Sign-changing solutions for some fourth-order nonlinear elliptic problems *

Jianwen Zhou ${ }^{*}$, Xian Wu ${ }^{1}$
Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, PR China
Received 5 June 2007
Available online 15 December 2007
Submitted by P.J. McKenna

Abstract

In this paper, we consider the existence and multiplicity of sign-changing solutions for some fourth-order nonlinear elliptic problems and some existence and multiple are obtained. The weak solutions are sought by means of sign-changing critical theorems. © 2007 Elsevier Inc. All rights reserved.

Keywords: Sign-changing solutions; Critical point; Elliptic problems

1. Introduction

Let Ω be a bounded open set in R^{n} with smooth boundary. The purpose of this paper is to investigate the existence and multiplicity of sign-changing solutions to the fourth-order nonlinear elliptic boundary value problems

$$
\left\{\begin{array}{l}
\Delta^{2} u+c \Delta u=f(x, u) \quad \text { in } \Omega, \tag{1.1}\\
\left.u\right|_{\partial \Omega}=\left.\Delta u\right|_{\partial \Omega}=0
\end{array}\right.
$$

where Δ^{2} denotes the biharmonic operator, $c \in R$ and $f: \Omega \times R \rightarrow R$ is a Caratheodory function with subcritical growth: $|f(x, t)| \leqslant C\left(1+|t|^{s-1}\right), \forall x \in \Omega, \forall t \in R, s \in\left(2,2^{*}\right)(N \geqslant 3), s \in(2,+\infty)(N \leqslant 2)$.

In problem (1.1), let $f(x, u)=b\left[(u+1)^{+}-1\right]$, then we get the following Dirichlet problem:

$$
\left\{\begin{array}{l}
\Delta^{2} u+c \Delta u=b\left[(u+1)^{+}-1\right] \quad \text { in } \Omega, \tag{1.2}\\
\left.u\right|_{\partial \Omega}=\left.\Delta u\right|_{\partial \Omega}=0
\end{array}\right.
$$

where $u^{+}=\max \{u, 0\}$ and $b \in R$.

[^0]Thus fourth-order problems have been studied by many authors, in [1] Lazer and McKenna have pointed out that this type of nonlinearity furnishes a model to study travelling waves in suspension bridges. Since then more general nonlinear fourth-order elliptic boundary value problems have been studied. There are many results about problems (1.1) and (1.2). We refer the reader to [2,3] for some references along this line.

For problem (1.2), Lazer and McKenna [2] proved the existence of $2 k-1$ solutions when $N=1$ and $b>\lambda_{k}\left(\lambda_{k}-c\right)$ by the global bifurcation method. In [5], Tarantello found a negative solution when $b \geqslant \lambda_{1}\left(\lambda_{1}-c\right)$ by a degree argument. For problem (1.1) when $f(x, u)=b g(x, u)$, Micheletti and Pistoia [3,4] proved that there exist two or three solutions for a more general nonlinearity g by variational method. Zhang [6] proved the existence of solutions for a more general nonlinearity $f(x, u)$ under some weak assumptions. Zhang and Li [7] proved the existence of multiple nontrivial solutions by means of Morse theory and local linking. But the existence and multiple of sign-changing solutions for (1.1) have not been studied.

In this paper, we study the existence and multiple of sign-changing solutions for problem (1.1). The results include the existence of four sign-changing solutions or infinitely many sign-changing solutions for (1.1) which are different from the references [1-7]. All these results are new.

The plan of the following sections are as follows. In Section 2 we give some notations and preliminaries. In Section 3 we give some results. Section 4 is devoted to the proofs of these results.

2. Preliminaries and statements

Let Ω be a bounded open set in R^{n} with smooth boundary and $f: \Omega \times R \rightarrow R$ is a Caratheodory function with subcritical growth: $|f(x, t)| \leqslant C\left(1+|t|^{s-1}\right)$, where $s \in\left(2,2^{*}\right)(N \geqslant 3), s \in(2,+\infty)(N \leqslant 2)$ for all $x \in \Omega$ and $t \in R$. From now on, letter C is indiscriminately used to denote various positive constants. Let λ_{k} ($k=1,2, \ldots$) denote the eigenvalue and $\varphi_{k}(k=1,2, \ldots)$ the corresponding eigenfunctions of the eigenvalue problem

$$
\left\{\begin{array}{l}
\Delta u+\lambda u=0 \quad \text { in } \Omega, \tag{2.1}\\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

where each eigenvalue λ_{k} is repeated as often as multiplicity recall that $0<\lambda_{1}<\lambda_{2} \leqslant \lambda_{3} \leqslant \cdots, \lambda_{k} \rightarrow \infty$. Then φ_{1} is positive (or negative) and eigenfunctions associated to $\lambda_{i}(i \geqslant 2)$ is sign-changing. By reference [8], the eigenvalue problem

$$
\left\{\begin{array}{l}
\Delta^{2} u+c \Delta u=\mu u \quad \text { in } \Omega, \tag{2.2}\\
\left.u\right|_{\partial \Omega}=\left.\Delta u\right|_{\partial \Omega}=0
\end{array}\right.
$$

has infinitely many eigenvalues

$$
\mu_{k}=\lambda_{k}\left(\lambda_{k}-c\right), \quad k=1,2, \ldots,
$$

and corresponding eigenfunctions $\varphi_{k}(x)$.
We will always assume $c<\lambda_{1}$. Let V denote the Hilbert space $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ equipped with the inner product

$$
\begin{equation*}
\langle u, v\rangle=\int_{\Omega}[\Delta u \Delta v-\nabla u \nabla v] d x . \tag{2.3}
\end{equation*}
$$

Then we may denote an element u of V as

$$
u=\sum_{k=1}^{\infty} a_{k} \varphi_{k}, \quad \sum_{k=1}^{\infty} a_{k}^{2}<\infty,
$$

φ_{k} and $\varphi_{l}(k \neq l)$ is orthogonal base for V. We denote by $\|u\|_{p}$ the norm in $L^{p}(\Omega)$ and by $\|u\|$ the norm in V is given by

$$
\|u\|^{2}=\langle u, u\rangle .
$$

Let V^{\prime} denote the dual of V and \langle,$\rangle be the duality pairing between V^{\prime}$ and V. Let X_{k} denote the eigenspace associated to μ_{k}, then $V=\overline{\bigoplus_{j \in N} X_{j}}$. Let $V_{k}=X_{1} \oplus \cdots \oplus X_{k}, B_{R}(0)=\{u \in V,\|u\|<R\}$.

Definition 2.1. E is Hilbert space, $G \in C^{1}(E, R)$. G satisfies w-PS condition on V if $\left\{u_{n}\right\} \in E$ and $G\left(u_{n}\right)$ is bounded, $G^{\prime}\left(u_{n}\right) \rightarrow 0$, we have either $\left\{u_{n}\right\}$ is bounded and has a convergent subsequence or $\left\|G^{\prime}\left(u_{n}\right)\right\|\left\|u_{n}\right\| \rightarrow \infty$.
Definition 2.2. We say that $u \in V$ is the solution of problem (1.1) if the identity

$$
\begin{equation*}
\int_{\Omega}[\Delta u \Delta v-c \nabla u \nabla v] d x=\int_{\Omega} f(x, u) v d x \tag{2.4}
\end{equation*}
$$

holds for any $v \in V$.
Definition 2.3. u is the solution of (1.1): if $u \in\{u \in E: u(x) \geqslant 0, u \neq 0\}$, then u is positive solution of (1.1); if $u \in\{u \in E: u(x) \leqslant 0, u \neq 0\}$, then u is negative solution of (1.1); if $u \in\{u \in E: \operatorname{meas}\{x \in \Omega: u(x)>0\}>0$, meas $\{x \in \Omega: u(x)<0\}>0\}$, then u is sign-changing solution of (1.1).

Assume H is Banach space, $\Phi=\{\Gamma(\cdot, \cdot) \in C([0,1] \times E, E)\}$, where $\Gamma(\cdot, \cdot)$ satisfies
(a) $\Gamma(0, \cdot)=\mathrm{id}$;
(b) $\forall t \in[0,1), \Gamma(t, \cdot)$ is a homeomorphism of E onto itself, $(t, x) \mapsto \Gamma(t, \cdot)^{-1}(x)$ is continuous on $[0,1) \times E$;
(c) there exists $x_{0} \in H$ such that $\Gamma(1, x)=x_{0}$ for each $x \in H$ and $\Gamma(t, x) \rightarrow x_{0}$ as $t \rightarrow 1$ uniformly on bounded subsets of H.

Definition 2.4. (See [10, p. 21].) A subset A of H is linked (with respect to Φ) to a subset B of H if $A \cap B=\emptyset$, for every $\Gamma \in \Phi$, there is $t \in[0,1]$ such that $\Gamma(t, A) \cap B \neq \emptyset$.

In this paper, we need the following four propositions.
Proposition 2.1. (See [11, Theorem 3.2].) Assume H is Hilbert space, f satisfies PS condition on H and $f^{\prime}(u)$ has the expression $f^{\prime}(u)=u-A u . D_{1}$ and D_{2} are open convex subset of $H, D_{1} \cap D_{2} \neq \emptyset, A\left(\partial D_{1}\right) \subset D_{1}, A\left(\partial D_{2}\right) \subset D_{2}$. If there exists a path $h:[0,1] \rightarrow H$ such that

$$
h(0) \in D_{1} \backslash D_{2}, \quad h(1) \in D_{2} \backslash D_{1}
$$

and

$$
\inf _{u \in \overline{D_{1} \cap \overline{D_{2}}}} f(u)>\sup _{t \in[0,1]} f(h(t)),
$$

then f has at least four critical points: $u_{1} \in D_{1} \cap D_{2}, u_{2} \in D_{1} \backslash \overline{D_{2}}, u_{3} \in D_{2} \backslash \overline{D_{1}}, u_{4} \in H \backslash\left(\overline{D_{1}} \cup \overline{D_{2}}\right)$.
Proposition 2.2. (See [8, Theorem 2.1].) Let E be a Hilbert space with inner product \langle,$\rangle and norm \|.\|. Assume that$ E has an orthogonal decomposition $E=N \oplus M$ with $\operatorname{dim} N<\infty$. Let $G \in C^{1}(E, R)$ and the gradient G^{\prime} be of the form

$$
G^{\prime}(u)=u-J^{\prime}(u)
$$

where $J^{\prime}: E \rightarrow E$ is a continuous operator. Let P denote a closed convex positive cone of $E ; D_{0}^{(i)}$ be an open convex subset of $E, i=1,2, S=E \backslash W, W=D_{0}^{(1)} \cup D_{0}^{(2)}$. Assume
$\left(\mathrm{H}_{1}\right) J^{\prime}\left(D_{0}^{(i)}\right) \subset D_{0}^{(i)}, i=1,2$.
$\left(\mathrm{H}_{2}\right)$ If $D_{0}^{(1)} \cap D_{0}^{(2)}=\emptyset$, then either $D_{0}^{(1)}=\emptyset$ or $D_{0}^{(2)}=\emptyset$.
$\left(\mathrm{H}_{3}\right)$ There exist $\delta>0$ and $z_{0} \in N$ with $\left\|z_{0}\right\|=1$ such that

$$
B:=\{u \in M:\|u\| \geqslant \delta\} \cup\left\{s z_{0}+v: v \in M, s \geqslant 0,\left\|s z_{0}+v\right\|=\delta\right\} \subset S
$$

Let G maps bounded sets to bounded sets and satisfies w-PS and

$$
b_{0}=\inf _{M} G \neq-\infty, \quad a_{0}=\sup _{N} G \neq+\infty
$$

Then G has a critical point in S with critical value $\geqslant \inf _{B} G$.

Proposition 2.3. (See [9, Corollary 2.1].) Assume E is a Hilbert space with inner product \langle,$\rangle and the corresponding$ norm $\|\|,. G \in C^{1}(E, R)$ and $G(u)=\frac{1}{2}\|u\|^{2}-J(u), u \in E$, where $J \in C^{1}(E, R)$ maps bounded sets to bounded sets. $G_{\lambda}(u)=\frac{\lambda}{2}\|u\|^{2}-J(u), \lambda \in \Lambda=\left(\frac{1}{2}, 1\right)$. P denote a closed convex cone of E. Assume:
$\left(\mathrm{A}_{1}\right)$ There exists $\mu_{0}>0$ such that $\operatorname{dist}\left(J^{\prime}(u), \pm P\right) \leqslant \frac{1}{5} \operatorname{dist}(u, \pm P)$ for all $u \in E$ with $\operatorname{dist}(u, \pm P)<\mu_{0}$.
$\left(\mathrm{A}_{2}\right) \pm D_{0}=\left\{u \in E: \operatorname{dist}(u, \pm P)<\mu_{0}\right\}, D=D_{0} \cup\left(-D_{0}\right), S=E \backslash D$, let A be a bounded subset of E and link a subset B of $E, B \subset S$ and

$$
a_{0}(\lambda)=\sup _{A} G_{\lambda} \leqslant b_{0}(\lambda)=\inf _{B} G_{\lambda}, \quad \forall \lambda \in \Lambda .
$$

J^{\prime} is compact, then for almost all $\lambda \in \Lambda, G_{\lambda}$ has a sign-changing critical point in S.
Proposition 2.4. (See [9, Theorem 3.1].) Assume E is a Hilbert space with inner product \langle,$\rangle and the corre-$ sponding norm $\|\cdot\|, E=\overline{\bigoplus_{j \in N} X_{j}}$ with $\operatorname{dim} X_{j}<\infty$ for any $j \in N$, where N denotes the set of all positive integers. $G \in C^{1}(E, R)$ and $G(u)=\frac{1}{2}\|u\|^{2}-J(u)$, where $J \in C^{1}(E, R)$ maps bounded sets to bounded sets, $G_{\lambda}(u)=\frac{\lambda}{2}\|u\|^{2}-J(u), \lambda \in \Lambda=\left(\frac{1}{2}, 1\right) . P$ denotes a closed convex of E,

$$
\begin{aligned}
& \pm D_{0}=\left\{u \in E: \operatorname{dist}(u, \pm P)<\mu_{0}\right\}, \quad D=D_{0} \cup\left(-D_{0}\right), \quad S=E \backslash D, \\
& E_{k}=\bigoplus_{j=1}^{k} X_{j}, \quad Z_{k}=\bigoplus_{j=k}^{\infty} X_{j}, \quad B_{k}=\left\{u \in E_{k}:\|u\| \leqslant \rho_{k}\right\}, \quad N_{k}=\left\{u \in Z_{k}:\|u\|=r_{k}\right\}
\end{aligned}
$$

where $\rho_{k}>r_{k}>0$. For $k \geqslant 2$, assume

$$
\begin{aligned}
& \Gamma_{k}=\left\{\gamma \in C\left([0,1] \times B_{k}, E\right): \gamma(t, u) \text { is odd in } u \text { and }\left.\gamma(t, \cdot)\right|_{\partial B_{k}}=\text { id for each } t \in[0,1],\right. \\
&\gamma(t, D) \subset D \text { for all } t \in[0,1]\} \\
& a_{k}(\lambda)=\max _{\partial B_{k}} G_{\lambda}, \quad b_{k}(\lambda)=\inf _{N_{k}} G_{\lambda}, \quad c_{k}(\lambda)=\inf _{\gamma \in \Gamma_{k} \gamma\left([0,1], B_{k}\right) \cap S} \max _{\lambda .} .
\end{aligned}
$$

If $\left(\mathrm{A}_{1}\right)$ and the following $\left(\mathrm{A}_{3}\right)$ hold:
(A_{3}) $a_{k}(\lambda)<b_{k}(\lambda)$ for any $\lambda \in \Lambda, N_{k} \subset S$,
G_{λ} is even for any $\lambda \in \Lambda$, then for almost all $\lambda \in \Lambda$, there is a sequence $\left\{u_{m}\right\}$ depending on λ such that

$$
\sup _{m}\left\|u_{m}\right\|<\infty, \quad u_{m} \in S, \quad G_{\lambda}^{\prime}\left(u_{m}\right) \rightarrow 0, \quad G_{\lambda}\left(u_{m}\right) \rightarrow c_{k}(\lambda) \in\left[b_{k}(\lambda), \max _{u \in B_{k}} G(u)\right] .
$$

In particular, if J^{\prime} is compact, then for almost all $\lambda \in \Lambda, G_{\lambda}$ has a sign-changing critical point $u_{\lambda} \in S$ and $G_{\lambda}\left(u_{\lambda}\right) \in$ $\left[b_{k}(\lambda), \max _{u \in B_{k}} G(u)\right]$.

The solutions of (1.1) are corresponding to the critical points of the following C^{1}-functional:

$$
G(u)=\frac{1}{2}\|u\|^{2}-\int_{\Omega} F(x, u) d x=\frac{1}{2}\|u\|^{2}-J(u)
$$

where $F(x, t)=\int_{0}^{t} f(x, s) d s$. The gradient of G at u is given by

$$
G^{\prime}(u)=u-J^{\prime}(u) .
$$

Then $\left\langle J^{\prime}(u), v\right\rangle=\int_{\Omega} f(x, u) v d x, \forall v \in V$,

$$
|f(x, t)| \leqslant C\left(1+|t|^{s-1}\right), \quad \forall x \in \Omega, \forall t \in R,
$$

when $N \geqslant 3, s \in\left(2,2^{*}\right)$, when $N \leqslant 2, s \in(2,+\infty)$, by [12, Theorem 6.3.2], $G \in C^{1}(E, R)$ and J^{\prime} is compact.

3. Main results

Suppose
$\left(\mathrm{g}_{1}\right) f \in C(\bar{\Omega} \times R, R)$;
(g_{2}) there exists $\eta>2$ such that $\forall x \in \Omega, \forall t \in R$,

$$
0 \leqslant \eta F(x, t) \leqslant f(x, t) t
$$

Moreover $f(x, t)=o(|t|)$ as $t \rightarrow 0$ uniformly in $x \in \Omega$.
It is easy seen that (g_{1}) and $\left(\mathrm{g}_{2}\right)$ hold for nonlinearity of the form

$$
f(x, t)=\frac{1}{|x|+1}|t|^{p-2} t
$$

where $p \in\left(2,2^{*}\right)(N \geqslant 3), p \in(2,+\infty)(N \leqslant 2)$.
$\left(\mathrm{h}_{1}\right) \mu_{l} t^{2}-W_{1}(x) \leqslant 2 F(x, t) \leqslant \mu_{l+1} t^{2}+W_{2}(x)$, a.e. $x \in \Omega, t \in R$, where $W_{1}, W_{2} \in L^{1}(\Omega), l \geqslant 2$.
This assumption implies the following double resonance case:

$$
\mu_{l} \leqslant \liminf _{|t| \rightarrow \infty} \frac{2 F(x, t)}{t^{2}} \leqslant \limsup _{|t| \rightarrow \infty} \frac{2 F(x, t)}{t^{2}} \leqslant \mu_{l+1}, \quad \text { a.e. } x \in \Omega
$$

as well as jumping and oscillating between μ_{l}, μ_{l+1}. Furthermore, if we assume
(h2) $f(x, t), t \geqslant 0$, for a.e. $x \in \Omega, t \in R ; f(x, t)=o(|t|)$ as $|t| \rightarrow 0$ uniformly for $x \in \Omega$,
then we have
Theorem 3.1. Assume $\left(\mathrm{g}_{1}\right)$ and $\left(\mathrm{g}_{2}\right)$ hold, then (1.1) has four solutions: one naught solution, one positive solution, one negative solution and one sign-changing solution.

Theorem 3.2. Assume $\left(\mathrm{g}_{2}\right)$ and $\left(\mathrm{h}_{1}\right)$ hold, then (1.1) has at least a sign-changing solution.
Remark. f has subcritical growth: $|f(x, t)| \leqslant C\left(1+|t|^{s-1}\right), \forall x \in \Omega, \forall t \in R, s \in\left(2,2^{*}\right)(N \geqslant 3), s \in(2,+\infty)$ ($N \leqslant 2$), but by (g_{2}) F is superquadratic because $\eta>2$. It is easy seen that this subcritical condition and (g_{2}) hold for nonlinearity of the form

$$
f(x, t)=|t|^{p-2} t
$$

where $p \in\left(2,2^{*}\right)(N \geqslant 3), p \in(2,+\infty)(N \leqslant 2)$.
Theorem 3.3. Assume $\left(\mathrm{h}_{1}\right)$ and $\left(\mathrm{h}_{2}\right)$ hold. Moreover if
(h3) $\mu_{l}<L=\liminf |t| \rightarrow \infty, \frac{f(x, t)}{t} \leqslant \lim \sup _{|t| \rightarrow \infty} \frac{f(x, t)}{t} \leqslant \mu_{l+1}$ a.e. $x \in \Omega$;
$\left(h_{4}\right)$ there exists $\alpha>0$ such that

$$
\lim _{|t| \rightarrow+\infty} \frac{f(x, t)-2 F(x, t)}{|t|^{\alpha}}=\beta(x) \quad \text { a.e. } x \in \Omega,
$$

where $\int_{\Omega} \beta(x)|w(x)|^{\alpha} d x>0$ on the set $\left\{w \in X_{l+1}:\|w\|=1\right\}$, then (1.1) has at least one sign-changing solution.

Suppose

$$
\lim _{t \rightarrow+\infty} \frac{f(x, t)}{t}=b_{+}(x), \quad \lim _{t \rightarrow-\infty} \frac{f(x, t)}{t}=b_{-}(x)
$$

uniformly for $x \in \Omega$. For $k \geqslant 2$,
(a_{1}) there is a constant $F_{0}>\mu_{k}$ such that

$$
4 F(x, t) \leqslant F_{0} t^{2} \quad \text { for all } x \in \Omega, t \in R .
$$

$\left(\mathrm{a}_{2}\right) \forall(x, t) \in \Omega \times R, 2 F(x, t) \geqslant \mu_{k-1} t^{2}-W_{0}(x)$, where $F(x, t)=\int_{0}^{t} f(x, s) d s, 0<\int_{\Omega} W_{0}(x) d x<\infty$.
Choose μ_{l} such that

$$
\begin{equation*}
\mu_{l} \geqslant \frac{64 \mu_{k}^{2}}{\mu_{k}\left(\mu_{k}-\mu_{k-1}\right)} F_{0} \tag{3.1}
\end{equation*}
$$

then exists positive constant C_{l-1} such that $\|u\|_{\infty} \leqslant C_{l-1}\|u\| u \in V_{l-1}$.
(a3) $2 F(x, t) \leqslant \frac{\mu_{k}+\mu_{k-1}}{4} t^{2}$, for all $x \in \Omega$ and $|t| \leqslant r_{0}$, where

$$
r_{0}>C_{l-1}\left(\frac{48 \mu_{k}}{\mu_{k}-\mu_{k-1}} \int_{\Omega} W_{0}(x) d x\right)^{\frac{1}{2}}
$$

(a4) $H(x, t)=f(x, t) t-2 F(x, t)>0$ for all $x \in \Omega$ and $t \neq 0, H(x, t)$ is convex in t.
Theorem 3.4. Assume $\left(\mathrm{a}_{1}\right)-\left(\mathrm{a}_{4}\right)$ and $\left(\mathrm{h}_{2}\right)$ hold and $\mu_{k}<b_{ \pm}(x)$ for all $\forall x \in \Omega$, then (1.1) has one sign-changing solution.

Theorem 3.5. Assume $\left(\mathrm{h}_{2}\right)$ and
($\left.\mathrm{b}_{1}\right) \liminf _{|t| \rightarrow \infty} \frac{f(x, t)}{t}=\infty$ uniformly for $x \in \Omega$.
$\left(\mathrm{b}_{2}\right) f(x, t)$ is odd in t.
(b3) $\frac{f(x, t)}{t}$ is nondecreasing in $t>0$, (1.1) has infinitely many sign-changing solution.
It is easy seen that $\left(\mathrm{b}_{1}\right)-\left(\mathrm{b}_{3}\right)$ and $\left(\mathrm{h}_{2}\right)$ hold for nonlinearity of the form

$$
f(x, t)=|t|^{p-2} t
$$

where $p \in\left(2,2^{*}\right)(N \geqslant 3), p \in(2,+\infty)(N \leqslant 2)$.

4. Proof of theorems

For $\mu_{0>0}$, assume

$$
\begin{aligned}
& D_{0}\left(\mu_{0}\right)=\left\{u \in V: \operatorname{dist}(u, P)<\mu_{0}\right\}, \\
& -D_{0}\left(\mu_{0}\right)=\left\{u \in V: \operatorname{dist}(u,-P)<\mu_{0}\right\}, \\
& P=\{u \in V: u(x) \geqslant 0 \text { a.e. } x \in \Omega\} .
\end{aligned}
$$

Lemma 4.1. Assume $\left(\mathrm{g}_{2}\right)$ holds, then G satisfies PS condition.
Proof. Assume $\left\{u_{n}\right\} \subset V,\left|G\left(u_{n}\right)\right| \leqslant C, G^{\prime}\left(u_{n}\right) \rightarrow 0$. It suffices to prove that $\left\{u_{n}\right\}$ is bounded. By (g_{2})

$$
\eta C+\left\|G^{\prime}\left(u_{n}\right)\right\|\left\|u_{n}\right\| \geqslant \eta G\left(u_{n}\right)-\left\langle G^{\prime}\left(u_{n}\right), u_{n}\right\rangle \geqslant \frac{\eta-2}{2}\left\|u_{n}\right\|^{2},
$$

thus $\left\{u_{n}\right\}$ is bounded.

Lemma 4.2. Assume $\left(\mathrm{g}_{2}\right)$ holds, then there exists $\epsilon_{0}>0$ such that
(i) $J^{\prime}\left(\partial D_{0}\left(\epsilon_{0}\right)\right) \subset D_{0}\left(\epsilon_{0}\right)$, and if $u \in D_{0}\left(\epsilon_{0}\right)$ is the solution of (1.1), then $u \in P$;
(ii) $J^{\prime}\left(\partial\left(-D_{0}\left(\epsilon_{0}\right)\right)\right) \subset-D_{0}\left(\epsilon_{0}\right)$, and if $u \in-D_{0}\left(\epsilon_{0}\right)$ is the solution of (1.1), then $u \in-P$.

Proof. Let $u^{ \pm}=\max \{ \pm u, 0\} . \forall u \in V$, by the definition of V and the Sobolev embedding theorem, if $s \in\left(2,2^{*}\right)$, there exists $C_{s}>0$ such that

$$
\begin{equation*}
\left\|u^{+}\right\|_{s} \leqslant \inf _{w \in(-P)}\|u-w\|_{s} \leqslant C_{s} \inf _{w \in(-P)}\|u-w\|=C_{s} \operatorname{dist}(u,-P) . \tag{4.1}
\end{equation*}
$$

By $|f(x, t)| \leqslant C\left(1+|t|^{s-1}\right)$ and $\left(\mathrm{g}_{2}\right): \forall \epsilon>0$, there exists $C_{\epsilon}>0$, such that

$$
\begin{equation*}
f(x, t) t \leqslant \epsilon t^{2}+C_{\epsilon}|t|^{s}, \quad \forall x \in \Omega, \forall t \in R \tag{4.2}
\end{equation*}
$$

Assume $v=J^{\prime}(u)$. Then by (4.1) and (4.2), for ϵ small enough,

$$
\begin{aligned}
\operatorname{dist}(v,-P)\left\|v^{+}\right\| & \leqslant\left\|v^{+}\right\|^{2} \\
& =\left\langle v, v^{+}\right\rangle \\
& \leqslant \int_{\Omega} f\left(x, u^{+}\right) v^{+} d x \\
& \leqslant \int_{\Omega}\left(\epsilon\left|u^{+}\right|+C_{\epsilon}\left|u^{+}\right|^{s-1}\right)\left|v^{+}\right| d x \\
& \leqslant\left(\frac{1}{2} \operatorname{dist}(u,-P)+C \operatorname{dist}(u,-P)^{s-1}\right)\left\|v^{+}\right\|
\end{aligned}
$$

That is,

$$
\begin{equation*}
\operatorname{dist}\left(J^{\prime}(u),-P\right) \leqslant \frac{1}{2} \operatorname{dist}(u,-P)+C\left(\operatorname{dist}(u,-P)^{s-1}\right) \tag{4.3}
\end{equation*}
$$

So there exists $\epsilon_{0}>0$ such that $\operatorname{dist}\left(J^{\prime}(u),-P\right) \leqslant \frac{3}{4} \epsilon_{0}$ for every $u \in \partial\left(-D_{0}\left(\epsilon_{0}\right)\right)$. Thus $J^{\prime}\left(\partial\left(-D_{0}\left(\epsilon_{0}\right)\right)\right) \subset-D_{0}\left(\epsilon_{0}\right)$. If $u \in D_{0}\left(\epsilon_{0}\right)$ is the solution of (1.1), then $G^{\prime}(u)=u-J^{\prime}(u)=0$, that is, $J^{\prime}(u)=u$. By (4.3), $u \in-P$, (i) holds. (ii) can be proved analogously.

Lemma 4.3. Assume (g_{2}) holds, then

$$
\frac{\inf }{\overline{D_{0}(\epsilon)} \cap-\overline{D_{0}(\epsilon)}} G(u)=d_{0}>-\infty .
$$

Proof. By $\left(\mathrm{g}_{2}\right),(4.2)$ and Holder inequality

$$
\begin{aligned}
G(u) & \geqslant-\int_{\Omega} F(x, u(x)) d x \\
& \geqslant-\frac{1}{\eta} \int_{\Omega} f(x, u(x)) u(x) d x \\
& \geqslant-\frac{C}{\eta}\left(\|u\|_{2}^{2}+\|u\|_{p}^{p}\right) .
\end{aligned}
$$

According to (4.1), $\left\|u^{+}\right\|_{s} \leqslant C_{s} \operatorname{dist}(u,-P) \leqslant C_{s} \epsilon_{0},\left\|u^{-}\right\|_{s} \leqslant C_{s} \operatorname{dist}(u, P) \leqslant C_{s} \epsilon_{0}$, so

$$
\frac{\inf }{D_{0}(\epsilon) \cap-D_{0}(\epsilon)} G(u)=d_{0}>-\infty .
$$

Proof of Theorem 3.1. The $f(x, t)$ of Theorem 3.1 satisfies the condition of [12, Theorem 7.4.2], so as the same of (7.4.14) of [12, Theorem 7.4.2], there are two positive constants M_{1} and M_{2} such that $\forall t \in R, \forall x \in \Omega$,

$$
F(x, t) \geqslant M_{1}|t|^{\eta}-M_{2} .
$$

For any finitely dimensional subspace V_{0} of V, we have, $\forall v \in V_{0}$, there exists $M_{3}>0$ such that

$$
\begin{aligned}
G(u) & =\frac{1}{2}\|u\|^{2}-\int_{\Omega} F(x, u) d x \\
& \leqslant \frac{1}{2}\|u\|^{2}-M_{1}\|u\|_{\eta}^{\eta}+M_{2}|\Omega| \\
& \leqslant \frac{1}{2}\|u\|^{2}-M_{3}\|u\|^{\eta}+M_{2}|\Omega|
\end{aligned}
$$

where $|\Omega|$ denote the measure of Ω. Since $\eta<2$, by Young inequality, there are two positive number M_{4} and M_{5} such that

$$
\begin{equation*}
G(u) \leqslant-M_{4}\|u\|^{2}+M_{5}, \quad \forall v \in V_{0} . \tag{4.4}
\end{equation*}
$$

Since $\varphi_{2} \in V$ is sign-changing, that is, $\varphi_{2}^{+} \neq 0, \varphi_{2}^{-} \neq 0$. It is clear that φ_{2}^{+}and φ_{2}^{-}are linearly independent. Let $V_{0}=\left\{t \varphi_{2}^{+}+s \varphi_{2}^{-}: t \geqslant 0, s \geqslant 0\right\}$, then V_{0} is the finitely dimensional subspace of V. Define a path $h:[0,1] \mapsto V$,

$$
h(t)=t \frac{R_{0}}{\left\|\varphi_{2}^{+}\right\|} \varphi_{2}^{+}+(1-t) \frac{R_{0}}{\left\|\varphi_{2}^{-}\right\|} \varphi_{2}^{-}
$$

where $R_{0}=\max \left\{\frac{d_{0}-2 M_{5}-1}{-M_{4}}, 1\right\}$, then by (4.4)

$$
\begin{align*}
G(h(t)) & =G\left(t \frac{R_{0}}{\left\|\varphi_{2}^{+}\right\|} \varphi_{2}^{+}\right)+G\left((1-t) \frac{R_{0}}{\left\|\varphi_{2}^{-}\right\|} \varphi_{2}^{-}\right) \\
& \leqslant-M_{4} R_{0}+2 M_{5} \\
& \leqslant d_{0}-1 . \tag{4.5}
\end{align*}
$$

So

$$
\inf _{u \in \overline{D_{0}\left(\epsilon_{0}\right)} \cap-D_{0}\left(\epsilon_{0}\right)} f(u)>\sup _{t \in[0,1]} f(h(t)) .
$$

Obviously, $h(0) \in-D_{0}\left(\epsilon_{0}\right), h(1) \in D_{0}\left(\epsilon_{0}\right)$, thus $h(0) \in-D_{0}\left(\epsilon_{0}\right) \backslash D_{0}\left(\epsilon_{0}\right)$. If not, $h(0) \in-D_{0}\left(\epsilon_{0}\right) \cap D_{0}\left(\epsilon_{0}\right)$, by Lemma 4.3, $G(h(0)) \geqslant d_{0}$. This is a contradiction. Analogously, $h(1) \in D_{0}\left(\epsilon_{0}\right) \backslash-D_{0}\left(\epsilon_{0}\right)$. Moreover, $0 \in-D_{0}\left(\epsilon_{0}\right) \cap$ $D_{0}\left(\epsilon_{0}\right)$, by Lemmas 4.1, 4.2 and Proposition 2.1, (1.1) has four solutions: $u_{1} \in D_{0}\left(\epsilon_{0}\right) \cap\left(-D_{0}\left(\epsilon_{0}\right)\right), u_{2} \in D_{0}\left(\epsilon_{0}\right) \backslash$ $\overline{-D_{0}\left(\epsilon_{0}\right)}, u_{3} \in\left(-D_{0}\left(\epsilon_{0}\right)\right) \backslash \overline{D_{0}\left(\epsilon_{0}\right)}, u_{4} \in H \backslash\left(\overline{D_{0}\left(\epsilon_{0}\right)} \cup \overline{-D_{0}\left(\epsilon_{0}\right)}\right)$. That is, u_{1} is naught solution, u_{2} is positive solution, u_{3} is negative solution and u_{4} is sign-changing solution.

We prove Theorems 3.2 and 3.3 by Proposition 2.2. First let $N=X_{1} \oplus X_{2} \oplus \cdots \oplus X_{l}(l \geqslant 2), M=\overline{\bigoplus_{i=l+1}^{\infty} X_{i}}$, then $V=N \oplus M$. We take $z_{0} \in X_{l},\left\|z_{0}\right\|=1$, and define

$$
B=\{u \in M:\|u\| \geqslant \delta\} \cup\left\{u=s z_{0}+v: v \in M, s \geqslant 0,\|u\|=\delta\right\} .
$$

Then each element of B is sign-changing.
Lemma 4.4. $\operatorname{dist}(B,-P \cup P)=d_{1}>0$.
Proof. B and $-P \cup P$ are two closed subsets of V. Note that $B \cap(-P \cup P)=\emptyset$ and V is normal space, the conclusion is readily to be shown.

Lemma 4.5. Assume $\left(\mathrm{h}_{2}\right)$ holds, then there exists $\mu_{0} \in\left(0, d_{1}\right)$ such that $J^{\prime}\left(\pm D_{0}\left(\mu_{0}\right)\right) \subset \pm D_{0}\left(\mu_{0}\right)$.

Proof. Let $u^{ \pm}=\max \{ \pm u, 0\} . \forall w \in-P$, we have $w(x) \leqslant 0$, so $-w(x) \geqslant 0$. Hence, $\forall w \in-P, s \in\left(2,2^{*}\right)$,

$$
\begin{aligned}
\left\|u^{+}\right\|_{s}^{s} & =\int_{\Omega}\left|u^{+}\right|^{s} d x \\
& =\int_{u(x) \geqslant 0}\left|u^{+}\right|^{s} d x+\int_{u(x)<0}\left|u^{+}\right|^{s} d x \\
& =\int_{u(x) \geqslant 0}\left|u^{+}\right|^{s} d x \\
& \leqslant \int_{u(x) \geqslant 0}\left|u^{+}-w\right|^{s} d x+\int_{u(x)<0}\left|-u^{-}-w\right|^{s} d x \\
& =\int_{\Omega}|u-w|^{s} d x .
\end{aligned}
$$

Therefore $\left\|u^{+}\right\|_{s} \leqslant \inf _{w \in(-P)}\|u-w\|_{s}$. Moreover, by the definition of V and Sobolev embedding theorem, when $s \in\left(2,2^{*}\right)$, the embedding $V \hookrightarrow L^{t}(\Omega)$ is continuous. So for all $u \in V$, if $s \in\left(2,2^{*}\right)$, there exists $C_{s}>0$ such that

$$
\begin{equation*}
\left\|u^{+}\right\|_{s} \leqslant \inf _{w \in(-P)}\|u-w\|_{s} \leqslant C_{s} \inf _{w \in(-P)}\|u-w\|=C_{s} \operatorname{dist}(u,-P) . \tag{4.6}
\end{equation*}
$$

By $\left(\mathrm{h}_{2}\right), \forall \epsilon>0$, there exists $C_{\epsilon}>0$, such that

$$
\begin{equation*}
f(x, t) t \leqslant \epsilon t^{2}+C_{\epsilon}|t|^{s}, \quad x \in \Omega, t \in R \tag{4.7}
\end{equation*}
$$

Assume $v=J^{\prime}(u)$. By (4.6) and (4.7), for ϵ small enough,

$$
\begin{aligned}
\operatorname{dist}(v,-P)\left\|v^{+}\right\| & \leqslant\left\|v^{+}\right\|^{2} \\
& =\left\langle v, v^{+}\right\rangle \\
& \leqslant \int_{\Omega} f\left(x, u^{+}\right) v^{+} d x \\
& \leqslant \int_{\Omega}\left(\epsilon\left|u^{+}\right|+C_{\epsilon}\left|u^{+}\right|^{s-1}\right)\left|v^{+}\right| d x \\
& \leqslant\left(\frac{1}{2} \operatorname{dist}(u,-P)+C \operatorname{dist}(u,-P)^{s-1}\right)\left\|v^{+}\right\|
\end{aligned}
$$

That is, $\operatorname{dist}\left(J^{\prime}(u),-P\right) \leqslant \frac{1}{2} \operatorname{dist}(u,-P)+C\left(\operatorname{dist}(u,-P)^{s-1}\right)$, there is $\mu_{0}<d_{1}$ (cf. Lemma 4.4) such that $\operatorname{dist}\left(J^{\prime}(u),-P\right) \leqslant \frac{3}{4} \mu_{0}$ for every $u \in-D_{0}\left(\mu_{0}\right)$. In a similar way, $\operatorname{dist}\left(J^{\prime}(u), P\right) \leqslant \frac{3}{4} \mu_{0}$ for every $u \in D_{0}\left(\mu_{0}\right)$. The conclusion follows.

Lemma 4.6. Under the assumptions of Theorem 3.2, G satisfies the w-PS condition.
Proof. Assume $\left\{u_{n}\right\} \subset V$ such that $\left|G\left(u_{n}\right)\right| \leqslant C$ and $G^{\prime}\left(u_{n}\right) \rightarrow 0$. Without loss of generality, we suppose that $\left\{\left\|G^{\prime}\left(u_{n}\right)\right\|\left\|u_{n}\right\|\right\}$ is bounded. It suffices to prove that $\left\{u_{n}\right\}$ is bounded. By (g_{2}),

$$
\eta C+\left\|G^{\prime}\left(u_{n}\right)\right\|\left\|u_{n}\right\| \geqslant \eta G\left(u_{n}\right)-\left\langle G^{\prime}\left(u_{n}\right), u_{n}\right\rangle \geqslant \frac{\eta-2}{2}\left\|u_{n}\right\|^{2} .
$$

Thus $\left\|u_{n}\right\|$ is bounded.
Lemma 4.7. Under the assumptions of Theorem 3.3, G satisfies the w-PS condition.

Proof. Assume $\left\{u_{n}\right\} \subset V$ such that $\left|G\left(u_{n}\right)\right| \leqslant C$ and $G^{\prime}\left(u_{n}\right) \rightarrow 0$. Without loss of generality, we suppose that $\left\{\left\|G^{\prime}\left(u_{n}\right)\right\|\left\|u_{n}\right\|\right\}$ is bounded. It suffices to prove that $\left\{u_{n}\right\}$ is bounded. If not, assume $\left\|u_{n}\right\| \rightarrow \infty$. For $\epsilon>0$ small enough, since the limits if (h_{3}) and (h_{4}) are taken in pointwise sense, by Egorov theorem, we obtain an $\Omega_{l+1} \subset \Omega$ such that meas $\left(\Omega \backslash \Omega_{l+1}\right)<\epsilon$ and that $\lim \sup _{|t| \rightarrow \infty} \frac{f(x, t)}{t} \leqslant \mu_{l+1}$ uniformly for $x \in \Omega_{l+1}$. Therefore, there exists $C_{1}>0$ such that

$$
\begin{equation*}
\frac{f(x, t)}{t} \leqslant \mu_{l+1}+\epsilon+\frac{C_{1}}{|t|}, \quad \forall t \neq 0, x \in \Omega_{l+1} . \tag{4.8}
\end{equation*}
$$

Similarly, there exists $\Omega_{l} \subset \Omega$ such that meas $\left(\Omega \backslash \Omega_{l}\right)<\epsilon$ and that $\liminf _{|t| \rightarrow \infty} \frac{f(x, t)}{t} \geqslant L>\mu_{l}$ uniformly for $x \in \Omega_{l}$. Hence, there exists $C_{2}>0$ such that

$$
\begin{equation*}
\frac{f(x, t)}{t} \geqslant L-\frac{C_{2}}{|t|}, \quad \forall t \neq 0, x \in \Omega_{l} \tag{4.9}
\end{equation*}
$$

Let $\Omega^{*}=\Omega_{l} \cap \Omega_{l+1}$, then meas $\left(\Omega^{*}\right)^{c}<2 \epsilon$. Write u_{n} with $u_{n}=u_{n}^{+}+u_{n}^{0}+u_{n}^{-}$, where $u_{n}^{-} \in N, u_{n}^{0} \in X_{l+1}, u_{n}^{+} \in$ $\overline{\bigoplus_{i=l+2}^{\infty} X_{i}}$. If $\left|u_{n}^{+}+u_{n}^{0}\right| \geqslant\left|u_{n}^{-}\right|$on Ω^{*}, by (4.8) we have that

$$
\begin{equation*}
f\left(x, u_{n}\right)\left(u_{n}^{+}+u_{n}^{0}-u_{n}^{-}\right) \leqslant\left(\mu_{l+1}+\epsilon\right)\left(u_{n}^{+}+u_{n}^{0}\right)^{2}-L\left(u_{n}^{-}\right)^{2}+C_{1}\left|u_{n}^{+}+u_{n}^{0}-u_{n}^{-}\right| . \tag{4.10}
\end{equation*}
$$

If $\left|u_{n}^{+}+u_{n}^{0}\right|<\left|u_{n}^{-}\right|$on Ω^{*}, by (4.9) we have that

$$
\begin{equation*}
f\left(x, u_{n}\right)\left(u_{n}^{+}+u_{n}^{0}-u_{n}^{-}\right) \leqslant\left(\mu_{l+1}+\epsilon\right)\left(u_{n}^{+}+u_{n}^{0}\right)^{2}-L\left(u_{n}^{-}\right)^{2}+C_{2}\left|u_{n}^{+}+u_{n}^{0}-u_{n}^{-}\right| . \tag{4.11}
\end{equation*}
$$

Since $\left\|u^{-}\right\|^{2}-L \int_{\Omega}\left(u^{-}\right)^{2} d x \leqslant-\frac{L-\mu_{l}}{\mu_{l}}\left\|u^{-}\right\|^{2}:=-\gamma\left\|u^{-}\right\|^{2}$ for every $u^{-} \in N$. Therefore, by (4.10) and (4.11),

$$
\begin{aligned}
\left\langle G^{\prime}\left(u_{n}\right), u_{n}^{+}+u_{n}^{0}-u_{n}^{-}\right\rangle= & \left\|u_{n}^{+}\right\|^{2}+\left\|u_{n}^{+}\right\|^{0}-\left\|u_{n}^{-}\right\|^{2}-\int_{\Omega} f\left(x, u_{n}\right)\left(u_{n}^{+}+u_{n}^{0}-u_{n}^{-}\right) d x \\
\geqslant & \left\|u_{n}^{+}\right\|^{2}+\left\|u_{n}^{+}\right\|^{0}-\left\|u_{n}^{-}\right\|^{2}-\int_{\Omega^{*}}\left(\left(\mu_{l+1}+\epsilon\right)\left(u_{n}^{+}+u_{n}^{0}\right)^{2}-L\left(u_{n}^{-}\right)^{2}\right) d x \\
& -\int_{\Omega^{*}}\left(C_{1}+C_{2}\right)\left|u_{n}^{+}+u_{n}^{0}-u_{n}^{-}\right| d x-\int_{\Omega \backslash \Omega^{*}}\left|f\left(x, u_{n}\right) \| u_{n}^{+}+u_{n}^{0}-u_{n}^{-}\right| d x \\
\geqslant & \left\|u_{n}^{+}\right\|^{2}\left(1-\frac{\mu_{l+1}+\epsilon}{\mu_{l+2}}\right)-\epsilon\left\|u_{0}\right\|_{2}^{2}+L \int_{\Omega}\left(u_{n}^{-}\right)^{2} d x-\left\|u_{n}^{-}\right\|^{2} \\
& -L \int_{\Omega \backslash \Omega^{*}}\left(u_{n}^{-}\right)^{2}-\int_{\Omega \backslash \Omega^{*}}\left|f\left(x, u_{n}\right) \| u_{n}^{+}+u_{n}^{0}-u_{n}^{-}\right| d x \\
& -\int_{\Omega^{*}}\left(C_{1}+C_{2}\right)\left|u_{n}^{+}+u_{n}^{0}-u_{n}^{-}\right| d x \\
\geqslant & \left\|u_{n}^{+}\right\|^{2}\left(1-\frac{\mu_{l+1}+\epsilon}{\mu_{l+2}}\right)-\epsilon\left\|u_{n}^{0}\right\|_{2}^{2}+\gamma\left\|u_{n}^{-}\right\|^{2}-\int_{\Omega^{*}}\left(C_{1}+C_{2}\right)\left|u_{n}^{+}+u_{n}^{0}-u_{n}^{-}\right| d x \\
& -L \int_{\Omega \backslash \Omega^{*}}\left(u_{n}^{-}\right)^{2}-\int_{\Omega \backslash \Omega^{*}}\left|f\left(x, u_{n}\right) \| u_{n}^{+}+u_{n}^{0}-u_{n}^{-}\right| d x,
\end{aligned}
$$

which implies that $\frac{u_{n}^{+}}{\left\|u_{n}\right\|} \rightarrow 0, \frac{u_{n}^{-}}{\left\|u_{n}\right\|} \rightarrow 0, \frac{u_{n}^{0}}{\left\|u_{n}\right\|} \rightarrow 1$, hence $\frac{u_{n}}{\left\|u_{n}\right\|} \rightarrow w$ with $w \in X_{l+1},\|w\|=1$. So

$$
0=\lim _{n \rightarrow \infty} \frac{G\left(u_{n}\right)-\frac{1}{2}\left\langle G^{\prime}\left(u_{n}\right), u_{n}\right\rangle}{\left\|u_{n}\right\|^{\alpha}}=\lim _{n \rightarrow \infty} \frac{\int_{\Omega}\left(f\left(x, u_{n}\right) u_{n}-2 F\left(x, u_{n}\right)\right) d x}{\left\|u_{n}\right\|^{\alpha}} \geqslant \int_{\Omega} \beta(x)|w(x)|^{\alpha} d x>0
$$

This is a contradiction. The conclusion follows.

Proof of Theorems $\mathbf{3 . 2}$ and 3.3. Assume

$$
\begin{array}{lc}
D_{0}^{(1)}=D_{0}\left(\mu_{0}\right), & D_{0}^{(2)}=-D_{0}\left(\mu_{0}\right), \\
W=D_{0}^{(1)} \cup D_{0}^{(2)}, & S=V \backslash W
\end{array}
$$

By Lemma 4.4, $B \subset S$, that is, the condition $\left(\mathrm{H}_{3}\right)$ of Proposition 2.2 holds. Lemma 4.5 says that condition $\left(\mathrm{H}_{1}\right)$ of proposition is also satisfied. Since $0 \in D_{0}^{(1)} \cap D_{0}^{(2)}$, then $\left(\mathrm{H}_{2}\right)$ holds automatically. By Lemmas 4.6 and $4.7, G$ satisfies w-PS condition. Moreover, note that $\|v\|^{2} \leqslant \mu_{l}\|v\|_{2}^{2}$ for all $v \in N$ and $\mu_{l+1}\|w\|_{2}^{2} \leqslant\|w\|^{2}$ for all $w \in M$. Combining (h_{1}), we have that

$$
G(v) \leqslant \frac{1}{2}\|v\|^{2}-\frac{\mu_{l}}{2}\|v\|_{2}^{2}+\frac{\int_{\Omega} W_{1}(x) d x}{2} \leqslant \frac{\int_{\Omega} W_{1}(x) d x}{2}, \quad \forall v \in N,
$$

and

$$
G(w) \geqslant \frac{1}{2}\|w\|^{2}-\frac{\mu_{l+1}}{2}\|w\|_{2}^{2}-\frac{\int_{\Omega} W_{2}(x) d x}{2} \geqslant \frac{-\int_{\Omega} W_{2}(x) d x}{2}, \quad \forall w \in M .
$$

Therefore, we have

$$
\sup _{N} G=a_{0}<\infty, \quad \inf _{M}=b_{0}>-\infty
$$

Since

$$
|f(x, t)| \leqslant c\left(1+|t|^{s-1}\right), \quad \forall x \in \Omega, \forall t \in R
$$

G maps bounded sets to bounded sets. By Proposition $2.2, G$ has a critical point in S. Therefore, (1.1) has a signchanging solution.

Lemma 4.8. Assume $\left(\mathrm{a}_{2}\right)$ holds, then $G_{\lambda}(u) \leqslant \frac{1}{2} \int_{\Omega} W_{0}(x) d x$ for all $u \in V_{k-1}, \lambda \in \Lambda$.
Proof. $\forall u \in V_{k-1}, \forall \lambda \in \Lambda$, by (a_{2}), we have that

$$
\begin{aligned}
G_{\lambda}(u) & \leqslant \frac{1}{2}\|u\|^{2}-\int_{\Omega} F(x, u) d x \\
& \leqslant \frac{1}{2} \mu_{k-1} \int_{\Omega} u^{2} d x-\int_{\Omega} F(x, u) d x \\
& \leqslant \frac{1}{2} \mu_{k-1} \int_{\Omega} u^{2} d x-\frac{1}{2} \mu_{k-1} \int_{\Omega} u^{2} d x+\frac{1}{2} \int_{\Omega} W_{0}(x) d x \\
& \leqslant \frac{1}{2} \int_{\Omega} W_{0}(x) d x .
\end{aligned}
$$

Lemma 4.9. Assume (h_{2}) holds and $\forall x \in \Omega, \mu_{k}<b_{ \pm}(x)$. Then $G_{\lambda}(u) \rightarrow-\infty$ for $u \in V_{k}$ as $\|u\| \rightarrow \infty$ uniformly in $\lambda \in \Lambda$.

Proof. Write $G(u)$ as

$$
G(u)=\frac{1}{2}\|u\|^{2}-\int_{\Omega}\left(\frac{1}{2} b_{+}(x)\left(u^{+}\right)^{2}+\frac{1}{2} b_{-}(x)\left(u^{-}\right)^{2}+P(x, u)\right) d x, \quad \forall u \in V
$$

where $P(x, u)=\int_{0}^{u} p(x, t) d t ; p(x, t)=f(x, t)-\left(b_{+}(x) t^{+}-b_{-}(x) t^{-}\right), t^{ \pm}=\max \{ \pm t, 0\}$. Note that $\mu_{k}<b_{ \pm}(x)$ and the variational characterization of eigenvalues $\left\{\mu_{k}\right\}: \forall u \in V_{k}, \lambda \in \Lambda$, we have

$$
\begin{aligned}
G_{\lambda}(u) \leqslant & G(u) \\
= & \frac{1}{2}\|u\|^{2}-\int_{\Omega} P(x, u) d x-\frac{1}{2}\left(\int_{b_{-}(x) \geqslant b_{+}(x)}+\int_{b_{-}(x)<b_{+}(x)}\right)\left(b_{+}(x)\left(u^{+}\right)^{2}+b_{-}(x)\left(u^{-}\right)^{2}\right) d x \\
= & \frac{1}{2}\|u\|^{2}-\int_{\Omega} P(x, u) d x-\frac{1}{2} \int_{b_{-}(x) \geqslant b_{+}(x)} b_{+}(x) u^{2} d x-\frac{1}{2} \int_{b_{-}(x) \geqslant b_{+}(x)}\left(b_{-}(x)-b_{+}(x)\right)\left(u^{-}\right)^{2} d x \\
& -\frac{1}{2} \int_{b_{-}(x)<b_{+}(x)} b_{-}(x) u^{2} d x-\frac{1}{2} \int_{b_{-}(x)<b_{+}(x)}\left(b_{+}(x)-b_{-}(x)\right)\left(u^{+}\right)^{2} d x \\
\leqslant & \frac{1}{2}\|u\|^{2}-\int_{\Omega} P(x, u) d x-\frac{1}{2} \int_{b_{-}(x) \geqslant b_{+}(x)} b_{+}(x) u^{2} d x-\frac{1}{2} \int_{b_{-}(x)<b_{+}(x)} b_{-}(x) u^{2} d x \\
\leqslant & \frac{1}{2}\|u\|^{2}-\int_{\Omega} P(x, u) d x-\frac{1}{2} \int_{\Omega} \min \left\{b_{+}(x), b_{-}(x)\right\} u^{2} d x \\
\leqslant & -\delta\|u\|^{2}-\int_{\Omega} P(x, u) d x
\end{aligned}
$$

where $\delta=\frac{\min \left\{b_{+}(x), b_{-}(x)\right\}-\mu_{k}}{2 \mu_{k}}$. By $\left(\mathrm{h}_{2}\right), \lim _{t \rightarrow \infty} \frac{p(x, t)}{t}=0$, therefore,

$$
\lim _{u \in V_{k},\|u\| \rightarrow \infty} \frac{G_{\lambda}(u)}{\|u\|^{2}} \leqslant-\delta .
$$

The conclusion follows.
Lemma 4.10. Assume $\left(\mathrm{a}_{1}\right)$ and $\left(\mathrm{a}_{3}\right)$ hold, then there exists $\rho_{0}>0$ independent of λ such that $G_{\lambda}(u) \geqslant \frac{1}{2} \int_{\Omega} W_{0}(x) d x$ for all $u \in \overline{\bigoplus_{i=k}^{\infty} X_{i}}$ with $\|u\|=\rho_{0}$ and all $\lambda \in \Lambda$.

Proof. By (a_{1}), if $x \in \Omega,|t| \geqslant r_{0}$,

$$
\begin{equation*}
F(x, t) \leqslant \frac{1}{2} F_{0} t^{2}-\frac{1}{4} F_{0} r_{0}^{2} . \tag{4.12}
\end{equation*}
$$

$\forall u \in \overline{\bigoplus_{i=k}^{\infty} X_{i}}$, write u as $u=v+w$, where $v \in \bigoplus_{i=k}^{l-1} X_{i}, w \in \overline{\bigoplus_{i=l}^{\infty} X_{i}}$. Let

$$
\begin{align*}
& \beta_{0}=\frac{\mu_{k}+\mu_{k-1}}{2} \\
& \xi_{1}=\frac{2 F_{0}+\mu_{l}}{8} w^{2}+\frac{\mu_{k}+\beta_{0}}{8} v^{2}-F(x, v+w) . \tag{4.13}
\end{align*}
$$

If $|v+w| \leqslant r_{0}$, then by $\left(\mathrm{a}_{3}\right)$ and the choice of μ_{l}, we see that

$$
\begin{align*}
\xi_{1} & \geqslant \frac{2 F_{0}+\mu_{l}}{8} w^{2}+\frac{\mu_{k}+\beta_{0}}{8} v^{2}-\frac{1}{4} \beta_{0}(v+w)^{2} \\
& \geqslant \frac{2 F_{0}+\mu_{l}-2 \beta_{0}}{8} w^{2}+\frac{\mu_{k}+\beta_{0}-2 \beta_{0}}{8} v^{2}-\frac{1}{2} \beta_{0}|v w| \\
& \geqslant\left(\frac{\left(\left(2 F_{0}+\mu_{l}-2 \beta_{0}\right)\left(\mu_{k}-\beta_{0}\right)\right)^{\frac{1}{2}}}{4}-\frac{1}{2} \beta_{0}\right)|v w| \geqslant 0 . \tag{4.14}
\end{align*}
$$

If $|v+w|>r_{0}$, then by (4.12), we conclude that

$$
\begin{equation*}
\xi_{1} \geqslant\left(\frac{\mu_{l}+2 F_{0}-4 F_{0}}{8} w^{2}+\frac{\mu_{k}+\beta_{0}-4 F_{0}}{8} v^{2}\right)-F_{0} v w+\frac{F_{0} r_{0}}{4}=\xi_{2}+\xi_{3} \tag{4.15}
\end{equation*}
$$

where

$$
\begin{align*}
& \xi_{2}=\frac{\mu_{l}-2 F_{0}}{16} w^{2}+\frac{\mu_{k}-\beta_{0}}{8} v^{2}-\frac{\beta_{0} v w}{2}, \tag{4.16}\\
& \xi_{3}=\frac{\mu_{l}-2 F_{0}}{16} w^{2}-\frac{2 F_{0}-\beta_{0}}{4} v^{2}-\frac{\left(2 F_{0}-\beta_{0}\right) v w}{2}+\frac{F_{0} r_{0}^{2}}{4} . \tag{4.17}
\end{align*}
$$

Next, we estimate ξ_{2} and ξ_{3}. If $\frac{\mu-\beta_{0}}{8}|v|-\frac{\beta_{0}|w|}{2} \geqslant 0$, then

$$
\begin{equation*}
\xi_{2} \geqslant \frac{\mu_{l}-2 F_{0}}{16} w^{2}+\left(\frac{\mu_{k}-\beta_{0}}{8}|v|-\frac{\beta_{0}|w|}{2}\right)|v| \geqslant 0 . \tag{4.18}
\end{equation*}
$$

If $\frac{\mu-\beta_{0}}{8}|v|-\frac{\beta_{0}|w|}{2}<0$, by the choice of μ_{l}, we deduce that

$$
\begin{equation*}
\xi_{2} \geqslant\left(\frac{\mu_{l}-2 F_{0}}{16}-\frac{2 \beta_{0}^{2}}{\mu_{k}-\beta_{0}}\right) w^{2}+\frac{\mu_{k}-\beta_{0}}{8} v^{2} \geqslant 0 \tag{4.19}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\xi_{3} \geqslant \frac{\mu_{l}+2 F_{0}-4 F_{0}}{16} w^{2}-\left(F_{0}-\frac{\beta_{0}}{2}\right)(|v|+|w|)|v|+\frac{F_{0} r_{0}^{2}}{4}=\xi_{4} . \tag{4.20}
\end{equation*}
$$

Thus

$$
\begin{align*}
\xi_{4} & \geqslant \frac{\mu_{l}-10 F_{0}+4 \beta_{0}}{16} w^{2}-\frac{3\left(2 F_{0}-\beta_{0}\right)}{4} v^{2}+\frac{F_{0} r_{0}^{2}}{4} \\
& \geqslant-\frac{3\left(2 F_{0}-\beta_{0}\right)}{4} v^{2}+\frac{F_{0} r_{0}^{2}}{4} . \tag{4.21}
\end{align*}
$$

Choose $\rho_{0}=\frac{1}{C_{l-1}}\left(\frac{F_{0} r_{0}^{2}}{3\left(2 F_{0}-\beta_{0}\right)}\right)^{\frac{1}{2}}$. If $\|u\|=\rho_{0}$, then $\|v\|_{\infty} \leqslant C_{l-1}\|v\| \leqslant C_{l-1}\|u\| \leqslant C_{l-1} \rho_{0}$. Hence, $\xi_{4} \geqslant 0$. Therefore, by (4.13)-(4.21), $\xi_{1} \geqslant 0$. Finally

$$
\begin{aligned}
G_{\lambda}(u) & =G_{\lambda}(v+w) \\
& \geqslant \frac{1}{4}\left(\|v\|^{2}+\|w\|^{2}\right)-\int_{\Omega} F(x, v+w) d x \\
& \geqslant \frac{1}{8}\|v\|^{2}+\frac{1}{8}\|w\|^{2}+\frac{1}{8} \mu_{k}\|v\|_{2}^{2}+\frac{1}{8} \mu_{l}\|w\|_{2}^{2}-\int_{\Omega} F(x, v+w) d x \\
& \geqslant \frac{1}{8}\left(1-\frac{\beta_{0}}{\mu_{k}}\right)\|v\|^{2}+\frac{1}{8}\left(1-\frac{2 F_{0}}{\mu_{l}}\right)\|w\|^{2}+\int_{\Omega} \xi_{1} d x \\
& \geqslant \frac{1}{8} \min \left\{\left(1-\frac{\beta_{0}}{\mu_{k}}\right),\left(1-\frac{2 F_{0}}{\mu_{l}}\right)\right\}\|u\|^{2} \\
& \geqslant \frac{1}{8}\left(1-\frac{\beta_{0}}{\mu_{k}}\right) \rho_{0}^{2} \\
& \geqslant \frac{1}{2} \int_{\Omega} W_{0}(x) d x .
\end{aligned}
$$

By Lemma 4.9, there exists $R>\rho_{0}$ such that $G_{\lambda}(u) \leqslant 0$ for all $u \in V_{k},\|u\| \geqslant R$. Choose $y_{0} \in X_{k},\left\|y_{0}\right\|=1$. Let $B=\overline{\bigoplus_{i=k}^{\infty} X_{i}} \cap \partial B_{\rho_{0}}(0), A=\left\{u=v+s y_{0}: v \in V_{k-1}, s \geqslant 0,\|u\|=R\right\} \cup\left(V_{k-1} \cap B_{R}(0)\right)$. By the definite of A, B and link, A links B and each element of B is sign-changing. Similar to Lemma 4.4, dist $(B,-P \cup P)=d_{2}>0$. In the same as that of the proof of Lemma 4.5, we have that

Lemma 4.11. Under the assumptions of Theorem 3.4, then there exists $\mu_{0} \in\left(0, d_{2}\right), \mu_{0}<\frac{1}{2}$ such that

$$
\operatorname{dist}\left(J^{\prime}(u), \pm P\right) \leqslant \frac{1}{5} \operatorname{dist}(u, \pm P)
$$

for $u \in V$ and $\operatorname{dist}(u, \pm P)<\mu_{0}$.
Proof of Theorem 3.4. By Lemmas 4.8-4.10, for $\lambda \in \Lambda$,

$$
a_{0}(\lambda)=\sup _{A} G_{\lambda} \leqslant \frac{1}{2} \int_{\Omega} W_{0}(x) d x=b_{0} \leqslant \inf _{B} G_{\lambda} .
$$

Let

$$
D=\left(-D_{0}\left(\mu_{0}\right)\right) \cup D_{0}\left(\mu_{0}\right), \quad S=V \backslash D,
$$

then $B \subset S$. That is, condition $\left(\mathrm{A}_{2}\right)$ of Proposition 2.3 holds. By Lemma 4.11, condition $\left(\mathrm{A}_{1}\right)$ of Proposition 2.3 also satisfied. Since

$$
|f(x, t)| \leqslant c\left(1+|t|^{s-1}\right), \quad \forall x \in \Omega, \forall t \in R,
$$

G maps bounded sets to bounded sets. Therefore by Proposition 2.3 and [9, Theorem 2.1], for almost all $\lambda \in \Lambda$, G_{λ} has a sign-changing critical point $u_{\lambda} \in S$ such that

$$
G_{\lambda}^{\prime}\left(u_{\lambda}\right)=0, \quad G_{\lambda}\left(u_{\lambda}\right) \in\left[b_{0}, \sup _{(t, u) \in[0,1] \times A} G((1-t) u)\right] .
$$

Then we prove $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ is bounded as follows.
Assume $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ is unbounded, then there exists $\lambda_{n} \in \Lambda$ such that $\left\|u_{\lambda_{n}}\right\| \rightarrow \infty$ for $n \rightarrow \infty$. We consider $w_{\lambda_{n}}=$ $\frac{u_{\lambda_{n}}}{\left\|u_{\lambda_{n}}\right\|}$. Then, up to a subsequence, we get that

$$
\begin{aligned}
& w_{\lambda_{n}} \rightharpoonup w \quad \text { in } V, \\
& w_{\lambda_{n}} \rightarrow w \quad \text { in } L^{t}(\Omega) \text { for } 2 \leqslant t<2^{*}, \\
& w_{\lambda_{n}}(x) \rightarrow w(x) \quad \text { a.e. } x \in \Omega .
\end{aligned}
$$

If $w \neq 0$ in V, since $G_{\lambda_{n}}^{\prime}\left(u_{\lambda_{n}}\right)=0$, we have that

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega} H\left(x, u_{\lambda_{n}}\right) & =\int_{\Omega}\left(\frac{1}{2} f\left(x, u_{\lambda_{n}}\right) u_{\lambda_{n}}-F\left(x, u_{\lambda_{n}}\right)\right) \\
& =G_{\lambda_{n}}\left(u_{\lambda_{n}}\right)-\frac{1}{2}\left\langle G_{\lambda_{n}}^{\prime}\left(u_{\lambda_{n}}\right), u_{\lambda_{n}}\right\rangle \\
& =G_{\lambda_{n}}\left(u_{\lambda_{n}}\right) \\
& \leqslant \sup _{(t, u) \in[0,1] \times A} G((1-t) u) .
\end{aligned}
$$

However, by (a4), $H(x, t) \rightarrow \infty$ as $|t| \rightarrow \infty$ for each $x \in \Omega$. Therefore

$$
\int_{\Omega} H\left(x, u_{\lambda_{n}}\right) d x \geqslant \int_{\{w(x) \neq 0\}} H\left(x, u_{\lambda_{n}}\right) d x \rightarrow \infty
$$

as $n \rightarrow \infty$. This is a contradiction.
If $w=0$ in V, we define

$$
G_{\lambda_{n}}\left(t_{n} u_{\lambda_{n}}\right)=\max _{t \in[0,1]} G_{\lambda_{n}}\left(t u_{\lambda_{n}}\right) .
$$

For any $c>0$ and $\bar{w}_{\lambda_{n}}=\sqrt{4 c} w_{\lambda_{n}}$, we have, for n large enough, that

$$
G_{\lambda_{n}}\left(t_{n} u_{\lambda_{n}}\right) \geqslant G_{\lambda_{n}}\left(\bar{w}_{\lambda_{n}}\right) \geqslant 2 c \lambda_{n}-\int_{\Omega} F\left(x, \bar{w}_{\lambda_{n}}\right) \geqslant \frac{c}{2}
$$

which implies $\lim _{n \rightarrow \infty} G_{\lambda_{n}}\left(t_{n} u_{\lambda_{n}}\right)=\infty$. Evidently, $t_{n} \in(0,1)$, hence, we have $\left\langle G_{\lambda_{n}}^{\prime}\left(t_{n} u_{\lambda_{n}}\right), t_{n} u_{\lambda_{n}}\right\rangle=0$. It follows that

$$
\int_{\Omega}\left(\frac{1}{2} f\left(x, t_{n} u_{\lambda_{n}}\right) t_{n} u_{\lambda_{n}}-F\left(x, t_{n} u_{\lambda_{n}}\right)\right) d x \rightarrow \infty .
$$

By the convexity of $H(x, t)$ in t, we have that

$$
\int_{\Omega}\left(\frac{1}{2} f\left(x, u_{\lambda_{n}}\right) u_{\lambda_{n}}-F\left(x, u_{\lambda_{n}}\right)\right) d x \geqslant \int_{\Omega}\left(\frac{1}{2} f\left(x, t_{n} u_{\lambda_{n}}\right) t_{n} u_{\lambda_{n}}-F\left(x, t_{n} u_{\lambda_{n}}\right)\right) d x \rightarrow \infty .
$$

We get a contradiction since

$$
\int_{\Omega}\left(\frac{1}{2} f\left(x, u_{\lambda_{n}}\right) u_{\lambda_{n}}-F\left(x, u_{\lambda_{n}}\right)\right) d x=G_{\lambda_{n}}\left(u_{\lambda_{n}}\right) \in\left[b_{0}, \sup _{(t, u) \in[0,1] \times A} G((1-t) u)\right] .
$$

Therefore, $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ is bounded.
Let $\lambda_{m} \rightarrow 1(m \rightarrow \infty)$, since $\left\{u_{\lambda_{m}}\right\}$ is bounded, then, up to a subsequence, we get $u_{\lambda_{m}} \rightarrow u$, we will prove u is sign-changing.

Let $u_{\lambda_{m}}^{ \pm}=\max \left\{ \pm u_{\lambda_{m}}, 0\right\}$, then

$$
\lambda_{m}\left\|u_{\lambda_{m}}^{ \pm}\right\|^{2} \leqslant \int_{\Omega} f\left(x, u_{\lambda_{m}}^{ \pm}\right) u_{\lambda_{m}}^{ \pm} d x
$$

By (h_{2}), there exists $C_{3}>0$ such

$$
f(x, u) u \leqslant \frac{\mu_{1}}{4}|u|^{2}+C_{3}|u|^{s}, \quad x \in \Omega, u \in R .
$$

Note that if $\forall u \in V,\|u\|^{2} \geqslant \sqrt{\mu_{1}}\|u\|_{2}^{2}$. It follows that

$$
\frac{1}{2}\left\|u_{\lambda_{m}}^{ \pm}\right\|^{2} \leqslant \frac{1}{4}\left\|u_{\lambda_{m}}^{ \pm}\right\|^{2}+C_{3}\left\|u_{\lambda_{m}}^{ \pm}\right\|_{s}^{s} .
$$

Hence, $\left\|u_{\lambda_{m}}^{ \pm}\right\| \geqslant C_{4}>0$, where C_{4} is a constant independent of λ_{m}. So u is sign-changing. That is, u is the signchanging solution of (1.1).

We are going to prove Theorem 3.5 by applying Proposition 2.4. For $k \geqslant 2$, assume

$$
E_{k}=\bigoplus_{j=1}^{k} X_{j}, \quad Z_{k}=\overline{\bigoplus_{j=k}^{\infty} X_{j}}, \quad B_{k}=\left\{u \in E_{k}:\|u\| \leqslant \rho_{k}\right\}, \quad N_{k}=\left\{u \in Z_{k}:\|u\|=r_{k}\right\}
$$

where $\rho_{k}>r_{k}>0$. We need the following lemma.
Lemma 4.12. Under the assumptions of Theorem 3.5, there exists $\rho_{k}>r_{k}>0$ independent of λ such that

$$
\max _{\partial B_{k}} G_{\lambda} \leqslant a_{k} \leqslant 0<b_{k} \leqslant \inf _{N_{k}} G_{\lambda}
$$

for $\lambda \in \Lambda$. Here a_{k} and b_{k} are independent of λ. Moreover, $b_{k} \rightarrow \infty$ as $(k \rightarrow \infty)$.
Proof. By (h_{2}), there exists $C_{5}>0$ such that $|F(x, u)| \leqslant \frac{\mu_{1}}{8} u^{2}+C_{5}|u|^{s}$ for $x \in \Omega, u \in R$. Recall GagliardoNirenberg inequality

$$
\|u\|_{s} \leqslant c_{0}\|\nabla u\|_{2}^{\alpha}\|u\|_{2}^{1-\alpha}, \quad \forall u \in H^{1}\left(R^{N}\right),
$$

where $\alpha=N\left(\frac{1}{2}-\frac{1}{s}\right), c_{0}$ is a constant depending on s, N. Note $\mu_{k}\|u\|_{2}^{2} \leqslant\|u\|^{2}$ for all $u \in \overline{\bigoplus_{i=k}^{\infty} X_{i}}$, if $u \in \overline{\bigoplus_{i=k}^{\infty} X_{i}}$, $\|u\|=r_{k}=\frac{\mu_{k}^{\frac{s(1-\alpha)}{2(s-2)}}}{\left(16 c_{0}^{s} C_{5}\right)^{\frac{1}{s-2}}}$, we have the following estimates:

$$
\begin{aligned}
G_{\lambda}(u) & \geqslant \frac{1}{4}\|u\|^{2}-\frac{\mu_{1}}{8} \int_{\Omega} u^{2} d x-C_{5} \int_{\Omega}|u|^{s} d x \\
& \geqslant \frac{1}{8}\|u\|^{2}-C_{5} c_{0}^{s}\|\nabla u\|_{2}^{s \alpha}\|u\|_{2}^{s(1-\alpha)} \\
& \geqslant \frac{1}{8}\|u\|^{2}-C_{5} c_{0}^{s}\|u\|^{s} \mu_{k}^{\frac{-s(1-\alpha)}{2}} \\
& \geqslant \frac{1}{16} r_{k}^{2}=b_{k} .
\end{aligned}
$$

Since $\operatorname{dim} V_{k}<\infty$, then by $\left(\mathrm{b}_{1}\right)$ and $\left(\mathrm{h}_{2}\right)$,

$$
\frac{G_{\lambda}(u)}{\|u\|^{2}} \leqslant \frac{1}{2}-\int_{\Omega} \frac{F(x, u)}{\|u\|^{2}} \rightarrow-\infty
$$

as $u \in V_{k},\|u\| \rightarrow \infty$ uniformly for $\lambda \in \Lambda$. Then there exists $\rho_{k}>r_{k}>0$ independent of λ such that

$$
\max _{\partial B_{k}} G_{\lambda} \leqslant a_{k} \leqslant 0 .
$$

Proof of Theorem 3.5. Since each element of $N_{k}(k \geqslant 2)$ is sign-changing, there exists $\gamma_{k}>0$ such that $\operatorname{dist}\left(N_{k},-P \cup P\right)=\gamma_{k}$. Under the assumptions of Theorem 3.5, Lemma 4.11 is also true. That is, $\left(\mathrm{A}_{1}\right)$ holds. Let

$$
D=\left(-D_{0}\left(\mu_{0}\right)\right) \cup D_{0}\left(\mu_{0}\right), \quad S=V \backslash D .
$$

Then $N_{k} \subset S$. Moreover, by Lemma 4.12, (A_{3}) is also satisfied and J^{\prime} is compact. Thus, by Proposition $2.4, G_{\lambda}$ has a sign-changing critical point $u_{\lambda} \in S$ and $G_{\lambda}\left(u_{\lambda}\right) \in\left[b_{k}, \max _{u \in B_{k}} G(u)\right]$, an interval independent of λ. We will prove $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ is bounded.

Assume $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ is unbounded, then there exists $\lambda_{n} \in \Lambda$ such that $\left\|u_{\lambda_{n}}\right\| \rightarrow \infty$ for $n \rightarrow \infty$. We consider $w_{\lambda_{n}}=$ $\frac{u_{\lambda_{n}}}{\left\|u_{\lambda_{n}}\right\|}$. Then, up to a subsequence, we get that

$$
\begin{aligned}
& w_{\lambda_{n}} \rightharpoonup w \quad \text { in } V, \\
& w_{\lambda_{n}} \rightarrow w \quad \text { in } L^{t}(\Omega) \text { for } 2 \leqslant t<2^{*}, \\
& w_{\lambda_{n}}(x) \rightarrow w(x) \quad \text { a.e. } x \in \Omega .
\end{aligned}
$$

If $w \neq 0$ in V, since $G_{\lambda_{n}}^{\prime}\left(u_{\lambda_{n}}\right)=0$, we have that

$$
\int_{\Omega} \frac{f\left(x, u_{\lambda_{n}}\right) u_{\lambda_{n}}}{\left\|u_{\lambda_{n}}\right\|^{2}} d x \leqslant 1
$$

On the other hand, by $\left(h_{2}\right),\left(b_{1}\right)$ and Fatou's lemma,

$$
\int_{\Omega} \frac{f\left(x, u_{\lambda_{n}}\right) u_{\lambda_{n}}}{\left\|u_{\lambda_{n}}\right\|^{2}} d x=\int_{w(x) \neq 0}\left|w_{\lambda_{x}}(x)\right|^{2} \frac{f\left(x, u_{\lambda_{n}}\right) u_{\lambda_{n}}}{\left|u_{\lambda_{n}}\right|^{2}} d x \rightarrow \infty .
$$

This is a contradiction.
If $w=0$ in V, define

$$
G_{\lambda_{n}}\left(t_{n} u_{\lambda_{n}}\right)=\max _{t \in[0,1]} G_{\lambda_{n}}\left(t u_{\lambda_{n}}\right) .
$$

For any $c>0$ and $\bar{w}_{\lambda_{n}}=\sqrt{4 c} w_{\lambda_{n}}$, we have, for n large enough, that

$$
G_{\lambda_{n}}\left(t_{n} u_{\lambda_{n}}\right) \geqslant G_{\lambda_{n}}\left(\bar{w}_{\lambda_{n}}\right) \geqslant 2 c \lambda_{n}-\int_{\Omega} F\left(x, \bar{w}_{\lambda_{n}}\right) \geqslant \frac{c}{2},
$$

which implies that $\lim _{n \rightarrow \infty} G_{\lambda_{n}}\left(t_{n} u_{\lambda_{n}}\right)=\infty$. Evidently, $t_{n} \in(0,1)$, hence, we have $\left\langle G_{\lambda_{n}}^{\prime}\left(t_{n} u_{\lambda_{n}}\right), t_{n} u_{\lambda_{n}}\right\rangle=0$. It follows that

$$
\int_{\Omega}\left(\frac{1}{2} f\left(x, t_{n} u_{\lambda_{n}}\right) t_{n} u_{\lambda_{n}}-F\left(x, t_{n} u_{\lambda_{n}}\right)\right) d x \rightarrow \infty
$$

If condition (b_{3}) holds, $h(t)=\frac{1}{2} t^{2} f(x, s) s-F(x, t s)$ is increasing in $t \in[0,1]$, hence $\frac{1}{2} f(x, s) s-F(x, s)$ is increasing in $s>0$. Combining the oddness of f, we have that

$$
\int_{\Omega}\left(\frac{1}{2} f\left(x, u_{\lambda_{n}}\right) u_{\lambda_{n}}-F\left(x, u_{\lambda_{n}}\right)\right) d x \geqslant \int_{\Omega}\left(\frac{1}{2} f\left(x, t_{n} u_{\lambda_{n}}\right) t_{n} u_{\lambda_{n}}-F\left(x, t_{n} u_{\lambda_{n}}\right)\right) d x \rightarrow \infty
$$

Therefore, we get a contradiction since

$$
\int_{\Omega}\left(\frac{1}{2} f\left(x, u_{\lambda_{n}}\right) u_{\lambda_{n}}-F\left(x, u_{\lambda_{n}}\right)\right) d x=G_{\lambda_{n}}\left(u_{\lambda_{n}}\right) \in\left[b_{0}, \sup _{(t, u) \in[0,1] \times A} G((1-t) u)\right] .
$$

Thus $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ is bounded.
Let $\lambda_{m} \rightarrow 1(m \rightarrow \infty)$, since $\left\{u_{\lambda_{m}}\right\}$ is bounded, then, up to a subsequence, we get $u_{\lambda_{m}} \rightarrow u$. In the same as that of the proof of Theorem 3.4, u is sign-changing. Hence, u is the sign-changing solution of (1.1). Since $b_{k} \rightarrow \infty$ $(k \rightarrow \infty)$, we obtain infinitely many sign-changing solutions of (1.1).

Remark. As far as we know, the sign-changing solutions of (1.1) have not studied. In this paper, we study the existence and multiple of sign-changing solutions for problem (1.1). The results include the existence of four sign-changing solutions or infinitely many sign-changing solutions for (1.1) which are different from the references [1-7]. All these results are new.

References

[1] A.C. Lazer, P.J. McKenna, Large amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev. 32 (1990) 537-578.
[2] A.C. Lazer, P.J. McKenna, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl. 181 (1994) 648-655.
[3] A.M. Micheletti, A. Pistoia, Multiplicity results for a fourth-order semilinear elliptic problem, Nonlinear Anal. 31 (1998) 895-903.
[4] A.M. Micheletti, A. Pistoia, Nontrivial solutions for some fourth order semilinear elliptic problems, Nonlinear Anal. 34 (1998) $509-523$.
[5] G. Tarantello, A note on a semilinear elliptic problem, Differential Integral Equations 5 (1992) 561-566.
[6] J. Zhang, Existence results for some fourth-order nonlinear elliptic problems, Nonlinear Anal. 45 (2001) 29-36.
[7] J. Zhang, S. Li, Multiple nontrivial solutions for some fourth-order semilinear elliptic problems, Nonlinear Anal. 60 (2005) $221-230$.
[8] W. Zou, Sign-changing saddle point, J. Funct. Anal. 219 (2005) 433-468.
[9] W. Zou, On finding sign-changing solutions, J. Funct. Anal. 234 (2006) 364-419.
[10] M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Boston, MA, 1999.
[11] Z. Liu, J. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential Equations 172 (2001) 257-299.
[12] W.D. Lu, Variational Methods in Differential Equations, Scientific Publishing House in China, 2002.

[^0]: *. This work is supported in part by the National Natural Science Foundation of China (10561011) and the Natural Science Foundation of Yunnan Province, China.

 * Corresponding author.

 E-mail address: zhoujianwen2007@126.com (J. Zhou).
 ${ }^{1}$ Present address: Department of Mathematics, Yunnan Normal University, Kunming, Yunnan 650092, PR China.

