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Abstract

In this paper, we consider the existence and multiplicity of sign-changing solutions for some fourth-order nonlinear elliptic prob-
lems and some existence and multiple are obtained. The weak solutions are sought by means of sign-changing critical theorems.
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1. Introduction

Let Ω be a bounded open set in Rn with smooth boundary. The purpose of this paper is to investigate the existence
and multiplicity of sign-changing solutions to the fourth-order nonlinear elliptic boundary value problems

{
�2u + c�u = f (x,u) in Ω,

u|∂Ω = �u|∂Ω = 0
(1.1)

where �2 denotes the biharmonic operator, c ∈ R and f : Ω × R → R is a Caratheodory function with subcritical
growth: |f (x, t)| � C(1 + |t |s−1), ∀x ∈ Ω , ∀t ∈ R, s ∈ (2,2∗) (N � 3), s ∈ (2,+∞) (N � 2).

In problem (1.1), let f (x,u) = b[(u + 1)+ − 1], then we get the following Dirichlet problem:

{
�2u + c�u = b

[
(u + 1)+ − 1

]
in Ω,

u|∂Ω = �u|∂Ω = 0
(1.2)

where u+ = max{u,0} and b ∈ R.
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Thus fourth-order problems have been studied by many authors, in [1] Lazer and McKenna have pointed out
that this type of nonlinearity furnishes a model to study travelling waves in suspension bridges. Since then more
general nonlinear fourth-order elliptic boundary value problems have been studied. There are many results about
problems (1.1) and (1.2). We refer the reader to [2,3] for some references along this line.

For problem (1.2), Lazer and McKenna [2] proved the existence of 2k−1 solutions when N = 1 and b > λk(λk −c)

by the global bifurcation method. In [5], Tarantello found a negative solution when b � λ1(λ1 − c) by a degree
argument. For problem (1.1) when f (x,u) = bg(x,u), Micheletti and Pistoia [3,4] proved that there exist two or three
solutions for a more general nonlinearity g by variational method. Zhang [6] proved the existence of solutions for a
more general nonlinearity f (x,u) under some weak assumptions. Zhang and Li [7] proved the existence of multiple
nontrivial solutions by means of Morse theory and local linking. But the existence and multiple of sign-changing
solutions for (1.1) have not been studied.

In this paper, we study the existence and multiple of sign-changing solutions for problem (1.1). The results include
the existence of four sign-changing solutions or infinitely many sign-changing solutions for (1.1) which are different
from the references [1–7]. All these results are new.

The plan of the following sections are as follows. In Section 2 we give some notations and preliminaries. In
Section 3 we give some results. Section 4 is devoted to the proofs of these results.

2. Preliminaries and statements

Let Ω be a bounded open set in Rn with smooth boundary and f : Ω × R → R is a Caratheodory function with
subcritical growth: |f (x, t)| � C(1 + |t |s−1), where s ∈ (2,2∗) (N � 3), s ∈ (2,+∞) (N � 2) for all x ∈ Ω and
t ∈ R. From now on, letter C is indiscriminately used to denote various positive constants. Let λk (k = 1,2, . . .)

denote the eigenvalue and ϕk (k = 1,2, . . .) the corresponding eigenfunctions of the eigenvalue problem{
�u + λu = 0 in Ω,

u|∂Ω = 0
(2.1)

where each eigenvalue λk is repeated as often as multiplicity recall that 0 < λ1 < λ2 � λ3 � · · ·, λk → ∞. Then ϕ1 is
positive (or negative) and eigenfunctions associated to λi (i � 2) is sign-changing. By reference [8], the eigenvalue
problem{

�2u + c�u = μu in Ω,

u|∂Ω = �u|∂Ω = 0
(2.2)

has infinitely many eigenvalues

μk = λk(λk − c), k = 1,2, . . . ,

and corresponding eigenfunctions ϕk(x).
We will always assume c < λ1. Let V denote the Hilbert space H 2(Ω) ∩ H 1

0 (Ω) equipped with the inner product

〈u,v〉 =
∫
Ω

[�u�v − ∇u∇v]dx. (2.3)

Then we may denote an element u of V as

u =
∞∑

k=1

akϕk,

∞∑
k=1

a2
k < ∞,

ϕk and ϕl (k �= l) is orthogonal base for V . We denote by ‖u‖p the norm in Lp(Ω) and by ‖u‖ the norm in V is given
by

‖u‖2 = 〈u,u〉.
Let V ′ denote the dual of V and 〈,〉 be the duality pairing between V ′ and V . Let Xk denote the eigenspace associated
to μk , then V = ⊕

j∈N Xj . Let Vk = X1 ⊕ · · · ⊕ Xk , BR(0) = {u ∈ V, ‖u‖ < R}.
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Definition 2.1. E is Hilbert space, G ∈ C1(E,R). G satisfies w-PS condition on V if {un} ∈ E and G(un) is bounded,
G′(un) → 0, we have either {un} is bounded and has a convergent subsequence or ‖G′(un)‖‖un‖ → ∞.

Definition 2.2. We say that u ∈ V is the solution of problem (1.1) if the identity∫
Ω

[�u�v − c∇u∇v]dx =
∫
Ω

f (x,u)v dx (2.4)

holds for any v ∈ V .

Definition 2.3. u is the solution of (1.1): if u ∈ {u ∈ E: u(x) � 0, u �= 0}, then u is positive solution of (1.1); if
u ∈ {u ∈ E: u(x) � 0, u �= 0}, then u is negative solution of (1.1); if u ∈ {u ∈ E: meas{x ∈ Ω: u(x) > 0} > 0,

meas{x ∈ Ω: u(x) < 0} > 0}, then u is sign-changing solution of (1.1).

Assume H is Banach space, Φ = {Γ (·,·) ∈ C([0,1] × E,E)}, where Γ (·,·) satisfies

(a) Γ (0, ·) = id;
(b) ∀t ∈ [0,1),Γ (t, ·) is a homeomorphism of E onto itself, (t, x) �→ Γ (t, ·)−1(x) is continuous on [0,1) × E;
(c) there exists x0 ∈ H such that Γ (1, x) = x0 for each x ∈ H and Γ (t, x) → x0 as t → 1 uniformly on bounded

subsets of H .

Definition 2.4. (See [10, p. 21].) A subset A of H is linked (with respect to Φ) to a subset B of H if A ∩ B = ∅, for
every Γ ∈ Φ , there is t ∈ [0,1] such that Γ (t,A) ∩ B �= ∅.

In this paper, we need the following four propositions.

Proposition 2.1. (See [11, Theorem 3.2].) Assume H is Hilbert space, f satisfies PS condition on H and f ′(u) has
the expression f ′(u) = u−Au. D1 and D2 are open convex subset of H , D1 ∩D2 �= ∅, A(∂D1) ⊂ D1,A(∂D2) ⊂ D2.

If there exists a path h : [0,1] → H such that

h(0) ∈ D1 \ D2, h(1) ∈ D2 \ D1

and

inf
u∈D1∩D2

f (u) > sup
t∈[0,1]

f
(
h(t)

)
,

then f has at least four critical points: u1 ∈ D1 ∩ D2, u2 ∈ D1 \ D2, u3 ∈ D2 \ D1, u4 ∈ H \ (D1 ∪ D2).

Proposition 2.2. (See [8, Theorem 2.1].) Let E be a Hilbert space with inner product 〈,〉 and norm ‖.‖. Assume that
E has an orthogonal decomposition E = N ⊕ M with dimN < ∞. Let G ∈ C1(E,R) and the gradient G′ be of the
form

G′(u) = u − J ′(u)

where J ′ : E → E is a continuous operator. Let P denote a closed convex positive cone of E; D
(i)
0 be an open convex

subset of E, i = 1,2, S = E \ W , W = D
(1)
0 ∪ D

(2)
0 . Assume

(H1) J ′(D(i)
0 ) ⊂ D

(i)
0 , i = 1,2.

(H2) If D
(1)
0 ∩ D

(2)
0 = ∅, then either D

(1)
0 = ∅ or D

(2)
0 = ∅.

(H3) There exist δ > 0 and z0 ∈ N with ‖z0‖ = 1 such that

B := {
u ∈ M: ‖u‖ � δ

} ∪ {
sz0 + v: v ∈ M, s � 0, ‖sz0 + v‖ = δ

} ⊂ S.

Let G maps bounded sets to bounded sets and satisfies w-PS and

b0 = inf
M

G �= −∞, a0 = sup
N

G �= +∞.

Then G has a critical point in S with critical value � infB G.
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Proposition 2.3. (See [9, Corollary 2.1].) Assume E is a Hilbert space with inner product 〈,〉 and the corresponding
norm ‖.‖, G ∈ C1(E,R) and G(u) = 1

2‖u‖2 −J (u), u ∈ E, where J ∈ C1(E,R) maps bounded sets to bounded sets.
Gλ(u) = λ

2 ‖u‖2 − J (u), λ ∈ Λ = ( 1
2 ,1). P denote a closed convex cone of E. Assume:

(A1) There exists μ0 > 0 such that dist(J ′(u),±P) � 1
5 dist(u,±P) for all u ∈ E with dist(u,±P) < μ0.

(A2) ±D0 = {u ∈ E: dist(u,±P) < μ0}, D = D0 ∪ (−D0), S = E \ D, let A be a bounded subset of E and link a
subset B of E, B ⊂ S and

a0(λ) = sup
A

Gλ � b0(λ) = inf
B

Gλ, ∀λ ∈ Λ.

J ′ is compact, then for almost all λ ∈ Λ, Gλ has a sign-changing critical point in S.

Proposition 2.4. (See [9, Theorem 3.1].) Assume E is a Hilbert space with inner product 〈,〉 and the corre-
sponding norm ‖.‖, E = ⊕

j∈N Xj with dimXj < ∞ for any j ∈ N , where N denotes the set of all positive

integers. G ∈ C1(E,R) and G(u) = 1
2‖u‖2 − J (u), where J ∈ C1(E,R) maps bounded sets to bounded sets,

Gλ(u) = λ
2 ‖u‖2 − J (u), λ ∈ Λ = ( 1

2 ,1). P denotes a closed convex of E,

±D0 = {
u ∈ E: dist(u,±P) < μ0

}
, D = D0 ∪ (−D0), S = E \ D,

Ek =
k⊕

j=1

Xj , Zk =
∞⊕

j=k

Xj , Bk = {
u ∈ Ek: ‖u‖ � ρk

}
, Nk = {

u ∈ Zk: ‖u‖ = rk
}

where ρk > rk > 0. For k � 2, assume

Γk = {
γ ∈ C

([0,1] × Bk,E
)
: γ (t, u) is odd in u and γ (t, ·)|∂Bk

= id for each t ∈ [0,1],
γ (t,D) ⊂ D for all t ∈ [0,1]}

ak(λ) = max
∂Bk

Gλ, bk(λ) = inf
Nk

Gλ, ck(λ) = inf
γ∈Γk

max
γ ([0,1],Bk)∩S

Gλ.

If (A1) and the following (A3) hold:

(A3) ak(λ) < bk(λ) for any λ ∈ Λ, Nk ⊂ S,

Gλ is even for any λ ∈ Λ, then for almost all λ ∈ Λ, there is a sequence {um} depending on λ such that

sup
m

‖um‖ < ∞, um ∈ S, G′
λ(um) → 0, Gλ(um) → ck(λ) ∈ [

bk(λ), max
u∈Bk

G(u)
]
.

In particular, if J ′ is compact, then for almost all λ ∈ Λ, Gλ has a sign-changing critical point uλ ∈ S and Gλ(uλ) ∈
[bk(λ),maxu∈Bk

G(u)].

The solutions of (1.1) are corresponding to the critical points of the following C1-functional:

G(u) = 1

2
‖u‖2 −

∫
Ω

F(x,u)dx = 1

2
‖u‖2 − J (u)

where F(x, t) = ∫ t

0 f (x, s) ds. The gradient of G at u is given by

G′(u) = u − J ′(u).

Then 〈J ′(u), v〉 = ∫
Ω

f (x,u)v dx, ∀v ∈ V ,
∣∣f (x, t)

∣∣ � C
(
1 + |t |s−1), ∀x ∈ Ω, ∀t ∈ R,

when N � 3, s ∈ (2,2∗), when N � 2, s ∈ (2,+∞), by [12, Theorem 6.3.2], G ∈ C1(E,R) and J ′ is compact.
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3. Main results

Suppose

(g1) f ∈ C(Ω × R,R);
(g2) there exists η > 2 such that ∀x ∈ Ω , ∀t ∈ R,

0 � ηF(x, t) � f (x, t)t.

Moreover f (x, t) = o(|t |) as t → 0 uniformly in x ∈ Ω .
It is easy seen that (g1) and (g2) hold for nonlinearity of the form

f (x, t) = 1

|x| + 1
|t |p−2t

where p ∈ (2,2∗) (N � 3),p ∈ (2,+∞) (N � 2).

(h1) μlt
2 − W1(x) � 2F(x, t) � μl+1t

2 + W2(x), a.e. x ∈ Ω, t ∈ R, where W1,W2 ∈ L1(Ω), l � 2.

This assumption implies the following double resonance case:

μl � lim inf|t |→∞
2F(x, t)

t2
� lim sup

|t |→∞
2F(x, t)

t2
� μl+1, a.e. x ∈ Ω,

as well as jumping and oscillating between μl , μl+1. Furthermore, if we assume

(h2) f (x, t), t � 0, for a.e. x ∈ Ω, t ∈ R; f (x, t) = o(|t |) as |t | → 0 uniformly for x ∈ Ω ,

then we have

Theorem 3.1. Assume (g1) and (g2) hold, then (1.1) has four solutions: one naught solution, one positive solution,
one negative solution and one sign-changing solution.

Theorem 3.2. Assume (g2) and (h1) hold, then (1.1) has at least a sign-changing solution.

Remark. f has subcritical growth: |f (x, t)| � C(1 + |t |s−1), ∀x ∈ Ω , ∀t ∈ R, s ∈ (2,2∗) (N � 3), s ∈ (2,+∞)

(N � 2), but by (g2) F is superquadratic because η > 2. It is easy seen that this subcritical condition and (g2) hold
for nonlinearity of the form

f (x, t) = |t |p−2t

where p ∈ (2,2∗) (N � 3), p ∈ (2,+∞) (N � 2).

Theorem 3.3. Assume (h1) and (h2) hold. Moreover if

(h3) μl < L = lim inf|t |→∞ f (x,t)
t

� lim sup|t |→∞
f (x,t)

t
� μl+1 a.e. x ∈ Ω ;

(h4) there exists α > 0 such that

lim|t |→+∞
f (x, t) − 2F(x, t)

|t |α = β(x) a.e. x ∈ Ω,

where
∫
Ω

β(x)|w(x)|α dx > 0 on the set {w ∈ Xl+1: ‖w‖ = 1}, then (1.1) has at least one sign-changing solu-
tion.

Suppose

lim
f (x, t) = b+(x), lim

f (x, t) = b−(x),

t→+∞ t t→−∞ t
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uniformly for x ∈ Ω . For k � 2,

(a1) there is a constant F0 > μk such that

4F(x, t) � F0t
2 for all x ∈ Ω , t ∈ R.

(a2) ∀(x, t) ∈ Ω × R, 2F(x, t) � μk−1t
2 − W0(x), where F(x, t) = ∫ t

0 f (x, s) ds, 0 <
∫
Ω

W0(x) dx < ∞.

Choose μl such that

μl �
64μ2

k

μk(μk − μk−1)
F0, (3.1)

then exists positive constant Cl−1 such that ‖u‖∞ � Cl−1‖u‖ u ∈ Vl−1.

(a3) 2F(x, t) � μk+μk−1
4 t2, for all x ∈ Ω and |t | � r0, where

r0 > Cl−1

(
48μk

μk − μk−1

∫
Ω

W0(x) dx

) 1
2

.

(a4) H(x, t) = f (x, t)t − 2F(x, t) > 0 for all x ∈ Ω and t �= 0, H(x, t) is convex in t .

Theorem 3.4. Assume (a1)–(a4) and (h2) hold and μk < b±(x) for all ∀x ∈ Ω , then (1.1) has one sign-changing
solution.

Theorem 3.5. Assume (h2) and

(b1) lim inf|t |→∞ f (x,t)
t

= ∞ uniformly for x ∈ Ω .
(b2) f (x, t) is odd in t .
(b3)

f (x,t)
t

is nondecreasing in t > 0, (1.1) has infinitely many sign-changing solution.

It is easy seen that (b1)–(b3) and (h2) hold for nonlinearity of the form

f (x, t) = |t |p−2t

where p ∈ (2,2∗) (N � 3), p ∈ (2,+∞) (N � 2).

4. Proof of theorems

For μ0>0, assume

D0(μ0) = {
u ∈ V : dist(u,P ) < μ0

}
,

−D0(μ0) = {
u ∈ V : dist(u,−P) < μ0

}
,

P = {
u ∈ V : u(x) � 0 a.e. x ∈ Ω

}
.

Lemma 4.1. Assume (g2) holds, then G satisfies PS condition.

Proof. Assume {un} ⊂ V , |G(un)| � C, G′(un) → 0. It suffices to prove that {un} is bounded. By (g2)

ηC + ∥∥G′(un)
∥∥‖un‖ � ηG(un) − 〈

G′(un), un

〉
� η − 2

2
‖un‖2,

thus {un} is bounded. �
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Lemma 4.2. Assume (g2) holds, then there exists ε0 > 0 such that

(i) J ′(∂D0(ε0)) ⊂ D0(ε0), and if u ∈ D0(ε0) is the solution of (1.1), then u ∈ P ;
(ii) J ′(∂(−D0(ε0))) ⊂ −D0(ε0), and if u ∈ −D0(ε0) is the solution of (1.1), then u ∈ −P .

Proof. Let u± = max{±u,0}. ∀u ∈ V , by the definition of V and the Sobolev embedding theorem, if s ∈ (2,2∗),
there exists Cs > 0 such that

∥∥u+∥∥
s
� inf

w∈(−P)
‖u − w‖s � Cs inf

w∈(−P)
‖u − w‖ = Cs dist(u,−P). (4.1)

By |f (x, t)| � C(1 + |t |s−1) and (g2): ∀ε > 0, there exists Cε > 0, such that

f (x, t)t � εt2 + Cε |t |s , ∀x ∈ Ω, ∀t ∈ R. (4.2)

Assume v = J ′(u). Then by (4.1) and (4.2), for ε small enough,

dist(v,−P)
∥∥v+∥∥ �

∥∥v+∥∥2

= 〈
v, v+〉

�
∫
Ω

f
(
x,u+)

v+ dx

�
∫
Ω

(
ε
∣∣u+∣∣ + Cε

∣∣u+∣∣s−1)∣∣v+∣∣dx

�
(

1

2
dist(u,−P) + C dist(u,−P)s−1

)∥∥v+∥∥.

That is,

dist
(
J ′(u),−P

)
� 1

2
dist(u,−P) + C

(
dist(u,−P)s−1). (4.3)

So there exists ε0 > 0 such that dist(J ′(u),−P) � 3
4ε0 for every u ∈ ∂(−D0(ε0)). Thus J ′(∂(−D0(ε0))) ⊂ −D0(ε0).

If u ∈ D0(ε0) is the solution of (1.1), then G′(u) = u − J ′(u) = 0, that is, J ′(u) = u. By (4.3), u ∈ −P , (i) holds. (ii)
can be proved analogously. �
Lemma 4.3. Assume (g2) holds, then

inf
D0(ε)∩−D0(ε)

G(u) = d0 > −∞.

Proof. By (g2), (4.2) and Holder inequality

G(u) � −
∫
Ω

F
(
x,u(x)

)
dx

� −1

η

∫
Ω

f
(
x,u(x)

)
u(x)dx

� −C

η

(‖u‖2
2 + ‖u‖p

p

)
.

According to (4.1), ‖u+‖s � Cs dist(u,−P) � Csε0, ‖u−‖s � Cs dist(u,P ) � Csε0, so

inf G(u) = d0 > −∞. �

D0(ε)∩−D0(ε)
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Proof of Theorem 3.1. The f (x, t) of Theorem 3.1 satisfies the condition of [12, Theorem 7.4.2], so as the same of
(7.4.14) of [12, Theorem 7.4.2], there are two positive constants M1 and M2 such that ∀t ∈ R, ∀x ∈ Ω ,

F(x, t) � M1|t |η − M2.

For any finitely dimensional subspace V0 of V , we have, ∀v ∈ V0, there exists M3 > 0 such that

G(u) = 1

2
‖u‖2 −

∫
Ω

F(x,u)dx

� 1

2
‖u‖2 − M1‖u‖η

η + M2|Ω|

� 1

2
‖u‖2 − M3‖u‖η + M2|Ω|

where |Ω| denote the measure of Ω . Since η < 2, by Young inequality, there are two positive number M4 and M5
such that

G(u) � −M4‖u‖2 + M5, ∀v ∈ V0. (4.4)

Since ϕ2 ∈ V is sign-changing, that is, ϕ+
2 �= 0, ϕ−

2 �= 0. It is clear that ϕ+
2 and ϕ−

2 are linearly independent. Let
V0 = {tϕ+

2 + sϕ−
2 : t � 0, s � 0}, then V0 is the finitely dimensional subspace of V . Define a path h : [0,1] �→ V ,

h(t) = t
R0

‖ϕ+
2 ‖ϕ+

2 + (1 − t)
R0

‖ϕ−
2 ‖ϕ−

2

where R0 = max{ d0−2M5−1
−M4

,1}, then by (4.4)

G
(
h(t)

) = G

(
t

R0

‖ϕ+
2 ‖ϕ+

2

)
+ G

(
(1 − t)

R0

‖ϕ−
2 ‖ϕ−

2

)

� −M4R0 + 2M5

� d0 − 1. (4.5)

So

inf
u∈D0(ε0)∩−D0(ε0)

f (u) > sup
t∈[0,1]

f
(
h(t)

)
.

Obviously, h(0) ∈ −D0(ε0), h(1) ∈ D0(ε0), thus h(0) ∈ −D0(ε0) \ D0(ε0). If not, h(0) ∈ −D0(ε0) ∩ D0(ε0), by
Lemma 4.3, G(h(0)) � d0. This is a contradiction. Analogously, h(1) ∈ D0(ε0) \−D0(ε0). Moreover, 0 ∈ −D0(ε0)∩
D0(ε0), by Lemmas 4.1, 4.2 and Proposition 2.1, (1.1) has four solutions: u1 ∈ D0(ε0) ∩ (−D0(ε0)), u2 ∈ D0(ε0) \
−D0(ε0), u3 ∈ (−D0(ε0)) \ D0(ε0), u4 ∈ H \ (D0(ε0) ∪ −D0(ε0)). That is, u1 is naught solution, u2 is positive
solution, u3 is negative solution and u4 is sign-changing solution. �

We prove Theorems 3.2 and 3.3 by Proposition 2.2. First let N = X1 ⊕ X2 ⊕ · · · ⊕ Xl (l � 2), M = ⊕∞
i=l+1 Xi ,

then V = N ⊕ M . We take z0 ∈ Xl , ‖z0‖ = 1, and define

B = {
u ∈ M: ‖u‖ � δ

} ∪ {
u = sz0 + v: v ∈ M, s � 0, ‖u‖ = δ

}
.

Then each element of B is sign-changing.

Lemma 4.4. dist(B,−P ∪ P) = d1 > 0.

Proof. B and −P ∪P are two closed subsets of V . Note that B ∩(−P ∪P) = ∅ and V is normal space, the conclusion
is readily to be shown. �
Lemma 4.5. Assume (h2) holds, then there exists μ0 ∈ (0, d1) such that J ′(±D0(μ0)) ⊂ ±D0(μ0).
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Proof. Let u± = max{±u,0}. ∀w ∈ −P , we have w(x) � 0, so −w(x) � 0. Hence, ∀w ∈ −P, s ∈ (2,2∗),
∥∥u+∥∥s

s
=

∫
Ω

∣∣u+∣∣s dx

=
∫

u(x)�0

∣∣u+∣∣s dx +
∫

u(x)<0

∣∣u+∣∣s dx

=
∫

u(x)�0

∣∣u+∣∣s dx

�
∫

u(x)�0

∣∣u+ − w
∣∣s dx +

∫
u(x)<0

∣∣−u− − w
∣∣s dx

=
∫
Ω

|u − w|s dx.

Therefore ‖u+‖s � infw∈(−P) ‖u − w‖s . Moreover, by the definition of V and Sobolev embedding theorem, when
s ∈ (2,2∗), the embedding V ↪→ Lt(Ω) is continuous. So for all u ∈ V , if s ∈ (2,2∗), there exists Cs > 0 such that

∥∥u+∥∥
s
� inf

w∈(−P)
‖u − w‖s � Cs inf

w∈(−P)
‖u − w‖ = Cs dist(u,−P). (4.6)

By (h2), ∀ε > 0, there exists Cε > 0, such that

f (x, t)t � εt2 + Cε |t |s , x ∈ Ω, t ∈ R. (4.7)

Assume v = J ′(u). By (4.6) and (4.7), for ε small enough,

dist(v,−P)
∥∥v+∥∥ �

∥∥v+∥∥2

= 〈
v, v+〉

�
∫
Ω

f
(
x,u+)

v+ dx

�
∫
Ω

(
ε
∣∣u+∣∣ + Cε

∣∣u+∣∣s−1)∣∣v+∣∣dx

�
(

1

2
dist(u,−P) + C dist(u,−P)s−1

)∥∥v+∥∥.

That is, dist(J ′(u),−P) � 1
2 dist(u,−P) + C(dist(u,−P)s−1), there is μ0 < d1 (cf. Lemma 4.4) such that

dist(J ′(u),−P) � 3
4μ0 for every u ∈ −D0(μ0). In a similar way, dist(J ′(u),P ) � 3

4μ0 for every u ∈ D0(μ0). The
conclusion follows. �
Lemma 4.6. Under the assumptions of Theorem 3.2, G satisfies the w-PS condition.

Proof. Assume {un} ⊂ V such that |G(un)| � C and G′(un) → 0. Without loss of generality, we suppose that
{‖G′(un)‖‖un‖} is bounded. It suffices to prove that {un} is bounded. By (g2),

ηC + ∥∥G′(un)
∥∥‖un‖ � ηG(un) − 〈

G′(un), un

〉
� η − 2

2
‖un‖2.

Thus ‖un‖ is bounded. �
Lemma 4.7. Under the assumptions of Theorem 3.3, G satisfies the w-PS condition.
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Proof. Assume {un} ⊂ V such that |G(un)| � C and G′(un) → 0. Without loss of generality, we suppose that
{‖G′(un)‖‖un‖} is bounded. It suffices to prove that {un} is bounded. If not, assume ‖un‖ → ∞. For ε > 0 small
enough, since the limits if (h3) and (h4) are taken in pointwise sense, by Egorov theorem, we obtain an Ωl+1 ⊂ Ω

such that meas(Ω \ Ωl+1) < ε and that lim sup|t |→∞
f (x,t)

t
� μl+1 uniformly for x ∈ Ωl+1. Therefore, there exists

C1 > 0 such that

f (x, t)

t
� μl+1 + ε + C1

|t | , ∀t �= 0, x ∈ Ωl+1. (4.8)

Similarly, there exists Ωl ⊂ Ω such that meas(Ω \ Ωl) < ε and that lim inf|t |→∞ f (x,t)
t

� L > μl uniformly for
x ∈ Ωl . Hence, there exists C2 > 0 such that

f (x, t)

t
� L − C2

|t | , ∀t �= 0, x ∈ Ωl. (4.9)

Let Ω∗ = Ωl ∩ Ωl+1, then meas(Ω∗)c < 2ε. Write un with un = u+
n + u0

n + u−
n , where u−

n ∈ N , u0
n ∈ Xl+1, u+

n ∈⊕∞
i=l+2 Xi . If |u+

n + u0
n| � |u−

n | on Ω∗, by (4.8) we have that

f (x,un)
(
u+

n + u0
n − u−

n

)
� (μl+1 + ε)

(
u+

n + u0
n

)2 − L
(
u−

n

)2 + C1
∣∣u+

n + u0
n − u−

n

∣∣. (4.10)

If |u+
n + u0

n| < |u−
n | on Ω∗, by (4.9) we have that

f (x,un)
(
u+

n + u0
n − u−

n

)
� (μl+1 + ε)

(
u+

n + u0
n

)2 − L
(
u−

n

)2 + C2
∣∣u+

n + u0
n − u−

n

∣∣. (4.11)

Since ‖u−‖2 − L
∫
Ω

(u−)2 dx � −L−μl

μl
‖u−‖2 := −γ ‖u−‖2 for every u− ∈ N . Therefore, by (4.10) and (4.11),

〈
G′(un), u

+
n + u0

n − u−
n

〉 = ∥∥u+
n

∥∥2 + ∥∥u+
n

∥∥0 − ∥∥u−
n

∥∥2 −
∫
Ω

f (x,un)
(
u+

n + u0
n − u−

n

)
dx

�
∥∥u+

n

∥∥2 + ∥∥u+
n

∥∥0 − ∥∥u−
n

∥∥2 −
∫

Ω∗

(
(μl+1 + ε)

(
u+

n + u0
n

)2 − L
(
u−

n

)2)
dx

−
∫

Ω∗
(C1 + C2)

∣∣u+
n + u0

n − u−
n

∣∣dx −
∫

Ω\Ω∗

∣∣f (x,un)
∣∣∣∣u+

n + u0
n − u−

n

∣∣dx

�
∥∥u+

n

∥∥2
(

1 − μl+1 + ε

μl+2

)
− ε‖u0‖2

2 + L

∫
Ω

(
u−

n

)2
dx − ∥∥u−

n

∥∥2

− L

∫
Ω\Ω∗

(
u−

n

)2 −
∫

Ω\Ω∗

∣∣f (x,un)
∣∣∣∣u+

n + u0
n − u−

n

∣∣dx

−
∫

Ω∗
(C1 + C2)

∣∣u+
n + u0

n − u−
n

∣∣dx

�
∥∥u+

n

∥∥2
(

1 − μl+1 + ε

μl+2

)
− ε

∥∥u0
n

∥∥2
2 + γ

∥∥u−
n

∥∥2 −
∫

Ω∗
(C1 + C2)

∣∣u+
n + u0

n − u−
n

∣∣dx

− L

∫
Ω\Ω∗

(
u−

n

)2 −
∫

Ω\Ω∗

∣∣f (x,un)
∣∣∣∣u+

n + u0
n − u−

n

∣∣dx,

which implies that u+
n‖un‖ → 0, u−

n‖un‖ → 0, u0
n‖un‖ → 1, hence un‖un‖ → w with w ∈ Xl+1, ‖w‖ = 1. So

0 = lim
n→∞

G(un) − 1
2 〈G′(un), un〉

‖un‖α
= lim

n→∞

∫
Ω

(f (x,un)un − 2F(x,un)) dx

‖un‖α
�

∫
Ω

β(x)
∣∣w(x)

∣∣α dx > 0.

This is a contradiction. The conclusion follows. �



552 J. Zhou, X. Wu / J. Math. Anal. Appl. 342 (2008) 542–558
Proof of Theorems 3.2 and 3.3. Assume

D
(1)
0 = D0(μ0), D

(2)
0 = −D0(μ0),

W = D
(1)
0 ∪ D

(2)
0 , S = V \ W.

By Lemma 4.4, B ⊂ S, that is, the condition (H3) of Proposition 2.2 holds. Lemma 4.5 says that condition (H1) of
proposition is also satisfied. Since 0 ∈ D

(1)
0 ∩D

(2)
0 , then (H2) holds automatically. By Lemmas 4.6 and 4.7, G satisfies

w-PS condition. Moreover, note that ‖v‖2 � μl‖v‖2
2 for all v ∈ N and μl+1‖w‖2

2 � ‖w‖2 for all w ∈ M . Combin-
ing (h1), we have that

G(v) � 1

2
‖v‖2 − μl

2
‖v‖2

2 +
∫
Ω

W1(x) dx

2
�

∫
Ω

W1(x) dx

2
, ∀v ∈ N,

and

G(w) � 1

2
‖w‖2 − μl+1

2
‖w‖2

2 −
∫
Ω

W2(x) dx

2
�

− ∫
Ω

W2(x) dx

2
, ∀w ∈ M.

Therefore, we have

sup
N

G = a0 < ∞, inf
M

= b0 > −∞.

Since
∣∣f (x, t)

∣∣ � c
(
1 + |t |s−1), ∀x ∈ Ω, ∀t ∈ R,

G maps bounded sets to bounded sets. By Proposition 2.2, G has a critical point in S. Therefore, (1.1) has a sign-
changing solution. �
Lemma 4.8. Assume (a2) holds, then Gλ(u) � 1

2

∫
Ω

W0(x) dx for all u ∈ Vk−1, λ ∈ Λ.

Proof. ∀u ∈ Vk−1, ∀λ ∈ Λ, by (a2), we have that

Gλ(u) � 1

2
‖u‖2 −

∫
Ω

F(x,u)dx

� 1

2
μk−1

∫
Ω

u2 dx −
∫
Ω

F(x,u)dx

� 1

2
μk−1

∫
Ω

u2 dx − 1

2
μk−1

∫
Ω

u2 dx + 1

2

∫
Ω

W0(x) dx

� 1

2

∫
Ω

W0(x) dx. �

Lemma 4.9. Assume (h2) holds and ∀x ∈ Ω , μk < b±(x). Then Gλ(u) → −∞ for u ∈ Vk as ‖u‖ → ∞ uniformly in
λ ∈ Λ.

Proof. Write G(u) as

G(u) = 1

2
‖u‖2 −

∫
Ω

(
1

2
b+(x)

(
u+)2 + 1

2
b−(x)

(
u−)2 + P(x,u)

)
dx, ∀u ∈ V

where P(x,u) = ∫ u

0 p(x, t) dt ; p(x, t) = f (x, t) − (b+(x)t+ − b−(x)t−), t± = max{±t,0}. Note that μk < b±(x)

and the variational characterization of eigenvalues {μk}: ∀u ∈ Vk,λ ∈ Λ, we have
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Gλ(u) � G(u)

= 1

2
‖u‖2 −

∫
Ω

P(x,u)dx − 1

2

( ∫
b−(x)�b+(x)

+
∫

b−(x)<b+(x)

)(
b+(x)

(
u+)2 + b−(x)

(
u−)2)

dx

= 1

2
‖u‖2 −

∫
Ω

P(x,u)dx − 1

2

∫
b−(x)�b+(x)

b+(x)u2 dx − 1

2

∫
b−(x)�b+(x)

(
b−(x) − b+(x)

)(
u−)2

dx

− 1

2

∫
b−(x)<b+(x)

b−(x)u2 dx − 1

2

∫
b−(x)<b+(x)

(
b+(x) − b−(x)

)(
u+)2

dx

� 1

2
‖u‖2 −

∫
Ω

P(x,u)dx − 1

2

∫
b−(x)�b+(x)

b+(x)u2 dx − 1

2

∫
b−(x)<b+(x)

b−(x)u2 dx

� 1

2
‖u‖2 −

∫
Ω

P(x,u)dx − 1

2

∫
Ω

min
{
b+(x), b−(x)

}
u2 dx

� −δ‖u‖2 −
∫
Ω

P(x,u)dx

where δ = min{b+(x),b−(x)}−μk

2μk
. By (h2), limt→∞ p(x,t)

t
= 0, therefore,

lim
u∈Vk,‖u‖→∞

Gλ(u)

‖u‖2
� −δ.

The conclusion follows. �
Lemma 4.10. Assume (a1) and (a3) hold, then there exists ρ0 > 0 independent of λ such that Gλ(u) � 1

2

∫
Ω

W0(x) dx

for all u ∈ ⊕∞
i=k Xi with ‖u‖ = ρ0 and all λ ∈ Λ.

Proof. By (a1), if x ∈ Ω , |t | � r0,

F(x, t) � 1

2
F0t

2 − 1

4
F0r

2
0 . (4.12)

∀u ∈ ⊕∞
i=k Xi , write u as u = v + w, where v ∈ ⊕l−1

i=k Xi,w ∈ ⊕∞
i=l Xi . Let

β0 = μk + μk−1

2
,

ξ1 = 2F0 + μl

8
w2 + μk + β0

8
v2 − F(x, v + w). (4.13)

If |v + w| � r0, then by (a3) and the choice of μl , we see that

ξ1 � 2F0 + μl

8
w2 + μk + β0

8
v2 − 1

4
β0(v + w)2

� 2F0 + μl − 2β0

8
w2 + μk + β0 − 2β0

8
v2 − 1

2
β0|vw|

�
(

((2F0 + μl − 2β0)(μk − β0))
1
2

4
− 1

2
β0

)
|vw| � 0. (4.14)

If |v + w| > r0, then by (4.12), we conclude that

ξ1 �
(

μl + 2F0 − 4F0

8
w2 + μk + β0 − 4F0

8
v2

)
− F0vw + F0r0

4
= ξ2 + ξ3 (4.15)

where
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ξ2 = μl − 2F0

16
w2 + μk − β0

8
v2 − β0vw

2
, (4.16)

ξ3 = μl − 2F0

16
w2 − 2F0 − β0

4
v2 − (2F0 − β0)vw

2
+ F0r

2
0

4
. (4.17)

Next, we estimate ξ2 and ξ3. If μ−β0
8 |v| − β0|w|

2 � 0, then

ξ2 � μl − 2F0

16
w2 +

(
μk − β0

8
|v| − β0|w|

2

)
|v| � 0. (4.18)

If μ−β0
8 |v| − β0|w|

2 < 0, by the choice of μl , we deduce that

ξ2 �
(

μl − 2F0

16
− 2β2

0

μk − β0

)
w2 + μk − β0

8
v2 � 0. (4.19)

On the other hand,

ξ3 � μl + 2F0 − 4F0

16
w2 −

(
F0 − β0

2

)(|v| + |w|)|v| + F0r
2
0

4
= ξ4. (4.20)

Thus

ξ4 � μl − 10F0 + 4β0

16
w2 − 3(2F0 − β0)

4
v2 + F0r

2
0

4

� −3(2F0 − β0)

4
v2 + F0r

2
0

4
. (4.21)

Choose ρ0 = 1
Cl−1

(
F0r

2
0

3(2F0−β0)
)

1
2 . If ‖u‖ = ρ0, then ‖v‖∞ � Cl−1‖v‖ � Cl−1‖u‖ � Cl−1ρ0. Hence, ξ4 � 0. Therefore,

by (4.13)–(4.21), ξ1 � 0. Finally

Gλ(u) = Gλ(v + w)

� 1

4

(‖v‖2 + ‖w‖2) −
∫
Ω

F(x, v + w)dx

� 1

8
‖v‖2 + 1

8
‖w‖2 + 1

8
μk‖v‖2

2 + 1

8
μl‖w‖2

2 −
∫
Ω

F(x, v + w)dx

� 1

8

(
1 − β0

μk

)
‖v‖2 + 1

8

(
1 − 2F0

μl

)
‖w‖2 +

∫
Ω

ξ1 dx

� 1

8
min

{(
1 − β0

μk

)
,

(
1 − 2F0

μl

)}
‖u‖2

� 1

8

(
1 − β0

μk

)
ρ2

0

� 1

2

∫
Ω

W0(x) dx. �

By Lemma 4.9, there exists R > ρ0 such that Gλ(u) � 0 for all u ∈ Vk , ‖u‖ � R. Choose y0 ∈ Xk , ‖y0‖ = 1. Let
B = ⊕∞

i=k Xi ∩ ∂Bρ0(0), A = {u = v + sy0: v ∈ Vk−1, s � 0, ‖u‖ = R} ∪ (Vk−1 ∩ BR(0)). By the definite of A, B

and link, A links B and each element of B is sign-changing. Similar to Lemma 4.4, dist(B,−P ∪ P) = d2 > 0. In the
same as that of the proof of Lemma 4.5, we have that
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Lemma 4.11. Under the assumptions of Theorem 3.4, then there exists μ0 ∈ (0, d2), μ0 < 1
2 such that

dist
(
J ′(u),±P

)
� 1

5
dist(u,±P)

for u ∈ V and dist(u,±P) < μ0.

Proof of Theorem 3.4. By Lemmas 4.8–4.10, for λ ∈ Λ,

a0(λ) = sup
A

Gλ � 1

2

∫
Ω

W0(x) dx = b0 � inf
B

Gλ.

Let

D = (−D0(μ0)
) ∪ D0(μ0), S = V \ D,

then B ⊂ S. That is, condition (A2) of Proposition 2.3 holds. By Lemma 4.11, condition (A1) of Proposition 2.3 also
satisfied. Since

∣∣f (x, t)
∣∣ � c

(
1 + |t |s−1), ∀x ∈ Ω, ∀t ∈ R,

G maps bounded sets to bounded sets. Therefore by Proposition 2.3 and [9, Theorem 2.1], for almost all λ ∈ Λ,
Gλ has a sign-changing critical point uλ ∈ S such that

G′
λ(uλ) = 0, Gλ(uλ) ∈

[
b0, sup

(t,u)∈[0,1]×A

G
(
(1 − t)u

)]
.

Then we prove {uλ}λ∈Λ is bounded as follows.
Assume {uλ}λ∈Λ is unbounded, then there exists λn ∈ Λ such that ‖uλn‖ → ∞ for n → ∞. We consider wλn =

uλn‖uλn‖ . Then, up to a subsequence, we get that

wλn ⇀ w in V,

wλn → w in Lt(Ω) for 2 � t < 2∗,
wλn(x) → w(x) a.e. x ∈ Ω.

If w �= 0 in V , since G′
λn

(uλn) = 0, we have that

1

2

∫
Ω

H(x,uλn) =
∫
Ω

(
1

2
f (x,uλn)uλn − F(x,uλn)

)

= Gλn(uλn) − 1

2

〈
G′

λn
(uλn), uλn

〉
= Gλn(uλn)

� sup
(t,u)∈[0,1]×A

G
(
(1 − t)u

)
.

However, by (a4), H(x, t) → ∞ as |t | → ∞ for each x ∈ Ω . Therefore∫
Ω

H(x,uλn) dx �
∫

{w(x) �=0}
H(x,uλn) dx → ∞

as n → ∞. This is a contradiction.
If w = 0 in V , we define

Gλn(tnuλn) = max
t∈[0,1]

Gλn(tuλn).

For any c > 0 and wλn = √
4cwλn , we have, for n large enough, that
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Gλn(tnuλn) � Gλn(wλn) � 2cλn −
∫
Ω

F(x,wλn) � c

2
,

which implies limn→∞ Gλn(tnuλn) = ∞. Evidently, tn ∈ (0,1), hence, we have 〈G′
λn

(tnuλn), tnuλn〉 = 0. It follows
that ∫

Ω

(
1

2
f (x, tnuλn)tnuλn − F(x, tnuλn)

)
dx → ∞.

By the convexity of H(x, t) in t , we have that∫
Ω

(
1

2
f (x,uλn)uλn − F(x,uλn)

)
dx �

∫
Ω

(
1

2
f (x, tnuλn)tnuλn − F(x, tnuλn)

)
dx → ∞.

We get a contradiction since∫
Ω

(
1

2
f (x,uλn)uλn − F(x,uλn)

)
dx = Gλn(uλn) ∈

[
b0, sup

(t,u)∈[0,1]×A

G
(
(1 − t)u

)]
.

Therefore, {uλ}λ∈Λ is bounded.
Let λm → 1 (m → ∞), since {uλm} is bounded, then, up to a subsequence, we get uλm → u, we will prove u is

sign-changing.
Let u±

λm
= max{±uλm,0}, then

λm

∥∥u±
λm

∥∥2 �
∫
Ω

f
(
x,u±

λm

)
u±

λm
dx.

By (h2), there exists C3 > 0 such

f (x,u)u � μ1

4
|u|2 + C3|u|s , x ∈ Ω, u ∈ R.

Note that if ∀u ∈ V , ‖u‖2 � √
μ1‖u‖2

2. It follows that

1

2

∥∥u±
λm

∥∥2 � 1

4

∥∥u±
λm

∥∥2 + C3
∥∥u±

λm

∥∥s

s
.

Hence, ‖u±
λm

‖ � C4 > 0, where C4 is a constant independent of λm. So u is sign-changing. That is, u is the sign-
changing solution of (1.1). �

We are going to prove Theorem 3.5 by applying Proposition 2.4. For k � 2, assume

Ek =
k⊕

j=1

Xj , Zk =
∞⊕

j=k

Xj , Bk = {
u ∈ Ek: ‖u‖ � ρk

}
, Nk = {

u ∈ Zk: ‖u‖ = rk
}

where ρk > rk > 0. We need the following lemma.

Lemma 4.12. Under the assumptions of Theorem 3.5, there exists ρk > rk > 0 independent of λ such that

max
∂Bk

Gλ � ak � 0 < bk � inf
Nk

Gλ

for λ ∈ Λ. Here ak and bk are independent of λ. Moreover, bk → ∞ as (k → ∞).

Proof. By (h2), there exists C5 > 0 such that |F(x,u)| � μ1
8 u2 + C5|u|s for x ∈ Ω,u ∈ R. Recall Gagliardo–

Nirenberg inequality

‖u‖s � c0‖∇u‖α
2 ‖u‖1−α, ∀u ∈ H 1(RN

)
,
2
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where α = N( 1
2 − 1

s
), c0 is a constant depending on s,N . Note μk‖u‖2

2 � ‖u‖2 for all u ∈ ⊕∞
i=k Xi , if u ∈ ⊕∞

i=k Xi ,

‖u‖ = rk = μ

s(1−α)
2(s−2)
k

(16cs
0C5)

1
s−2

, we have the following estimates:

Gλ(u) � 1

4
‖u‖2 − μ1

8

∫
Ω

u2 dx − C5

∫
Ω

|u|s dx

� 1

8
‖u‖2 − C5c

s
0‖∇u‖sα

2 ‖u‖s(1−α)
2

� 1

8
‖u‖2 − C5c

s
0‖u‖sμ

−s(1−α)
2

k

� 1

16
r2
k = bk.

Since dimVk < ∞, then by (b1) and (h2),

Gλ(u)

‖u‖2
� 1

2
−

∫
Ω

F(x,u)

‖u‖2
→ −∞

as u ∈ Vk,‖u‖ → ∞ uniformly for λ ∈ Λ. Then there exists ρk > rk > 0 independent of λ such that

max
∂Bk

Gλ � ak � 0. �
Proof of Theorem 3.5. Since each element of Nk (k � 2) is sign-changing, there exists γk > 0 such that
dist(Nk,−P ∪ P) = γk . Under the assumptions of Theorem 3.5, Lemma 4.11 is also true. That is, (A1) holds. Let

D = (−D0(μ0)
) ∪ D0(μ0), S = V \ D.

Then Nk ⊂ S. Moreover, by Lemma 4.12, (A3) is also satisfied and J ′ is compact. Thus, by Proposition 2.4, Gλ has
a sign-changing critical point uλ ∈ S and Gλ(uλ) ∈ [bk,maxu∈Bk

G(u)], an interval independent of λ. We will prove
{uλ}λ∈Λ is bounded.

Assume {uλ}λ∈Λ is unbounded, then there exists λn ∈ Λ such that ‖uλn‖ → ∞ for n → ∞. We consider wλn =
uλn‖uλn‖ . Then, up to a subsequence, we get that

wλn ⇀ w in V,

wλn → w in Lt(Ω) for 2 � t < 2∗,
wλn(x) → w(x) a.e. x ∈ Ω.

If w �= 0 in V , since G′
λn

(uλn) = 0, we have that
∫
Ω

f (x,uλn)uλn

‖uλn‖2
dx � 1.

On the other hand, by (h2), (b1) and Fatou’s lemma,∫
Ω

f (x,uλn)uλn

‖uλn‖2
dx =

∫
w(x) �=0

∣∣wλx (x)
∣∣2 f (x,uλn)uλn

|uλn |2
dx → ∞.

This is a contradiction.
If w = 0 in V , define

Gλn(tnuλn) = max
t∈[0,1]

Gλn(tuλn).

For any c > 0 and wλn = √
4cwλn , we have, for n large enough, that
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Gλn(tnuλn) � Gλn(wλn) � 2cλn −
∫
Ω

F(x,wλn) � c

2
,

which implies that limn→∞ Gλn(tnuλn) = ∞. Evidently, tn ∈ (0,1), hence, we have 〈G′
λn

(tnuλn), tnuλn〉 = 0. It fol-
lows that∫

Ω

(
1

2
f (x, tnuλn)tnuλn − F(x, tnuλn)

)
dx → ∞.

If condition (b3) holds, h(t) = 1
2 t2f (x, s)s − F(x, ts) is increasing in t ∈ [0,1], hence 1

2f (x, s)s − F(x, s) is in-
creasing in s > 0. Combining the oddness of f , we have that∫

Ω

(
1

2
f (x,uλn)uλn − F(x,uλn)

)
dx �

∫
Ω

(
1

2
f (x, tnuλn)tnuλn − F(x, tnuλn)

)
dx → ∞.

Therefore, we get a contradiction since∫
Ω

(
1

2
f (x,uλn)uλn − F(x,uλn)

)
dx = Gλn(uλn) ∈

[
b0, sup

(t,u)∈[0,1]×A

G
(
(1 − t)u

)]
.

Thus {uλ}λ∈Λ is bounded.
Let λm → 1 (m → ∞), since {uλm} is bounded, then, up to a subsequence, we get uλm → u. In the same as that

of the proof of Theorem 3.4, u is sign-changing. Hence, u is the sign-changing solution of (1.1). Since bk → ∞
(k → ∞), we obtain infinitely many sign-changing solutions of (1.1). �
Remark. As far as we know, the sign-changing solutions of (1.1) have not studied. In this paper, we study the existence
and multiple of sign-changing solutions for problem (1.1). The results include the existence of four sign-changing
solutions or infinitely many sign-changing solutions for (1.1) which are different from the references [1–7]. All these
results are new.
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