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INTRODUCTION 

SUPPOSE A4 IS a manifold and 9 is a foliation of M which has a compact leaf F. A 
natural and popular question is the following: If 9’ is a foliation which is sufficiently 
close to 9 in some specified topology, must 9’ have a compact leaf? One version of this 
problem is to assume that 9’ is arbitrary, i.e. given M must every foliation of M have a 
compact leaf? The only known positive answers to this latter question are for 
codimension one foliations of compact manifolds of dimension s 3 (see [5,7,8]). At the 
other extreme is the purely local version of the question, i.e. given 9 and F must every 
9’ near 9 have a compact leaf near F? In this direction there is a result of Stowe [ 111 
which generalizes earlier results of Hirsch ([2], Theorem 1.1) and Thurston-Langevin- 
Rosenberg ([3], Theorem 2). Suppose L is a compact leaf of a codimension k foliation 9 
and let ?T~(L) + GL(k, 03) be the action determined by the linear holonomy of L. Stowe 
shows that if the cohomology group H’(m,(L); Wk) is trivial then every foliation which 
is %‘-close to 9 has a compact leaf near L. 

We consider here a problem of a more intermediate nature which has been proposed 
by Rosenberg ([4], p. 244, problem 11). Suppose p: E+ B is a smooth fibration with 
compact fiber F and let .9 be the foliation whose leaves are the fibers of the fibration. 
The problem is to find conditions on (E, p, B) which will imply that foliations 
sufficiently close to 9 have compact leaves. When H’(F; R) # 0 the conditions we are 
looking for must be of a global nature since, in this situation, the leaves of 9 have trivial 
linear holonomy. 

Let 9’ be the class of finitely generated groups such that if G E Y then there are 
subgroups 1 = Go C G, C . . . C Gk = G such that Gi_r is normal in Gi (i = 1, . . . , k) and 
the quotient GJGi-1 has a finitely generated subgroup Hi which has non-exponential 
growth[7] and such that whenever 2 E Gi/Gi-, there is a natural number m such that 
g” E Hi. Clearly, Y includes polycyclic groups and finitely generated groups having 
non-exponential growth. Also included are all groups with the property that each 
GiGi_, either is finitely generated with non-exponential growth or is isomorphic to a 
subgroup of Q. On the other hand, 9’ does not include all finitely generated solvable 
groups. 

If p: E+ S’ is a fibration with fiber F then the space E is homeomorphic to the 
quotient space F x [0, 11/(x, 1) -(j(x), 0) where f: F + F is a homeomorphism. Of 
course, f is not unique since it can be varied by isotopy. 

The main result may now be stated as follows. 

THEOREM. Let p: E + S’ be a smooth fibration and 9 the codimension one foliation 
of E by fibers. Suppose the fiber F is compact and q(F) E 9 Suppose also that 
f”: H’(F; W)+ H’(F; W) has no positive real eigenoalues (automatically true if 
H’(F; W) = 0). Then every foliation 9’ which is V” close to 9 has a compact leaf. 

tThis research was partially supported by a grant from the National Science Foundation. 

173 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81924552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


174 J. F. PLANTE 

In Langevin_Rosenberg[4] the above result is proved for the special case x,(F) = Z 
([4], Theorem 3.1). The technique used to prove this theorem will be similar to those 
used to prove compact leaf theorems for 3-manifolds. The last two sections contain 
examples which illustrate the essential nature of each hypothesis. In particular, the last 
section shows that the results and examples described earlier yield a definitive stability 
result for compact oriented 3-manifolds foliated by transversely oriented compact 
leaves. 

The author is grateful to D. Gabai for suggesting the instability result used in the last 
section which is significantly more general than an example given in the original version 

of this paper. 

Proof of the Theorem. As before suppose that f: F + F is a homeomorphism such 
that E is obtained from F x [0, l] by the identifications (x, 1) - (f(x), 0). Denote by 
b,(M) the first Betti number of M. The following result is obtained by a straight- 
forward computation (see [6], Lemma 3.3). 

LEMMA 1. b,(E) 2 1. Furthermore, b,(E) > 1 iff f*: H’(F; W)+ H’(F; W) has 1 as un 
eigenvalue. 

We will also be needing a result ([7] Theorem 6.3) concerning the relation between 
holonomy invariant measures for a codimension one foliation and the existence of 
compact leaves. 

LEMMA 2. Suppose 9 is a transversely oriented codimension one foliation of a 
compact manifold M. Suppose 9 has a holonomy invariant measure u which is finite on 
compact arcs transverse to 9 and b,(M) 5 1. Then every leaf in the support of the 
measure is compact. 

Suppose a group G acts continuously on a space X and that p is a Bore1 measure on 
X. We will say that I_L is G-quasi-invariant if for each g E G there is a positive real 
number u(g) such that for every measurable set B C X we have w(g(B)) = a(g)u(B). u 
is G-invariant if u(g) = 1 for all g E G. The following result is proved in [lo] 

LEMMA 3. Suppose G C 9’ and that G acts continuously on R. Then there is a 
non-trivial G-quasi-invariant measure on R which is finite on compact sets. 

Lemma 3 is an immediate consequence of Theorem 4.4 of Ref. [lo]. When p is a 
G-quasi-invariant measure we get a homomorphism A: G+ R defined by A(g) = 
log a(g). Note that this homomorphism is trivial iff p is G-invariant. 

We return now to the situation of the Theorem, that is, E is a bundle over S’ with 
fiber F and 9 is the foliation of E by fibers. We will assume that r,(F) E Y and that 
there exist 9 arbitrarily ‘%“-close to 9 which don’t have any compact leaves, and we 
will show that f* has a positive real eigenvalue. Let X be a vector field transverse to 9. 
By reparametrizing the X-flow we can assume that it takes fibers to fibers (i.e. it 
preserves .9) and that f: F + F is the time-one map restricted to a particular fiber. We 
need only assume that the perturbed foliation 9’ is transverse to X. Note, in particular, 
that 9’ is transversely oriented. E is covered by P x R <P = universal cover of F) in such 
a way that the foliation 9 lifts to the trivial codimension one foliation (leaves are P x {t}). 

The X-flow also lifts to a flow 4,: fi x R + fi x R such that 4*,(F x {s}) = F x {s + t}. The 
lift 4’ of 9’ to P x W is transverse to the foliation of P x W by orbits of 4,. 
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LEMMA 4. The leaf space of 41 is homeomorphic to R. 

Proof. Fix a 4,-orbit L in fl x W. It suffices to show that every leaf of 4’ meets L 

exactly once. Let fi be a leaf of &‘. It is easily checked that the map p, + fi x (0) given 
by projection along &orbits is a covering map. Since fi is simply connected, it follows 
that this map is a homeomorphism. In particular, p meets L in a single point. This 
proves Lemma 4. 

Since m,(F) E Y it follows that rl(E) E 9’. Thinking of q(E) as a group of covering 
transformations of P x R which preserve $I it follows that r,(E) acts on R and, 
therefore, has a non-trivial quasi-invariant measure by Lemma 3. If f* has 1 as an 
eigenvalue we are done, so by Lemma 1 we may assume that b,(E) = 1. Since r,(E) is 
isomorphic to the semi-direct product of rr(F) and Z, where the generator of Z acts as 

f* #- q(F)+ r,(F), the commutator subgroup of r,(E) has finite index in r,(F) (thought 
of as a subgroup of r,(E)). Let A: m,(E)+R be the homomorphism described earlier 
arising from the T,(E)-quasi-invariant measure. If A were trivial then the measure 
would be invariant and Lemma 2 would imply the existence of compact leaves for 9’ so 
A# 0. On the other hand, since the commutator subgroup of a,(E) has finite index in 
r](F), the restriction of A to r,(F) is trivial. This means that the foliation 91 which is 
induced from 9’ on the infinite cyclic covering space (F x R) determined by T,(F) C 
r,(E) has a non-trivial holonomy invariant measure. Let p denote the holonomy 
invariant measure for %’ and let a,, E H’(F x R; IX) be its corresponding cohomology 
class[7] (remember, all codimension one foliations in this situation are transversely 
oriented). The covering transformations of F x R over E are generated by fi F x R + 
F x W which is defined by f(x, t) = (j(x), t - 1). Since AZ 0 it follows that there is a 

positive real number cf 1 such that f*aP = cap. Since the projection 7~: F x R + F is a 
homotopy equivalence and 7r 0 f = f 0 T we will have shown that f * has a positive real 
eigenvalue once we know that @, # 0. As in the proof of Lemma 4 it can be shown each 
leaf of 81 covers F by projection along orbits of the transverse flow. If F’ is a 
non-compact leaf in the support of p then there is a loop of the form (Y * /3 where a is a 
non-trivial segment of an orbit of the transverse flow and /3 lies in F’. Clearly, 
@,,(a * /3) f 0 and the proof of the Theorem is complete. 

EXAMPLESANDOBSERVATIONS 

We now describe examples which show the essential importance of the hypotheses 
of the Theorem proved in the last section. Call a foliation by compact leaves stable if 
every sufficiently %‘-close foliation has a compact leaf. 

We begin with an example of instability in which W,(F) E Ybut f* has positive real 
eigenvalues. F will be the n-torus T” = R”/Z” and f: T” + T” will be a codimension one 

hyperbolic toral automorphism [l]. This means that there is a hyperbolic linear 
isomorphism A: R” -+ R” such that A(Z”) = Z” and f is the induced diffeomorphism of T”. 

There is a splitting R” = E” @ Es into linear subspaces each of which is invariant under 
A. We assume further that the space E” is one-dimensional and if v E E” then Au = co 

where c > 1. The codimension one foliation of R” by hyperplanes parallel to E” induces 
a codimension one foliation sr of T” (with planar leaves). Let 9s be the codimension 2 
foliation of E = T” x [0, II/(x, 1) -u(x), 0) whose leaves are of the form (leaf of 

%r) x it]. 
Let Xr be a vector field on T” which is tangent to the line bundle determined by E” 

and whose flow takes leaves of .?Fr to leaves of gr (Xr is, of course, transverse to &). 
Since Df(X,) = cX7 we may construct an action of the affine group of the line on E 

which preserves .?FE and whose orbits are transverse to the leaves of SE (see [9], 
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Proposition 1.2). This means that there are vector fields X and Y such that the restriction 
of X to any torus fiber is a constant multiple of Xr, Y is transverse to torus fibers. and 
[X, Y] = X, Furthermore, the flow generated by any constant linear combination of X 
and Y preserves FE. Let X’ denote the vector field X + EY. The flow of X’, X,’ preserves 
SE and we let 9’ be the codimension one foliation of E whose leaves are X:-orbits of a 
leaf of SE. It is clear that 9’ --$9 as E + 0 (actually in an %” topology) and the leaves of 3’ 
are non-compact since the leaves of SE are non-compact. 

We now make some comments on the non-transverseiy oriented case. If 9 is a 
transversely oriented codimension one foliation with all leaves compact then 9 is 
actually a foliation by fibers of a fibration. If 9 is not transversely oriented but has all 
leaves compact then a 2-fold cover of 9 is a fibration. If the 2-fold transversely oriented 
cover of 9 is stable (any perturbation has a compact leaf) then so is 9. On the other 
hand, there are situations in which 9 is stable even though the 2-fold transversely 
orientable cover is not. If L is a leaf of 9 whose normal bundle is non-trivial and r,(L) 
is abelian then L is locally c&O stable by a result of Hirsch ([2], Theorem 1.2). This 
means, for example, that a foliation of the Klein bottle by circles which is not 
transversely oriented is always stable. The same phenomenon can also occur without 
local stability. In [B] (Corollary 3.3 and proof of Theorem 5.1) there are examples of 
compact 3-manifolds which admit foliations by tori except for 2 Klein bottle leaves and 
such that every codimension one foliation of the given manifold has a compact leaf. It is 
clear that local stability is not in force in these examples because there are other 
manifolds of the same type (obtained by attaching together two [0, l]-bundles over the 
Klein bottle) for which compact leaves can be perturbed away ([B], p. 225, Remark ii). 

STABILITY IN DIMENSION 3 

In this section, we consider the special case in which E is a compact orientable 
3-manifold. In this case F is a compact orientable surface. If F is the sphere or torus, 
the main theorem and examples of earlier sections give necessary and sufficient 
conditions for 9 to be-stable. The following result, due to D. Gabai, says that all other 
cases are unstable. 

THEOREM (Gabai). Suppose p: E+ S’ is a smooth fibration where E is a compact 
oriented 3-manifold. If the fiber F has genus > 1 then the foliation of E by fibers is 
unstable. 

Letting 9 denote the foliation of E by fibers, the Theorem will be proved by 
constructing a foliation 9’ which is c&O close to 9 but which has no compact leaves, 
Denote by (,) the algebraic intersection number of l-cycles on F and by f: F + F the 
attaching map which determines E. 

LEMMA. Let a, p, y be simple closed curves on Fsuch that [(r], [p], [r] are contained in 
a basis for H,(F; Z), (a, p> = 1, and ((r, r) = (p, y) = 0. Then there exists a simple closed 
curve 6 in F such that [a] = 0 but (“/,a) = (f(r), 6) = 0. 

Proof. Set p = (a, f(r)), q = (p, f(r)) and note that (p/3 - qcr,f(y)) = 0. If p or q is 

zero, take 6 to be a or p, respectively. Otherwise, choose a simple closed curve 6 such 
that p/3 - qa is homologous to a multiple of 6. This proves the lemma. 

Denote by F. a particular fiber of E. We first describe a foliation 9 of E which is 
close to 9 and has F. as the only compact leaf. E - F. is homeomorphic to R X F. Let iV 
be a tubular neighborhood of y in F such that 15 is a closed tubular neighborhood with 
coordinates (s, t), s E 7, 0 I t I 1. Start with the foliation of W x (F - N) having leaves 
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{r} x (F - N) and make the identifications (r, s, 0) - (r + 1, s, 1) to obtain a foliation of 
R x F having no compact leaves. Replacing F,, yields a folation 9 of E having F0 as the 
only compact leaf. Let 77 be an arbitrary loop in the compact leaf FO. The holonomy 
along 77 is trivial iff (77, r) = (77, f(-y)) = 0. In particular, the holonomy along S (from the 
Lemma) is trivial. Let Q be a small neighborhood of 6 of the form W x S’ x (0,l) where 
6 corresponds to (0) x S’ x {f} and such that the restriction of 4 to Q has leaves of the 
form {r} x S’ x (0,l). Modify .5% by first deleting the neighborhood W x S1 x (f, f) and 
then making the identifications (r, s, f) - (r + 1, s, 3). By choosing the + or - properly 
(so that this second modification does not counteract the first one), we obtain a foliation 
9’ which has no compact leaves and the theorem is proved. 

Corollary. Let E be a compact orientable 3-manifold which fibers over S’ and let 9 
be the codimension one foliation by fibers. The foliation 9is stable in the following cases. 

(i) The fiber is S2. 
(ii) The fiber is T2 and trace f * < 2. (f*: H’(T*;R)-,H’(T*;W)wheref: T2+T2is 

an attaching map which determines E.) 
In all other cases 9 is unstable. 

Proof. The stability in cases (i) and (ii) follows from the main theorem stated in the 
introduction. (Actually, results of [8] imply that every transversely oriented foliation of 
such E has a compact leaf-not just the ones close to 9.) The other cases with torus 
fibers are unstable by the examples of the previous section. Finally, if the fiber has 
genus > 1, 9 is unstable by the theorem of this section. 
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