that L(&)=k,. 0 

Now we are able to prove (v). 

Theorem 4.9. D,TZDTL-FST Y$ DTDTR-FST. 

Proof. Consider the tree transformation p = {(~(r, t), a) 1 r, tcK”,}, which can be in- 

duced by a dstZd” -fst. Similarly to the proof of Theorem 4.3, using Lemma 4.7, one can 

show that p$DTDTR-FST. 0 

The correctness of the diagram of Fig. 3 immediately follows from (i), (ii), (iii), (iv) 

and (v). 

Theorem 4.10. The diagram of Fig. 3 is the inclusion diagram of the poset ( {DTR- 

FST, DT2NTL-FST, DT 2UTL-FST, DT2DTL-FST, DT DTR-FST, FTA 0 DT-FST, D,TR- 

FST, D,T2NTL-FST, D,T IUTL-FST, D,T2DTL-FST, D,TDTR-FST, DT-FST ), c_ ). 

Proof. The formulae (i), (ii), (iii), (iv) and (v) imply that all inclusions shown are proper 

and that all unrelated classes are incomparable. 0 

5. Composition results 

In this section we investigate the composition powers of top-down tree transforma- 

tion classes with some type of two-way tree walking look-ahead. In the strongly 

deterministic and deterministic cases the second powers properly contain the first 



12 S. Vdgvdgyi 

powers and equal the third powers while in the nondeterministic case we obtain 

proper hierarchies. 

First we study the strongly deterministic transformation classes. 

Theorem 5.1. For any YE{~DTL, 2NTL, 2UTL}, D,TY-FSTc(D,TY-FST)’ =(D,TY- 

FST)3 = FTA 0 DT-FST. 

Proof. D,TY-FST c FTA 0 DT-FST by Theorem 4.10. Thus, 

(D,TY-FST)3 G(FTA 0 DT-FST)3 

= FTA 0 DT-FST (by Lemma 4.3 and Theorem 6.2 of [12]) 

= DT-FST 0 D,TY-FST (by Theorem 3.10) 

G (D,TY-FST)2. 0 

Now we turn to the deterministic case. 

Theorem 5.2. For each YE {ZDTL, 2NTL, 2UTL), DTY-FST c(DTY-FST)’ = (DTY- 

FST)3 = DTR-FST. 

Proof. By Theorem 4.10, DTY-FST c DTR-FST. Moreover, 

DTR-FST = DT-FST 0 DTY-FST by Theorem 3.10, 

E (DTY-FST)k for k 3 2, 

E (DTR-FST)k 

=DTR-FST (by Theorem 2.11 of [a]). 0 

Finally, we study the composition powers of nondeterministic tree transformation 

classes. 

Theorem 5.3. For every k 2 1 and YE{~DTL, 2NTL, 2UTL}, (TY-FST)k c (Ty- 

FST)k+ ‘. 

Proof. Assume that (TY-FST)k = (TY-FST)k+ 1 for some YE {2DTL, 2NTL, ZUTL} 

and k> 1. Then for every n> k, (TY-FST)” =(Ty-FST)k. Using the fact that TR- 

FST G (T-FST)2 (see Corollary 2.13 of [2]), we have T-FST s TY-FST 5 TR-FST C (T- 

FST)2. Thus, for n > k, (TY-FST)” E (T-FST)’ ” G(T~-FST)~ .’ c (T-FST)4’” G (Ty- 

FST)4‘n=(TY-FST)“. Thus, we have (T-FST)2.“=(T-FST)4’“, which contradicts 

Theorem 3.14 of [4]. 0 



Top-down tree transducers with two-way tree walking look-ahead 73 

6. Conclusion 

We have investigated top-down tree transducers with two-way tree walking look- 

ahead. These devices are natural restrictions of top-down tree transducers with 

regular look-ahead. We compared the transformational power of deterministic and 

strongly deterministic versions of top-down tree transducers with some type of 

two-way tree walking look-ahead by presenting the inclusion diagram for the tree 

transformation classes induced by them. We also studied composition powers of the 

above classes. In the strongly deterministic and deterministic cases the second powers 

properly contain the first powers and equal the third powers while in the nondeter- 

ministic case we obtain proper hierarchies. 

Along this line of research we obtained new decompositions of the transformational 

system of Rounds and of the top-down tree transformation with regular look-ahead. 

For further investigations many areas remain open: 

(1) Show that DT-FST 0 DTDTR-FST = D,TDTR-FST 0 DTDTR-FST = DTDTR-FST. 

Give another proof for (v) in Section 4 using this result, Theorem 3.10 and the 

noninclusion FTA 0 DT-FST $ DTDTR-FST. 

(2) Give a finite presentation or a finite complete rewriting system for the composi- 

tions of those tree transformation classes that appear in Fig. 3. Similar research work 

was carried out in [ 11, 15, 161. 

(3) For any modifier C taken from the set {2DTL, 2NTL, 2UTL}, iterate the 

look-ahead tree languages as follows. Let C,, = C and let, for n 3 1, C, be the class of 

tree languages recognizable by deterministic top-down tree automata with 

C,_ 1 look-ahead. (In [13] the iteration was started with Co = DTREC.) Do we obtain 

an infinite hierarchy in this way? 

(4) The concept of look-ahead on arbitrary storage type was formalized as an 

operator on storage types, i.e. if S is a storage type, then S with look-ahead, denoted by 

S LA> is one too (see [S, 81). The storage type S LA is obtained from S by adding special 

predicates, the so called look-ahead tests. They have the form (q, &) where q is 

a nonterminal of a CF(S) transducer J&‘. The look-ahead test (q, ~2) is true on 

a configuration c if and only if the transducer ~2 can derive a terminal string from q(c). 

Since the domain of a top-down tree-to-string transducer is a regular tree language 

(see [21]), it follows that the top-down tree transducer with regular look-ahead is the 

RT(TRLA) transducer, where RT abbreviates the modifier regular tree and TR denotes 

the storage type tree (see [S, 81). 

Engelfriet presented the decomposition 

TR-FST = T-FST 0 LH 

in Corollary 2.13 of [2], where LH denotes the class of tree transformations induced 

by linear homomorphisms. This result may be written in the form 

RT(TR,,) = RT(TR) 0 LH 

as well. 



14 S. Vbgodlgyi 

Generalize the above result for arbitrary storage type S, i.e. show the equality 

RT(SJ = RT(S) 0 LH. 

(5) The notion of a top-down tree transducer with regular check was introduced in 

[12]. Introduce and study top-down tree transducers with some type of two-way tree 

walking check. 

References 

[I] J. Engelfriet, Bottom-up and top-down tree transformations-a comparison, Math. Systems Theory 

9 (1975) 198-231. 

[2] J. Engelfriet, Top-down tree transducers with regular look-ahead, Math. Systems Theory 10 (1977) 

289-303. 
[3] J. Engelfriet, On tree transducers for partial functions, Inform. Process. Lrtt. 7 (1978) 170-172. 

[4] J. Engelfriet, Three hierarchies of transducers, Math. Systems Theory 15 (1982) 95-125. 

[5] J. Engelfriet, Context-free grammars with storage, Report 86-l 1, University of Leiden, 1986. 

[6] J. Engelfriet, G. Rozenberg, and G. Slutzki, Tree transducers, L-systems, and two-way machines, J. 

Comput. System Sci. 20 (1980) 150-202. 

[7] J. Engelfriet and H. Vogler, Macro tree transducers, J. Comput. System Sci. 31 (1985) 71-146. 

[S] J. Engelfriet and H. Vogler, Pushdown machines for the macro tree transducer, Theoret. Compuf. Sci. 

42 (1986) 251-369. 

[9] J. Engelfriet and H. Vogler, Look-ahead on pushdowns, Injiirm. and Comput. 73 (1987) 245-279. 

[lo] J. Engelfriet and H. Vogler, High level tree transducers and iterated pushdown tree transducers, Acta 

Inform. 26(19X?) 131-192. 

[l l] Z. Fiiliip, A complete description for a monoid of deterministic bottom-up tree transformation classes, 

Theoret. Comput. Sci. 88 (1991) 253-268. 

[12] Z. FiilBp and S. VBgvhlgyi, Variants of top-down tree transducers with look-ahead, Math. Systems 

Theory 21 (1989) 125-145. 
1131 Z. Fiiliip and S. VBgvGlgyi, Iterated deterministic top-down look-ahead, in: J. Csirik, J. Demetrovics 

and F. Gkcseg, eds., Proc. FCT ‘89, Lecture Notes in Computer Science Vol. 380 (Springer, Berlin, 

1989) 175-184. 
1147 Z. Fiilap and S. V&gvalgyi, A characterization of irreducible sets modulo left-linear term rewriting 

systems by tree automata, Fund. Inform. XIII (1990) 21 l-226. 
[lS] Z. Fiiliip and S. VBgviilgyi, A finite presentation for a monoid of tree transformation classes, in: Proc. 

2nd Conf on Automata, Languages and Programming systems (Karl Marx University of Economics, 
Budapest, 1988) 115-124. 

1161 Z. Fiiliip and S. VBgviilgyi, A complete rewriting system for a monoid of tree transformation classes, 

Inform. and Comput. 86 (1990) 195-212. 
1171 Z. FiilBp and S. Vggviilgyi, Top-down tree transducers with deterministic top-down look-ahead, 

Inform. Process. Lett. 33 (1989190) 3-5. 

1181 F. Gkcseg and M. Steinby, Tree Automata (AkadCmiai Kiadb, Budapest, 1984). 

[19] T. Kamimura, Tree automata and attribute grammars, Infirm. and Control 57 (1983) I-20. 

1201 T. Kamimura and G. Slutzki, Parallel and two-way automata on directed ordered acyclic graphs, 

Inform. und Control 49 (1981) 10-51. 

[21] W.C. Rounds, Mappings and grammars on trees, Math. Systems Theory 4 (1970) 257-287. 
[22] G. Slutzki, Alternating tree automata, Theoret. Comput. Sci. 41 (1985) 305-318. 

[23] J.W. Thatcher, Generalized sequential machine maps, J. Comput. System Sci. 4 (1970) 339-367. 


