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Abstract

In this paper, we consider the existence and multiplicity of sign-changing solutions for some fourth-order nonlinear elliptic prob-
lems and some existence and multiple are obtained. The weak solutions are sought by means of sign-changing critical theorems.
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1. Introduction

Let £2 be a bounded open set in R" with smooth boundary. The purpose of this paper is to investigate the existence
and multiplicity of sign-changing solutions to the fourth-order nonlinear elliptic boundary value problems

, B .
{A U+ cAu=f(x,u) in$2, (1.1)

ulpe = Aulse =0

where A2 denotes the biharmonic operator, c € R and f : £2 x R — R is a Caratheodory function with subcritical
growth: | f(x, )| < CA +|t*"1),Vx e 2,Vt € R, s € (2,2%) (N >3),5 € (2, +00) (N <2).
In problem (1.1), let f(x, u) =b[(u + 1)* — 1], then we get the following Dirichlet problem:

2 — +_ i
{Au+cAu_b[(u+l) 1] in, (1.2)

ulpe = Aulye =0

where ut = max{u, 0} and b € R.
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Thus fourth-order problems have been studied by many authors, in [1] Lazer and McKenna have pointed out
that this type of nonlinearity furnishes a model to study travelling waves in suspension bridges. Since then more
general nonlinear fourth-order elliptic boundary value problems have been studied. There are many results about
problems (1.1) and (1.2). We refer the reader to [2,3] for some references along this line.

For problem (1.2), Lazer and McKenna [2] proved the existence of 2k — 1 solutions when N = 1 and b > Ay (A —c¢)
by the global bifurcation method. In [5], Tarantello found a negative solution when b > A1(A; — ¢) by a degree
argument. For problem (1.1) when f(x, u) = bg(x, u), Micheletti and Pistoia [3,4] proved that there exist two or three
solutions for a more general nonlinearity g by variational method. Zhang [6] proved the existence of solutions for a
more general nonlinearity f(x,u#) under some weak assumptions. Zhang and Li [7] proved the existence of multiple
nontrivial solutions by means of Morse theory and local linking. But the existence and multiple of sign-changing
solutions for (1.1) have not been studied.

In this paper, we study the existence and multiple of sign-changing solutions for problem (1.1). The results include
the existence of four sign-changing solutions or infinitely many sign-changing solutions for (1.1) which are different
from the references [1-7]. All these results are new.

The plan of the following sections are as follows. In Section 2 we give some notations and preliminaries. In
Section 3 we give some results. Section 4 is devoted to the proofs of these results.

2. Preliminaries and statements

Let £2 be a bounded open set in R" with smooth boundary and f : 2 x R — R is a Caratheodory function with
subcritical growth: | f(x,1)| < C(1 + [¢t]*~1), where s € (2,2%) (N > 3),s € (2, 400) (N < 2) for all x € £2 and
t € R. From now on, letter C is indiscriminately used to denote various positive constants. Let A; (k=1,2,...)

denote the eigenvalue and ¢ (k=1,2,...) the corresponding eigenfunctions of the eigenvalue problem
Au+ru=0 1in£2,
{ U+ Au in o1
ulpe =0

where each eigenvalue A is repeated as often as multiplicity recall that 0 < A1 <Ay < A3 <--+, Ax = 00. Then ¢ is
positive (or negative) and eigenfunctions associated to X; (i > 2) is sign-changing. By reference [8], the eigenvalue
problem

2 _ .
{A u+cAu=pu in$2, 22)

ulpe = Aulye =0

has infinitely many eigenvalues
wk=rAr—0), k=1,2,...,

and corresponding eigenfunctions ¢y (x).
We will always assume ¢ < 1. Let V denote the Hilbert space H2(£2) N HO1 (£2) equipped with the inner product

(u,v) = /[AuAv — VuVvldx. (2.3)
2
Then we may denote an element # of Vas

o0

o0
u=Yy apr, Y a; <o,
k=1

k=1
@k and ¢ (k #1) is orthogonal base for V. We denote by ||u]|, the norm in L?(£2) and by ||u|| the norm in V is given
by
luell? = G, ).

Let V' denote the dual of V and (,) be the duality pairing between V' and V. Let X denote the eigenspace associated
to ik, then V = @jeN XjLetVi=X1®---@® Xy, BRO)={ueV, |lull <R}
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Definition 2.1. E is Hilbert space, G € CY(E, R). G satisfies w-PS condition on V if {u,} € E and G(u,) is bounded,
G'(u,) — 0, we have either {u,} is bounded and has a convergent subsequence or |G’ (u,)||||luy | — 00.

Definition 2.2. We say that u € V is the solution of problem (1.1) if the identity

/[AuAv —cVuVul]dx = / fx,u)vdx 2.4)
Q Q
holds for any v € V.

Definition 2.3. u is the solution of (1.1): if u € {u € E: u(x) > 0, u # 0}, then u is positive solution of (1.1); if
ue{uekE: ulx) <0, u#0}, then u is negative solution of (1.1); if u € {u € E: meas{x € £2: u(x) > 0} > 0,
meas{x € £2: u(x) < 0} > 0}, then u is sign-changing solution of (1.1).

Assume H is Banach space, @ = {I"(-,-) € C([0, 1] x E, E)}, where I'(-,-) satisfies
(@ I'(0,-)=id;
(b) vVt €[0,1), I'(¢,-) is a homeomorphism of E onto itself, (¢, x) — I'(t, )~ (x) is continuous on [0, 1) x E;

(c) there exists xo € H such that I'(1, x) = x¢ for each x € H and I'(¢t,x) — xo as t — 1 uniformly on bounded
subsets of H.

Definition 2.4. (See [10, p. 21].) A subset A of H is linked (with respect to @) to a subset B of H if AN B = {, for
every I' € @, there is t € [0, 1] such that I"(t, A) N B # (.

In this paper, we need the following four propositions.

Proposition 2.1. (See [11, Theorem 3.2].) Assume H is Hilbert space, f satisfies PS condition on H and f'(u) has
the expression f'(u) = u — Au. D| and D, are open convex subset of H, Dy N\ Dy # @, A(dD;) C Dy, A(dD,) C D».
If there exists a path h : [0, 11 - H such that

h(0) € D1\ Dy, h(1) € D\ Dy

and

inf _ f(u)> sup f(h(1)),
]

ueD1ND, t€l0,1

then f has at least four critical points: uy € D1 N Dy, upy € D1\ D5, uz € Dy \ Di,us € H \ (D_1 U D_z).

Proposition 2.2. (See [8, Theorem 2.1].) Let E be a Hilbert space with inner product {,) and norm ||.||. Assume that
E has an orthogonal decomposition E = N @ M with dim N < oo. Let G € C'(E, R) and the gradient G’ be of the
form

Gw=u—J®w
where J' : E — E is a continuous operator. Let P denote a closed convex positive cone of E; D(()l) be an open convex

subsetof E,i=1,2, S=E\W, W= D(()l) U D(()2). Assume

Hp J'(DP)yc DY, i=1,2
(Hp) IfD(()l) N D(gz) =), then either D(()l) =@ or D(()Z) =
(H3) There exist 5 > 0 and zop € N with ||zo|| = 1 such that

B:={ueM: |lull >8}U{szo+v:veM, s>0, [szo+v[| =8} CS.

Let G maps bounded sets to bounded sets and satisfies w-PS and

by =inf G # —o0, ap =sup G # +o0.
M N

Then G has a critical point in S with critical value > infg G.
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Proposition 2.3. (See [9, Corollary 2.1].) Assume E is a Hilbert space with inner product (,) and the corresponding
norm ||.||, G € CY(E, R) and G (u) = %||u||2 — J(u), u € E, where J € C'(E, R) maps bounded sets to bounded sets.

Gy(u) = %||u||2 —Ju), re A= (%, 1). P denote a closed convex cone of E. Assume:

(A1) There exists g > 0 such that dist(J'(u), £P) < %dist(u, +P) for all u € E with dist(u, = P) < uo.
(A2) £Dg={u € E: dist(u, £P) < wo}, D =DoU (=Dy), S=E \ D, let A be a bounded subset of E and link a
subset B of E, B C S and

ap(X) =sup G, < byp(h) = i%fGA, Vie A.
A

J' is compact, then for almost all . € A, G, has a sign-changing critical point in S.

Proposition 2.4. (See [9, Theorem 3.1].) Assume E is a Hilbert space with inner product {,) and the corre-
sponding norm ||.||, E = @jeN X; with dimX; < oo for any j € N, where N denotes the set of all positive

integers. G € CYE,R) and G(u) = %I|u||2 — J(u), where J € CY(E, R) maps bounded sets to bounded sets,
G(u) = %||u||2 —J), re A= (%, 1). P denotes a closed convex of E,

+Dy = {u € E: dist(u, £P) < o}, D = Dy U (—Dy), S=E\D,

o
E=Px;, z=Px;. Bi={ucE:|ul<p}. Ne={ueZ |ul=r}
j=k

where py > ry > 0. For k > 2, assume

I = {y € C([O, 1] x By, E): y(t,u)isoddinu and y(t,-)|sp, =1d for each t € [0, 1],
y(t, D) C D forallt € [0, 1]}

ag(A) =max Gy, br(A) =inf Gy, cx(A) = inf max  Gy.
9 Bx Nk v €l y([0,11,BpNS

If (A1) and the following (A3) hold:
(A3) ar(X) <br(X) forany A € A, Ny, C S,

G, is even for any A € A, then for almost all . € A, there is a sequence {u,,} depending on A such that

sup [lum|l <00, uy €S, G (um) — 0, Gk(um)—>ck()»)e[bk()»),ma}ng(u)].
m UE Dby

In particular, if J' is compact, then for almost all . € A, Gy, has a sign-changing critical point u; € S and G (u;) €
[bk (1), max,ep, G(u)].

The solutions of (1.1) are corresponding to the critical points of the following C-functional:

1 2 1 2
G =7 lul —/F(x,u)dX=§IIMII —J(u)
2

where F(x,t) = fot f(x,s)ds. The gradient of G at u is given by
Gwy=u—Jw.
Then (J'(u), v) = [, f(x,u)vdx,Yv eV,
|[fe.n| <C(L+tF7"), VYxe, VreRr,
when N > 3,5 € (2,2%), when N < 2, 5 € (2, 400), by [12, Theorem 6.3.2], G € CI(E, R) and J’ is compact.
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3. Main results
Suppose

(g1) f€C(2 xR, R);
(g2) there exists n > 2 such that Vx € £2, V¢t € R,
0<nF(x,t) < f(x,)t.

Moreover f(x,t) =o(|t]) as t — O uniformly in x € £2.
It is easy seen that (g1) and (g2) hold for nonlinearity of the form

X, 1) = P2t
f(x, 1) T 1

1
where p € (2,2%) (N >3), p € (2, +00) (N <2).
(hy) mt? — Wi(x) <2F(x, 1) < g1t 4+ Wa(x), ae. x € 2,1 € R, where Wy, Wo € L1(£2),1>2.

This assumption implies the following double resonance case:

2F (x,t . 2F (x,t
(2 ) ghmsup¥ < Mi1, ae.x €82,
t |t|—>o00 t

W < liminf

|t|—>o00

as well as jumping and oscillating between ;, w;+1. Furthermore, if we assume
(hy) f(x,t),t>0,forae.x € 2,t€R; f(x,t) =0(|t]) as |t]| = O uniformly for x € £,
then we have

Theorem 3.1. Assume (g1) and (g2) hold, then (1.1) has four solutions: one naught solution, one positive solution,
one negative solution and one sign-changing solution.

Theorem 3.2. Assume (g3) and (hy) hold, then (1.1) has at least a sign-changing solution.

Remark. f has subcritical growth: | f(x,#)| < C(1 + |t|“_1), VxeR2,VieR, se(2,2¥) (N=3),se2,+x)
(N < 2), but by (g2) F is superquadratic because n > 2. It is easy seen that this subcritical condition and (g>) hold
for nonlinearity of the form

fany ="

where p € (2,2%) (N > 3), pe (2,400) (N £2).

Theorem 3.3. Assume (hy) and (hy) hold. Moreover if

(h3) M < L= llmlnf‘”_)oo f();’[)

(hy) there exists a > 0 such that
f(-x’ t) - 2F(x9 Z‘)

||~ +00 7]

< limsupm_)oo -f(’;”) < Uiyl a.e. x € 82;

=B(x) aexes2,

where f_Q Bx)|w(x)|*dx > 0 on the set {w € X;41: ||w|| = 1}, then (1.1) has at least one sign-changing solu-

tion.
Suppose
fan o fan
tilgloo P b+ (), tlll}loo r b-(),
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uniformly for x € 2. For k > 2,

(ap) there is a constant F > uy such that

4F(x,t) < Fot*> forallx € 2,1 € R.
(a2) V(x,1) € 2 X R, 2F (x,1) > ux_1t> — Wo(x), where F(x,t) = fot fx,8)ds,0< [ Wo(x)dx < oo.

Choose w; such that

641>
> O
M (g — Hk—1)

then exists positive constant C;_1 such that ||u]co < Ci—1|lul| u € Vi_1.

Fo, 3.1)

(a3) 2F(x,1) < %tz, for all x € £2 and |¢| < rp, where

1

48 }

ro > Cz_1<7’“‘ /Wo(x)dx> .
Pk = Pt )

(ag) Hx,t)= f(x,t)t —2F (x,t) >0forall x € 2 and r #0, H(x, t) is convex in t.

Theorem 3.4. Assume (aj)—(aq) and (hy) hold and py < by (x) for all Vx € §2, then (1.1) has one sign-changing
solution.

Theorem 3.5. Assume (hy) and

(b1) liminfy e L2
(ba) f(x,t)isoddint.

(b3) M is nondecreasing in t > 0, (1.1) has infinitely many sign-changing solution.

= oo uniformly for x € 2.

It is easy seen that (b1)—(b3) and (hy) hold for nonlinearity of the form

fo, 0 =t1P

where p € (2,2%*) (N 23), pe (2,+0) (N <2).
4. Proof of theorems

For 1¢-0, assume

Do(po) = {u € V: dist(u, P) < po},
—Do(o) = {u e V: dist(u, —P) < /,L()},
P={ueV:ukx)>0ac. xR}

Lemma 4.1. Assume (g>) holds, then G satisfies PS condition.

Proof. Assume {u,} C V,|G(u,)| < C, G'(u,) — 0. It suffices to prove that {u,} is bounded. By (g2)

-2
nC + || G'(un) |[lunll = nGun) — (G (un), un) > 1

thus {u,} is bounded. O
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Lemma 4.2. Assume (g2) holds, then there exists €y > 0 such that

(1) J'(0Dg(ep)) C Do(eo), and if u € Do(€q) is the solution of (1.1), then u € P,
(i1) J'(8(—Dg(€p))) C —Do(€q), and if u € —Dy(€q) is the solution of (1.1), then u € —P.

Proof. Let u* = max{tu, 0}. Vu € V, by the definition of V and the Sobolev embedding theorem, if s € (2, 2*),
there exists Cy > 0 such that

Jut] < inf flu—wly<Cs inf [u—w|=Csdist(u,—P). 4.1)
S T we(—P) we(—P)

By | f(x,0)| < C +t]°~1) and (g2): Ye > 0, there exists C. > 0, such that
flx, 0t <et? +Celt|®, Vxef, ViteR. (4.2)
Assume v = J'(u). Then by (4.1) and (4.2), for € small enough,

disw,—P)o* | < o+
= (v, v")
g/f(x,u+)v+dx
2

< [l [+ el o
2

1
< <§ dist(u, —P) + C dist(u, —P)S_l) o™
That is,
. / 1 . . s—1
dist(J'(u), —P) < 5 dist(u, —P) + C(dist(u, —P)*™"). 4.3)
So there exists €p > 0 such that dist(J'(u), —P) < %eo for every u € 3(—Dy(€p)). Thus J'(8(—Dg(ep))) C —Do(€o).
If u € Do(€p) is the solution of (1.1), then G'(u) =u — J'(u) =0, that is, J'(u) = u. By (4.3), u € — P, (i) holds. (ii)

can be proved analogously. O

Lemma 4.3. Assume (g2) holds, then

inf G(u) =dy > —oo.
Do(e)N—Dy(€)

Proof. By (g2), (4.2) and Holder inequality

G(u) > —/F(x,u(x)) dx

2

1
> —; / f(x, u(x))u(x)dx
Q

(o
> ——(llul3 + luly).
n
According to (4.1), ||u™ ||y < Csdist(u, —P) < Cye, |lu™||s < Cy dist(u, P) < Cyep, 50

inf G(u) =doy > —oo0. O
Do(e)N—Do(€)




J. Zhou, X. Wu/ J. Math. Anal. Appl. 342 (2008) 542-558 549

Proof of Theorem 3.1. The f(x,t) of Theorem 3.1 satisfies the condition of [12, Theorem 7.4.2], so as the same of
(7.4.14) of [12, Theorem 7.4.2], there are two positive constants M| and M» such that V¢ € R, Vx € £2,

F(x,t) = M[t]" — M.
For any finitely dimensional subspace Vy of V, we have, Yv € Vj, there exists M3 > 0 such that
1 2
Gu) = Ellull — | F(x,u)dx

2

1
< 5l = Millull} + M2l 2|

<! 2 Mslu||" + My |2
\leull 3llull” + M3 |$2|

where |§2| denote the measure of §2. Since n < 2, by Young inequality, there are two positive number M4 and M5
such that

Gw) < —Mullul> + Ms, YveV,. 4.4)

Since ¢y € V is sign-changing, that is, ¢2+ # 0,9, #0. Itis clear that (p;r and ¢, are linearly independent. Let
Vo= {t(p;r +5¢, : t 20, s >0}, then Vj is the finitely dimensional subspace of V. Define a path 4 : [0, 1] =V,

Ro Ry _
h(t) =t——¢;3 + (1 —1)——¢,
oy |l oy |l

where Ry = max{%ﬁf*l, 1}, then by (4.4)

Ry Ry _
G(h(t) :G(t +> +G<(1 —t)—— )
(h®) 15172 G

—M4 Ry +2Ms5
do— 1. 4.5)

<
<

So
inf f) > sup f(h@)).

u€Do(e9)N—Do (o) t€[0,1]
Obviously, #(0) € —Dg(€p), h(1) € Do(€g), thus h(0) € —Dg(€g) \ Do(€o). If not, h(0) € —Dy(eg) N Dp(€p), by
Lemma 4.3, G(h(0)) > dp. This is a contradiction. Analogously, 2(1) € Dg(ep) \ —Do(€p). Moreover, 0 € —Dg(eg) N
Dy (€p), by Lemmas 4.1, 4.2 and Proposition 2.1, (1.1) has four solutions: u1 € Do(ep) N (—Dy(€p)), ur € Do(€p) \
—Do(€0), uz € (—Do(€p)) \ Do(ep), ua € H \ (Do(eg) U —Dg(€0)). That is, u1 is naught solution, u; is positive
solution, u3 is negative solution and u4 is sign-changing solution. O

We prove Theorems 3.2 and 3.3 by Proposition 2.2. Firstlet N=X1 & X, ®--- @ X; (( =22), M = @?ilﬂ Xi,
then V =N @ M. We take zg € X;, ||zo]l = 1, and define

B={ueM: |u| =28} U{u=sz0+v:veM, s=0, u| =36}

Then each element of B is sign-changing.
Lemma 4.4. dist(B, —P U P) =d; > 0.

Proof. B and — P U P are two closed subsets of V. Note that BN (—P U P) = {J and V is normal space, the conclusion
is readily to be shown. O

Lemma 4.5. Assume (hy) holds, then there exists o € (0, dy) such that J' (£Dg (o)) C Do (10).
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Proof. Let u™ = max{=+u, 0}. Yw € — P, we have w(x) <0, so —w(x) > 0. Hence, Vw € — P, s € (2,2%),
Jut 1y = [ ] ax
2

= / ‘u+’xdx+ / |u+ysdx

u(x)>0 u(x)<0
= / |u+|sdx
u(x)=0
< / ‘u+—w"vdx+ / ’— —w|
u(x)=0 u(x)<0
:/lu—w|sdx.
Q

Therefore ||u™||s < infye—p) [lu — wl|s. Moreover, by the definition of V and Sobolev embedding theorem, when
s € (2,2%), the embedding V < L!(£2) is continuous. So for all u € V, if s € (2,2*), there exists Cy > 0 such that

Jut|, < inf fu—wls<Cs inf |u—wl|=Cydist(u, —P). (4.6)
; we(—P) we(—P)
By (hy), Ye > 0, there exists C > 0, such that

F, Dt <et? +Celt]’, xe2,teR. 4.7
Assume v = J'(u). By (4.6) and (4.7), for € small enough,

disw.~P)o* | < [o* P

= v,v+)
g/f(x,u+)v+dx
2

< [ el + Celact )" ax

/\b

%dlst(u —P) + Cdist(u, —P)*~ l>||v+||

That is, dist(J'(u), —P) < %dist(u, —P) + C(dist(u, —P)*~ 1), there is o < di (cf. Lemma 4.4) such that
dist(J'(u), —P) < %N«o for every u € —Do(up). In a similar way, dist(J'(«), P) < %,uo for every u € Do(up). The
conclusion follows. O

Lemma 4.6. Under the assumptions of Theorem 3.2, G satisfies the w-PS condition.

Proof. Assume {u,} C V such that |G(u,)| < C and G'(u,) — 0. Without loss of generality, we suppose that
{IIG’ (un) |l ||} is bounded. It suffices to prove that {u,} is bounded. By (g»),

2
lluen [l

nC + |G @) | lunll = nG (@) — (G (), un) > 2 S
Thus ||uy]|| is bounded. O

Lemma 4.7. Under the assumptions of Theorem 3.3, G satisfies the w-PS condition.
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Proof. Assume {u,} C V such that |G(u,)| < C and G'(u,) — 0. Without loss of generality, we suppose that
{IIG" (un) Il ||} is bounded. It suffices to prove that {u,} is bounded. If not, assume ||u,| — oo. For € > 0 small
enough, since the limits if (h3) and (hs) are taken in pointwise sense, by Egorov theorem, we obtain an §2;41 C §2

such that meas(£2 \ £2/+1) < € and that lim SUP| |- 00 M < w41 uniformly for x € §£2;11. Therefore, there exists
Cy > 0 such that

Xx,t C
f(t ) </,L[+1+6+|T}, Vt#£0, x € $2141. (4.8)

Similarly, there exists §£2; C £2 such that meas(§2 \ §2;) < € and that liminf};|_, o ! (f’t) > L > p; uniformly for
x € £2;. Hence, there exists C, > 0 such that
fx,0) C

p >L—m, Vit #£0, x € 2. 4.9)

Let 2* = £2 N 2,41, then meas(2*)¢ < 2¢. Write u, with u, = u; + u +u, , where u,, € N, u € Xi41, ul €
D20 Xi If luyy +ul| > |u, | on £2%, by (4.8) we have that
_ 2 —\2 _
FOun) (f +ul —uy) < Gur +© () +ud)” = Luy)” + Crlu)ft +ud —u, | (4.10)
If |u:lr + u2| < |u;; | on £2*, by (4.9) we have that
_ 2 —\2 _
FOun) () +ul —uy) < Guar + Oy +ud)” = L(uy,)” + Calu)t +ud —u, | (4.11)
Since [lu~ |2 — L [ ™) dx < 1= = % := —y|lu"||* for every u~ € N. Therefore, by (4.10) and (4.11),

(G/(un),u,jﬂg—u;):||u;”2+||u;”0_Hu;”2_/f(x,un)(u,jﬂg—u;)dx

i 1 = B P [ (e + o+~ La)?)
Q*
- /(Cl +C2)|uj,'+u2 —u, |dx — / |f(x,u,,)||u,f+u2 —uy, |dx
* 2\ 2%

+
> [uff ||2<1 - M) —elluoll3 + L/(u,;)zdx |
2

Mi+2

—-L / () - / | e un) ||+ ul —uy | dx
2\82* 2\2*
—/(C1+C2)|u:{+u2—u;|dx

Q*

n +€ _ —
>t (1= 225 ) ey = [ € €l 4= g
Q*

o [ P [ 1l -

2\Q* Q\0*
which implies that ”u 1= 0, — T — 0, — T 1, hence H oW with w € X4, lw||=1. So
Gu,) — MG (uy), u X, uy)u, —2F (x,u,))dx
0= lim (n) 2( (un), un) — lim fg(f( Un)lin ( n)) 2/'3(x)|w(x)‘adx>0‘
n—00 llotn 1% n—00 llun ||
2

This is a contradiction. The conclusion follows. O
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Proof of Theorems 3.2 and 3.3. Assume

1 2

D(g ) = Do (o), D(() ) = —Dy(no),
(D 2)

w=p"uD®, ~ S=V\W.

By Lemma 4.4, B C S, that is, the condition (H3) of Proposition 2.2 holds. Lemma 4.5 says that condition (H;) of
proposition is also satisfied. Since 0 € D(()l) N D(()z), then (H;) holds automatically. By Lemmas 4.6 and 4.7, G satisfies
w-PS condition. Moreover, note that ||v]|?> < ||v||% for all v e N and 4 ||w||% < |lw||? for all w € M. Combin-

ing (hy), we have that

Jo Wix)dx 3 Jo Wi(x)dx

1 2 M 2
G(v)égllvll —jllvllz+ > > , YveN,
and
1 Wi+1 Wo(x)dx — |, Wr(x)dx
G(w)>—||w||2——||w||%—f‘2 > Jo , VweM.
2 2 2 2
Therefore, we have
supG =ap < 00, ilril/lfzb0>—oo.

N

Since

|fe.n| <c(l+1171), Vxef, VieRr,

G maps bounded sets to bounded sets. By Proposition 2.2, G has a critical point in S. Therefore, (1.1) has a sign-
changing solution. O

Lemma 4.8. Assume (ay) holds, then G, (u) < %fQ Wo(x)dx forallu € Vi_1, A € A.

Proof. Yu € Vj_1, VA € A, by (az), we have that

1
Go(u) < §||M||2—fF(x,u)dx
2

1
<—uk_1/u2dx—/F(x,u)dx

2
Q Q
1 ’ 1 ’ 1
giuk_l u dx—E/Lk_l u dx+§ Wo(x)dx
Q Q Q

1
<§/Wo(x)dx. O
2

Lemma 4.9. Assume (hy) holds and Vx € 2, ux < bi(x). Then G (u) — —oo for u € Vi as |\u|| — oo uniformly in
re A

Proof. Write G (u) as

Gu) = %Hu”z - /(%b+(x)(u+)2 + %b_(x)(u_)z 1 P(x, u)) dx, VuevV
2

where P(x,u) = [y p(x,t)dt; p(x,1) = f(x,1) — (b4 (x)tT — b_(x)t7), t* = max{=r, 0}. Note that y; < b+ (x)
and the variational characterization of eigenvalues {ux}: Vu € Vi, A € A, we have
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G.(u) < G(u)

= %“M”z — / P(X, u)dx — %( / + / )(b+(x)(u+)2 +b7(x)(u_)2) dx
ko)

bo(0)2bi(x)  bo(x)<by(x)

I, 1 5 1
= =lull” — P(x,u)dx—i by (x)u a’x—5

(b_(x) — b.;.(x))(u_)2 dx

b_(x)uzdx

2
2 b_(0)>by (%) b_(0)2by(x)
1 1
—3 / b_(x)u®dx — 3 / (b+(x) —b_ (x)) (u+)2dx
b_(x)<bi(x) b_(x)<by(x)
< Dhup? /P( ydx — X / by (o dx —
S35 u x,u)dx > +(xX)u“dx >
Q b_(0)2bi(x) b_(x)<bs (x)
1 1
< 5||u||2 - / P(x,u)dx — E/min{b+(x),b_(x)}uzdx
2 2
< —5||u||2—/P<x,u>dx
2
where § = mi““’“";f]: I By (hy), limy— 0o 252 = 0, therefore,
G (u) < s

~
ueVi, llull—oo ||lu)?

The conclusion follows. O

553

Lemma 4.10. Assume (a1) and (a3) hold, then there exists py > 0 independent of ). such that G, (u) > % f o Wox)dx

forallu e @2, X; with |ull = po and all % € A.
Proof. By (a)),if x € £2, |t| > ro,
F(x,1) < L por? — L g2
X, X A - ry -
) 0 4 0fp

Vu € @72, X;, write u as u = v + w, where v € @'} X;, w e B, X;. Let

Wk + k-1
Bo= > ,
2F
& =%w2+'ukT+'30v2—F(x,v+w).

If [v + w| < rg, then by (a3) and the choice of y;, we see that

S 2Fg+ i 5, ik +Bo

£ w? + vz—lﬁo(erw)2
- 8 8 4

2 F -2 -2
> 0+ ﬁ0w2+uk+ﬁo Bo
8 8
1
_ ((@Fo+w =280 Gu —fo))? 1
- 4 2
If [v + w| > rg, then by (4.12), we conclude that

w+2Fy—4F, wk + Bo —4Fy Foro
El?( 3 w? + ﬁg v? —FOUU)+T=§2+§3

vz—lﬂ lvw|
) 0

ﬁo)lvwl > 0.

where

4.12)

(4.13)

4.14)

(4.15)
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_wm—=2F 5 pk—PBo o Povw
=T Wt T VT
—2F, 2F) — 2F) — For?
g =M 0,2_2F0=Fo» CFo=povw  Forg
16 4 2 4

Next, we estimate & and &3. If “_T’S" [v] — M > 0, then

i —2Fp ik — Bo /30| |
§2>Tw2+< 3 lv| — [v| >

If £=fo ?350 lv] — ﬂo‘w‘ < 0, by the choice of u;, we deduce that

—2F, 282 -
Ez}(“l 0 ,3() )w2+ﬂk 'BOU220.
16 i — Bo 8
On the other hand,
Wi +2F) —4F) Bo Forg
> (R -2 .
&3 T w > (vl + [wl)|v] + — ) =&
Thus

— 10F) +4 3(2F) — For}
ot4bo o 3QF ,BO)UQ+ 0r)

16 4 4
32F) — Forg
S 2Fy ﬂo)vzJr 0rg
4 4

For? 1
Choose po = &~ (570gy) 2 - If lull = po, then [[v]loc < Cr—tllv]l < Cr—1fJull <

by (4.13)-(4.21), £ > 0. Finally
G.(u) = Gr(v+w)
1
> 2001+ 1wP) - / Flx, v+ w) dx

2

1
—[vl* + < lwl* +
IIvII glhw I 3

2

1 Bo 1 2Fy 2
/8(1—;)n || +8< l)nwn +fsldx
2
> gminf (1= 22)- (1= ) e
8 Mk iz
1 Bo 2
>§<1—E)100

1
=2 E/Wo(x)dx. O

By Lemma 4.9, there exists R > pg such that G (1) <O for all u € Vg, |u|| >

Ci-1po- Hence, &4 >

1 1
—ullvll3 + Ml”w”z /F(x,v—i-w)dx

(4.16)

4.17)

(4.18)

(4.19)

(4.20)

421

0. Therefore,

R. Choose yg € X, ||yoll = L. Let

B = @i:k XiN0By(0), A={u=v+syp: ve Vi1, s 20, [lull =R} U (Vi1 N Bg(0)). By the definite of A, B

and link, A links B and each element of B is sign-changing. Similar to Lemma 4.4, dist(B, —P U P)

same as that of the proof of Lemma 4.5, we have that

=d, > 0. In the



J. Zhou, X. Wu/ J. Math. Anal. Appl. 342 (2008) 542-558 555

Lemma 4.11. Under the assumptions of Theorem 3.4, then there exists g € (0, d2), po < % such that
dist(J'(u), £P) < %dist(u, +P)

foru eV and dist(u, £ P) < uo.

Proof of Theorem 3.4. By Lemmas 4.8-4.10, for A € A,

1
ap(A) =sup G, < 3 / Wo(x)dx =bg < ingA.
A
Q

Let

D = (—Do(10)) U Do(110). §=VA\D,
then B C S. That is, condition (A;) of Proposition 2.3 holds. By Lemma 4.11, condition (A}) of Proposition 2.3 also
satisfied. Since

|[fe, | <c(l+1t1F7"), Vxesf2, VieRr,

G maps bounded sets to bounded sets. Therefore by Proposition 2.3 and [9, Theorem 2.1], for almost all A € A,
G has a sign-changing critical point u; € S such that

Gl =0, Gy)elbo, s G((1—nu)].
(t.u)€[0,1]x A

Then we prove {u; },c4 is bounded as follows.

Assume {u;}rec4 is unbounded, then there exists A, € A such that ||u;, || — oo for n — oo. We consider w,, =

—||Zi" T Then, up to a subsequence, we get that

wy, ~w inV,
w;, = w in L' (2) for2 <t < 2%,
wy, (x) = w(x) ae.xes2.

If w=£0in V, since G;n (u5,) = 0, we have that

%/H(X,Mxn)=/<%f(x,uxn)uxn —F(X»u)\n))
2

2
1 /
= Gy, (uy,) — E(Gkn (ux,), u;\,,)
= Gy, (u;,)
< sup G((L=nu).
(t,u)€[0,1]x A

However, by (as4), H(x,t) — oo as |t| — oo for each x € §2. Therefore

/H(x,uxn)dxk f H(x,uy,)dx — o0
2 {w(x)#0}

as n — 00. This is a contradiction.
If w=01in V, we define

Gkn(t;1ukn)= max Gkn(tuk,,)-
tef0,1]

For any ¢ > 0 and w,, = v/4cw;,, we have, for n large enough, that
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’

G, (thuy,) = Gy, (wy,) = 2ch, — f F(x,wy,) >
7]

N o

which implies lim, o Gy, (t,u3,) = 0o. Evidently, t, € (0, 1), hence, we have (Gi\n (tyuy,), tauty,,) = 0. It follows
that

1
/(Ef(x, talty, ) atty, — F(x, tnu,\n)) dx — oo.
2
By the convexity of H(x,t) in f, we have that
1 1
/(Ef(x, uy,)u, — F(x, u)»n)> dx > /<§f(x, tauty, )y, — F(x, tnuk,1)> dx — o0.
Q Q

We get a contradiction since

1
/(Ef(x,ukn)u,\n—F(x,ukn))dx:GAn(ukn)e[bo, sup G((l—t)u)].
2

(t,u)€[0,1]x A

Therefore, {u;},ec is bounded.

Let A,, — 1 (m — 00), since {u;,,} is bounded, then, up to a subsequence, we get u;,, — u, we will prove u is
sign-changing.

Let ufm = max{=£u,,, 0}, then

A Hk/f(x,ufm)u;tm dx.
2
By (hy), there exists C3 > 0 such
SO, uu < %lul2 + C3lul®, x€82, ueRr.
Note that if Yu € V, [[u[|? > /i1 llull3. It follows that

G [

m

1 1
§||”X_Lm I* < Z””il

Hence, ||uitm || = C4 > 0, where Cy is a constant independent of A,,. So u is sign-changing. That is, u is the sign-
changing solution of (1.1). O

We are going to prove Theorem 3.5 by applying Proposition 2.4. For k > 2, assume

k o
E=Px;, z=Px;. Bi={ucE:|ul<p}. Ne={ueZ |ul=r}
j=1 j=k

where pi > riy > 0. We need the following lemma.

Lemma 4.12. Under the assumptions of Theorem 3.5, there exists py > ry > 0 independent of ) such that
max G <ay <0< b <infGy,
d By Ny

for A € A. Here ay and by are independent of A. Moreover, by — o0 as (k — 00).

Proof. By (hy), there exists C5 > 0 such that |F(x,u)| < %uz + Cslu|® for x € £2,u € R. Recall Gagliardo—
Nirenberg inequality

1_
lulls < collVullSllully ™,  Yue H'(RV),
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where o = N(% — %), co is a constant depending on s, N. Note ,uk||u||% < lu|? forallu e Py Xi,ifu e @i2, Xi,
s(l—a)

2(s—2)
lul| =rr = a —, we have the following estimates:
(16¢5Cs) 52
1 Hi
Giw) > o llull? §/ 2dx — csf ul* dx
2 2
Lo s(1—
> Sllul® = Csedll Vals™ ey~
1 2 s s 7S(127a)
> gllull — Cscpllull” g
[
> —vr; = byg.
= 16 k k

Since dim Vj < 0o, then by (b;) and (hy),
Grw) 1 / Fx,u)

il
lul? ~ 2 flae]|

— —00

as u € Vi, |lu|| = oo uniformly for A € A. Then there exists p; > r; > 0 independent of A such that

max G <a <0. O
0 By

Proof of Theorem 3.5. Since each element of N; (k > 2) is sign-changing, there exists y; > 0 such that
dist(Ng, —P U P) = yi. Under the assumptions of Theorem 3.5, Lemma 4.11 is also true. That is, (A1) holds. Let
D = (—Do(0)) U Do (o). §=V\D.

Then Nj C S. Moreover, by Lemma 4.12, (A3) is also satisfied and J’ is compact. Thus, by Proposition 2.4, G; has

a sign-changing critical point u; € § and G).(u) € [bx, max,ep, G(u)], an interval independent of A. We will prove
{3 }r.e4 is bounded.

Assume {u;}re4 is unbounded, then there exists A, € A such that ||u;, || — oo for n — oco. We consider w;, =

—||Zi" - Then, up to a subsequence, we get that

w, —~w inV,
wy, — w in L' (£2) for2 <t < 2%,
wy, (x) = w(x) ae. x €.

If ws0in V, since G;Ln (u;,) = 0, we have that

f(x,uxn)zux,, <l
[z, I

On the other hand, by (h»), (b;) and Fatou’s lemma,
F O, up,)uz, dx — / |wxx(x)|2 F O, up,)uz, dx —

Q.
llu, 12 luz,, 12

w(x)#£0

This is a contradiction.
If w=0in V, define

G)L,,(tn”)n,,)z max G)L,,(tu)»n).
tef0,1]

For any ¢ > 0 and w,, = v/4cw,,, we have, for n large enough, that
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’

N o

G, (thuy,) = Gy, (wy,) = 2ch, — f F(x,wy,) >
7]

which implies that lim,, . oc Gy, (fau3,) = 00. Evidently, ¢, € (0, 1), hence, we have (G;n (tauiy,),s tauy,) = 0. It fol-
lows that

1
/(Ef(xs ln”)\n)tnuk,, — F(x, tn”M)) dx — oo.
2

If condition (b3z) holds, A(t) = %tzf(x, s)s — F(x,ts) is increasing in ¢ € [0, 1], hence %f(x, s)s — F(x,s) is in-
creasing in s > 0. Combining the oddness of f, we have that

1 1
/<§f(x, uy, uy, — F(x, M;\,,)) dx > /<§f(x, tpup, ) tnuy, — F(x, tnu,x,,)> dx — o0.
2 2

Therefore, we get a contradiction since

(t,u)e[0,1]x A

1
/(Ef(x, w, )y, — F(x, ukn)> dx =Gy, (uy,) € [bo, sip G((1— t)u)].
2
Thus {u; }c 4 is bounded.
Let A, = 1 (m — 00), since {u;, } is bounded, then, up to a subsequence, we get u;, — u. In the same as that

of the proof of Theorem 3.4, u is sign-changing. Hence, u is the sign-changing solution of (1.1). Since by — oo
(k — 00), we obtain infinitely many sign-changing solutions of (1.1). O

Remark. As far as we know, the sign-changing solutions of (1.1) have not studied. In this paper, we study the existence
and multiple of sign-changing solutions for problem (1.1). The results include the existence of four sign-changing
solutions or infinitely many sign-changing solutions for (1.1) which are different from the references [1-7]. All these
results are new.
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