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This paper is concerned with a class of neutral partial difference equations. The
conditions for the existence of monotone eventually positive solutions are estab-
lished which improve and extend some of the criteria existing in the literature.
Comparison theorems are also derived. Results are obtained on the existence of a
monotone eventually positive solution of dual equation. ~ © 2000 Academic Press
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1. INTRODUCTION

Qualitative theory for discrete dynamics systems with one dimension,
that is, for an ordinary delay difference equation which parallels the
qualitative theory of ordinary delay differential equations, has been inves-
tigated by a number of authors in recent years. Some of the results
obtained have been collected in the book by Gyori and Ladas [6, Chapter
7]. Nonlinear discrete dynamics systems with two dimensions, that is, delay
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partial difference equations, are equally important in terms of physical
applications in population dynamics with spatial migrations, chemical
reaction [7], etc.

This paper is concerned with a class of neutral partial difference
equations of the form

[T(Al’ AZ)(O(/\)ym,n + Cym—k,,n—l,)

i=1
+pi(m’n)ymfa',-,n77i] :07 (1)

where T(AI’A2) = Al + AZ + 17 A]ym,n =ym+],n _ym,n’ and A2ym,n =
Ymon+1 = Ym.n» @and Iy, =y, . the delay k;, [;, o;, 7, are nonnegative
integers, i = 1,2,...,u, p,(m,n) = 0 on Ng. The notation N, is used to
denote the ray {i,i + 1,...} of integers. #(A) > 0 and A is a parameter,
and ¢ > 0.

Assume that {y, ,} is a solution of (1), where m and n are positive
integers. Defined for m > M, n > N, if we can always get a solution
{y,..} >0, then {y, ,} is a eventually positive solution of (1). Otherwise,
we call {y,, ,} eventually negative.

When ¢ =0, u = 1, and 6(A) = 1, (1) can be rewritten in the form

1 u
ym+1,n +ym,n+1 _ym,n + ; Zpi(m’n)ymfa'[,nfﬁ = O (2)
i=1

Recently, the oscillation and asymptotic behavior of (2) have been investi-
gated by Agarwal and Wong [1, 11, 12], Cheng, Zhang, and co-workers
[2-5, 16, 17], and Liu, Yu, and co-workers [8—10, 13—15]. It should be
noticed that in the study of (2), the existence of positive solutions of (2) is a
very difficult problem. In this paper, by the method of monotone sequence,
we obtain the criteria of existence of positive solution and the comparison
theorem.

2. EXISTENCE OF POSITIVE SOLUTION

It should be noticed that (1) is the special case of the difference
inequality

[T(Al’ AZ)(O(/\)ym,n + Cym—k,»,n—l,)

i=1

(M, 1) Y g nr] < 0. (3)
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So the eventually positive solution of (1) can be deduced by the eventually
positive solutions of (2).
Let

a=max{o;, k; |1 <i<u},
B =max{r,[;|1<i<u},
M, N are nonnegative integers.

Assume that { ym’n} is the monotone decreasing positive solution of (3).
This is the same as that y,, , > 0form >M — a, n > N — B, and

Alym,n =ym+1,n _ym,n =< 0’
AZym,n=ym,n+l _ym,néo' (4)

We noticed that (3) equals the difference inequality
AZAI(G()\)ym,n) = O(A)ym+1,n+1
u
+ ) 1/”[T(A1’AZ)(cym—kl,n—ll)
i=1

+pi(m’n)ym—(ri,n—7i]‘ (5)

In fact, due to

T(Al’A2)ym,n =ym+1,n +ym,n+1 _ym,n’ (6)
AZAl(ym,n)merl,n+l :ym+1,n _ym,n+l +ym,n’ (7)

from (5), we have

H(A)(ym+l,11+1 _ym+1,n _ym,n+l +ym,n)
= G(A)ym+l,n+l

u
+ Z 1/u[T(A1’AZ)(cymfki,nfl,-) +pi(m7n)ym70,-,n77,-]'
i=1

It follows that

O(A)(ym+l,n +ym,n+1 _ym,n)

Z [T(AD AZ)(Cymfki,nfli) +pi(m’ n)ymf(r,,nfn] s
i=1

< —

S| =
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that is,
uO(A)T(AD AZ)(ym,n)

== Z [T(ADAZ)(Cymfki,nfl,-) +pi(m’n)ymfai,n77,-]’
i=1

which implies that
[T(Al’AZ)(e(/\)ym,n + Cym—k,,n—l,)
=1

L

+pi(m’ n’)ymfzr,-,nfri] =< 0.

Hence from (5), we can obtain that (3) holds. If we deduce it in the
opposite direction, from (3), it is easy to see that (5) holds.
Summing both sides of (5) from m, n to infinity, we get

oo

Z A2A1(0()‘)y,',j)

G,))=0m,n)
= P (0(’\))’1‘+1,j+1)
(i,))=(m,n)
o’e] u 1
+ > by _[T(AlaAz)(Cyz'—k,,j—l,)
G p=(m,myr=1Y4

+pr(i’j)yi—¢r,,j—f,,]' (8)

On the other hand, for m <m < », n <7n < o, by means of (4), we have

(m,7)
0(A) Z AZAl(yi,j)
(i, ))=(m,n)
= 0(/\)( Z Alyi,ﬁ+1 - Z Alyi,n)

IA

(_0()\) i A1)’1,n)

i=m

= 0(N)(~Yms 1,0 T Vm,n) < O(A) Yy e %)
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From (8) and (9), we obtain

o

G(A)ym,n > Z Q(A)yi+l,j+l
(i, )=(m,n)

u o 1
+ Y X —[TALA) (k1)
r=1G, )=(m,n)
P2 1) Ve, jr |-
That is,

o]

Ym,n 2 ) Yiv1,j+1

@, )=0m,n)
1 * .
+= ) b [6()] [T(ADAZ)(cyifkr,jfl,)
ors1G,p=(m,n
+pr(i7j)yi7(r,,j77,.]' (10)
Set
QO={xlx={x,,},m>M-a,n>N - B}.

Define operator T: ) — Q) by

<]

T(xm,n) = Z Xit1,j+1
G, )=0m,n)

+ XMZ )y eil(A)/u[T(Al’AZ)(Cyifk,,jfl,)]
j)=(m,n)

+ Xu: )y 0_1(A)/u[pr(i?j)yi—o',,j—fr]’

r=1(,j))=(m,n)
form>M, n=>=N,
otherwise,
T(Xp,n) =Yu,no
and we define the sequence {x} in Q, that is,

Ymn» (m,n)e[M,M+1,....,) X [N, N+1,...,),

Oy )
men Ym.ns Otherwise,
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and
xOHD = Tx®), t=0,1,2,....
Then for m = M, n > N, by means of (10), we can get

0<xUrD <x, <x .

It follows that x’ converges to a nonnegative sequence w = {w,, ,} as
t — oo, and satisfies

Wy oy = Z Wiiq,j+1
(i, ))=(m,n)
Y 0 (W) /u[T(AL A (coy i)
1.3, j))=0m,n)

+

ﬁM:

+pr(i7j) wi—o’,.,j—r,] ’ (11)

otherwise, we can get w,, , =y y. Thus from (11), we know that o is an
eventually nonnegative solution of (1). Next, we will prove that for an
arbitrary couple of integer points (m, n), there exists a positive integer s
such that o is eventually positive when min{o,, 7, k,, [} > 0 and p.(m, n)
> 0. Otherwise, w, , > 0 when (m ne{M-a,..., m} X {N -

m,n

B,...,n*}/{(m*, n*)}, where m* > M, n* > N. But w,,. ,, then from (11),
we have
0= Z Wiy, j+1
@i, )=(m*, n*)
u o
+ ) by 0’1(/\)/u[T(A1, A))(cw_y j—y)
r=1(,j)=(m*,n*)
+pr(i’ ]) wi*a’,,j*T,] .
It follows that w; ; =0, w;_; ;-;, =0, and p,(i, e,_ omi=T, =0forizx
m*, j = n* r=1,2,...,u, which is a contradiction. It is easy to see that
the positive solution ; ; of (11) is monotone decreasing, i.e., o; i1 < @
w; j+1 < ; ;. In fact, when we deduce from (11) to (1), and in view of the

fact that (15 is a special case of (3), we can obtained the decreasing
behavior of w; ;. Then we can get the following results.
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THEOREM 1. Assume that k;, l,, o,, and T, are nonnegative integers,
pm,n) is a nonnegative real sequence, 0(A) > 0, and, for an arbitrary
couple of integer points (m, n), there exists a positive integer s such that

min{o,, 7,,k,, [} >0  and  p(m,n) > 0.

§2 "s2 Vs Ty
If (3) has monotone decreasing positive solutions, so does (1).

Next, we will seek the monotone decreasing eventually positive solution
of (3). At first, we should find the monotone decreasing eventually positive
solution of

Z [T(Al’AZ)(e()\)ym,n + Cym—ki,n—li) +piym—(r,»,n—1'i] = O’ (12)
i=1

where p, are nonnegative real numbers, i = 1,2,..., u.
Set
Y = {Ym.n}
and
1 _ A m+n
Ymon =\ "3 , m=—a, nx=—p. (13)

By means of (13), from (12) we have
T(Al’AZ)(G(/\)ym,n + cymfki,nfl,v)

O(A)(ym-#l,n +ym,n+1 _ym,n)

+ C(ym—ki+1,11—li +yn1—ki,n—li+1 _ym—ki,n—li)

0()\)(—,\)(1%)'"” ~ CA(PTA)mM_ki_,i

a2

S

1 _ /\ m+n—o;—7; 1 _ )\ o+ 7;
X -
2 ( 2

_ (-A)(@(A) + c( ! ; A)_kl_li)(l_T)‘)gmymwﬂ_.

1
= (—)\)(6(/\) +c(
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If

L= a5 =t
A 0(A)+c( 5 ) (T) > p;, 1<i<u, (14)

then y = {y,, ,} is the eventually positive solution of (12).
Let

f<A>=A(e(A)+c(1;A)kili)(l%)m, (15)

and
L— A\t
O(A) = c( ) . (16)
2
In view of
- A

A=(-2)- +1, (17)

then

1-A
= [(=2 5

R R T A A TE T S
S— +c —_— .
e

By calculating f'(A) = 0, it easy to see that f(A) reaches its extreme value
at

X

1
o+t —(k;+1)+ 1

Ay =

In view of

o +T—k—1+1
o+ T —k, -1,

i

f"(A) = (=1 <0,
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we have
max A) =1f(A
max f(3) =£(A)
c+1
B otmiki=l (g + 1. — k, — 1)
o 4 T — kl- _ li o+ T1—k;—1;
o+T—k,—1,+1
Let
o+ —(k+1) =1, 1<i<u. (18)
Since
c+1
P =<
bi 2((Ti+7i—ki—l,~)(0.i +r =k —1)
o4+ 71—k — 1. oitTi—k—1;+1
' o+7—k—L+1
c+1 (o, + 7 — ky — 1) 7Tl

2(0'i+7i_ki_1:) (0_1 + T — kl- _ li + 1)0'i+7i_ki_1:+1 ’

we set A € [0,1) such that (14) holds; it is easy to see that y, , = ((1 —
A)/2)"*" is a monotone decreasing positive solution of (3). Then we have

the following result.

THEOREM 2. Assume that k;, I,, o;,, and T, are nonnegative integers,
p(m,n) =0,i=1,2,...,u, and (16), (18), (19), and the following inequali-

ties hold:

( ) c+1 (o;+ 7 —k; - li)aﬁﬂ_k‘_li
pi\m,n SPS . —k—1) . —k.—1. .
i i 2((rl+‘r‘ ki—1;) (O'l + T - ki _ ll- + 1)(rl+‘rl ki—1;+1

Then (3) has a monotone decreasing eventually positive solution.

In fact, under the conditions of Theorem 2, the monotone decreasing
eventually positive solution of (12) is also the monotone decreasing eventu-

ally positive solution of (3).
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Consider the equation and inequality

ExaAMPLE 1.
1 1
T(AI’AZ) ym,n + Z 'ym—l,n + ? 'ym—l,n—l = O’ (19)
1 1
T(AI’AZ) ym,n + ; .ymfl,n + ; .ymfl,nfl =< 0’ (20)
where m > 2, n > 2. Since
1 e+ 1
=—=<
P=g Se
c+1 (o+ T—k—l)ﬁﬁkil

2(0’1’7*/{*1) (0_+ r—k—1+ 1)0'+7fkfl+l )

and by using Theorem 2, we know that (21) has an eventually positive

solution. In fact,
1
O = { = (21)

is such a solution. Hence, (22) is also a monotone decreasing eventually

positive solution of (20).

3. COMPARISON THEOREM

Consider the equation

Z [T(Al’A2)(0()\)ym,n + Cymfk,,nfl,)
r=1
+Qr(ma”)ym—zr,,n—7,] = O’ (22)

where
qr(m9n) Zpr(’/n7n)‘ (23)

THEOREM 3. Suppose that (24) holds. If (23) has a monotone decreasing
eventually positive solution, so does (1).



394 LIU ET AL.

Proof. Since (23) has a monotone decreasing eventually positive solu-
tion, while

Z [T(Al’A2)(6(/\)ym,n + cymfk,,nfl,) +pr(m’n)ym7<r,,n77,]

r=1
=< Z [T(Al’AZ)(O()\)ym,n + Cym—k,.,n—l,)

r=1
+qr(m’n)ym—tr,,n—7,] = 0’
it follows that
Z [T(A17A2)(0()\)ym,n + Cymfk,,nfl,)
r=1
+pr(m’n)ym—o-,.,n—7,] <0

has a monotone decreasing eventually positive solution. Using Theorem 2,
so does (1).

THEOREM 4.  Assume that f(x) > x forx > 0,i =1,2,...,u, and

lim  p(m,n)=zp;, 1<i<u. (24)

(m,n)—>

If

2”: [T(Ap Az)(o(’\)ym,n + Cymfk,,nfl,)

r=1

+p,(m, 1) f, (Y yn-)] = 0 (25)

has a monotone decreasing eventually positive solution {y,, ,}, so does (1).
Proof.  Since (26) has a monotone decreasing eventually positive solu-
tion,

0= [T(A,A)(0(N) Y + D—nor,)

r=

Ju

+0,(m 1) (Y= 01

N

= T(AI’AZ)(G(/\)ym,n +Cym—¢r,,n—7,,)
1

r

u fr(ym—(r,n—‘r.)
+ Zpr(m’n) .ymfa',,nfrﬂ
r=1

m—o,n—1,
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due to
f' y — o, n—T;
lim infpi(m,n)M
(m,n)— o m-—o;,n—r1;

> lim inf p,(m,n) > p;, i=1,2,...,u.
(m,n)—)oo

Hence, we have

by [T(AD AZ)(H(A)ym,n + Cymfk,,nflr)

u
r=1

+pr(m’n)ymfo',,nf7,]
=< Z T(Al’A2)(6(/\)ym,n + cymfk,,nfl,)
r=1

’ fr(ymfa,,nfr,)
+ Zpr(man) y Ym-o,n-1, = 0.

r=1 m—o,,n—7,

It follows that (3) has a monotone decreasing eventually positive solution.
By means of Theorem 1, so does (1).

Similarly, we can also have the following results.

THEOREM 5. Assume that lim,, , ., p(m,n) >p;>0,i=12,...,u,
and

(x
lim inf filx)

(m, n)— X

>1, i=1,2,...,u.

If (26) has a monotone decreasing eventually positive solution {y,, ,} which
satisfies lim,, , .y, , =0, then (1) also has a monotone decreasing eventu-
ally positive solution.
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