
Research Paper

Zn/Ga�DFO iron–chelating complex attenuates the inflammatory
process in a mouse model of asthma

Haim Bibi a,1, Vladimir Vinokur b,1, Dan Waisman c, Yigal Elenberg a, Amir Landesberg d,
Anna Faingersh d, Moran Yadid d, Vera Brod e, Jimy Pesin d, Eduard Berenshtein b,
Ron Eliashar f,2, Mordechai Chevion b,*,2

a Pediatric Department, Barzilai Medical Center, Ben Gurion University School of Medicine, Ashkelon, Be’er Sheva, Israel
b Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
c Department of Neonatology, Carmel Medical Center, Haifa, Israel
d Faculty of Biomedical Engineering, Technion, Haifa, Israel
e Ischemia-Shock Research Laboratory, Department of Medicine, Carmel Medical Center, Faculty of Medicine, Technion, Haifa, Israel
f Department of Otolaryngology/Head & Neck Surgery, Hebrew University School of Medicine, – Hadassah Medical Center, Jerusalem, Israel

a r t i c l e i n f o

Article history:
Received 30 April 2014
Received in revised form
12 June 2014
Accepted 13 June 2014
Available online 18 June 2014

Keywords:
Asthma
OVA-induced asthma model
Inflammation
Iron
Iron chelation

a b s t r a c t

Background: Redox-active iron, a catalyst in the production of hydroxyl radicals via the Fenton reaction,
is one of the key participants in ROS-induced tissue injury and general inflammation. According to our
recent findings, an excess of tissue iron is involved in several airway-related pathologies such as nasal
polyposis and asthma.
Objective: To examine the anti-inflammatory properties of a newly developed specific iron–chelating
complex, Zn/Ga�DFO, in a mouse model of asthma.
Materials and methods: Asthma was induced in BALBc mice by ovalbumin, using aluminum hydroxide as
an adjuvant. Mice were divided into four groups: (i) control, (ii) asthmatic and sham-treated, (iii)
asthmatic treated with Zn/Ga�DFO [intra-peritoneally (i/p) and intra-nasally (i/n)], and (iv) asthmatic
treated with Zn/Ga�DFO, i/n only. Lung histology and cytology were examined. Biochemical analysis of
pulmonary levels of ferritin and iron-saturated ferritin was conducted.
Results: The amount of neutrophils and eosinophils in bronchoalveolar lavage fluid, goblet cell
hyperplasia, mucus secretion, and peri-bronchial edema, showed markedly better values in both
asthmatic-treated groups compared to the asthmatic non-treated group. The non-treated asthmatic
group showed elevated ferritin levels, while in the two treated groups it returned to baseline levels.
Interestingly, i/n-treatment demonstrated a more profound effect alone than in a combination with i/p
injections.
Conclusion: In this mouse model of allergic asthma, Zn/Ga�DFO attenuated allergic airway inflamma-
tion. The beneficial effects of treatment were in accord with iron overload abatement in asthmatic lungs
by Zn/Ga�DFO. The findings in both cellular and tissue levels supported the existence of a significant
anti-inflammatory effect of Zn/Ga�DFO.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Asthma is a chronic inflammation of the lungs in which the
airways (bronchi) are reversibly narrowed. Asthma affects 7% of
the population, �300 million people worldwide. During attacks
(exacerbations), the smooth muscle cells in the inflamed bronchi

constrict and the airways swell, causing breathing difficulties. The
frequency of acute asthmatic attacks depends on asthma severity.
Acute asthma exacerbations cause 4000 deaths per year in the
USA. Attacks may be prevented by avoiding triggering factors and
by medical treatment. Drugs commonly used for treatment of
acute attacks are inhaled β2 agonists. In severe cases, drugs are
used for long-term prevention. They include inhaled corticoster-
oids, which may be supplemented with long-acting β2-agonists
when necessary, leukotriene antagonists, which are less effective
than corticosteroids but have no side effects, and monoclonal
antibodies such as mepolizumab and omalizumab.
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According to several reports, asthma attacks are associated
with aggravation of the inflammatory condition and with a
significant increase in the production of reactive oxygen-derived
species (ROS), including free radicals (FR) [1].

Iron is an essential element in all tissues and cells. However, an
excess of labile iron is deleterious and causes cellular injury. This
two-phase behavior is also shared by ROS – at low levels it
functions as a beneficial signaling species, but at higher concen-
trations, specific FRs may cause damage. Labile, redox-active iron
serves as a catalyst in the production of hydroxyl radicals via the
Fenton reaction, and is therefore one of the key participants in
ROS-induced injury and development of an inflammatory condi-
tion [2]. In a well-protected cell, 95–98% of the iron is stored in
ferritin, the major iron storage and detoxifying protein, keeping
labile redox-active iron at sub-micromolar levels. An increase in
the concentration of cellular ferritin indicates that an initial event
has occurred, during which the cellular levels of redox-active iron
had increased, but were subsequently detoxified by the additional
ferritin [3,4]. Various pathologic conditions, including asthma,
have been proposed as being associated with such an increase in
the cellular levels of iron and ferritin, presumably in response to a
rise in ROS production [5]. This increase may stem as well from
asthma-induced up-regulation of divalent metal transporter-1
(DMT1), transferring Fe2þ from extracellular matrix into the cell [6].
Rise in iron concentration leads to enhanced production of cellular
ferritin to store this iron in a catalytically less reactive state.

Asthma is known to be associated with a severe form of
another human pathology, nasal polyposis (NP) [7]. The role of
labile iron redistribution in the development of the inflammatory
process and in the pathogenesis of NP was suggested in our recent
report [8]. We detected a significant increase in ferritin and
ferritin-bound iron in nasal polyps from asthmatic patients. This
increase was accompanied by an up-regulation of the protein
carbonyls content (PCC), an oxidative stress marker, and a decrease
in the concentrations of methionine-centered redox cycle proteins,
which usually protect the cell against ROS-induced injury and,
therefore, against inflammation.

In 1991, the idea of a “push-and-pull” mechanism to scavenge
redox-active transition metals was suggested by Chevion [9].
He proposed that metal chelators, such as desferrioxamine (DFO),
are able to tightly bind redox active metals such as iron and copper,
thus preventing their participation in the ROS-producing Fenton
reaction, diminishing therefore the level of oxidative damage [10]
and even reducing production of pro-inflammatory cytokines [11].
While DFO is bound with zinc, gallium, or other redox-inactive
metals, these metals are easily released in the presence of iron due to
a higher DFO affinity to iron, being “pushed away”, thus leading to
iron displacement, and diverting the site of FR attack. The usage of
zinc–DFO and gallium–DFO complexes has additional advantages,
since anti-inflammatory, and even specifically anti-asthmatic, effect
of these metals has been reported [12–16].

DFO by itself is a relatively large, randomly oriented non-polar
molecule, that does not easily penetrate cells, and provides only a
minimal protection against FR damage [17]. However, when
complexed with gallium or with zinc, it assumes a well-defined
compact structure, likely enhancing its ability to infiltrate cell
membranes. The pathophysiological effects (e.g. chemical or alkali
burns and cardiac ischemia-reperfusion injury) of these complexes
were tested in various animal models [9,17–21].

Animal models mimicking the pathophysiology of human
asthma are important tools for studying the mechanisms of
AllerGen-induced asthma, airway hyper-responsiveness (AHR),
airway inflammation, and reversible airway obstruction (National
Heart, Lung, and Blood Institute. Update 2009. Global Initiative for
Asthma Global strategy for asthma management and prevention.
NHLBI/WHO workshop report). Several reports [22–24] have used

AllerGen-sensitized mice to describe the roles that cells and
cytokines play in the development of AHR, demonstrating the
usefulness and acceptability of this animal model. The BALB/c
strain of mice, known to be highly susceptible to asthma induction
protocols [25–27], serve as the gold standard for studying inflam-
matory and bronchial hyper-reactive airways.

The objective of the current study was to evaluate the effect of
Zn/Ga�DFO complexes as specific iron chelators in the treatment
of asthma.

Materials and methods

Complex preparation

To prepare zinc-/gallium-complex with desferrioxamine, a 10
millimoles solution of desferrioxamine mesylate was mixed with
equal volume of ZnCl2 or GaCl3 10 millimoles solution and titrated
to pH 7.4. To form the complex, the mixture was heated to 45 1C
for 30min. The metal:DFO ratio in the complex was 1.0:1.0. A 3:1
mixture of Zn�DFO and Ga�DFO was applied.

Model description

All the experimental protocols were approved by the Institu-
tional Animal Care and Use Committee of Technion – Israel
Institute of Technology, Haifa, conforming to the Guide for the Care
and Use of Laboratory Animals published by the US National
Institutes of Health (NIH, Publication 85-23, revised 1996). The
experiments were performed using an animal model of asthma
induced by ovalbumin (OVA) sensitization [28]. BALB/c female 8 w.
o. mice, purchased from Harlan, Israel, were divided into 4 groups
(n¼8): (1) control; (2) asthmatic, sham-treated; (3) asthmatic,
treated with Zn/Ga�DFO complex intra-peritoneally (i/p) and
intra-nasally (i/n); (4) asthmatic treated with Zn/Ga�DFO com-
plex, i/n only. The dose and pattern of administration were based
on previous experiments performed by Chevion [9,18,29]. The
animals were sensitized to ovalbumin by intra-peritoneal 100 ml
injection (10 mg ovalbumin and 3mg Al(OH)3 in 0.9% saline) on
days 0, 7, and 14. The mice were further sensitized with intra-nasal
instillations of OVA (50 ml) on days 17, 19, 20, and 23. Group
3 received prophylactic treatment by 2 i/p injections (100 ml each;
1mg of Zn/Ga�DFO complex per kg body weight in saline buffer)
5 days and 1 day before the first sensitization. Subsequently, the
i/p injections containing only 1/3 of the dose (0.3mg/kg) were
given one day before and one day after the OVA sensitization,
while a dose of 1mg/kg weight was given on the day of sensitiza-
tion. From day 15, the complex was given i/n.

Group 4 received 5mg/kg of Zn/Ga�DFO i/n only, according to
the same administration pattern. Animals in the control non-
asthmatic group received saline injections and instillations, using
the same regime. At the end of the experiments, Day 24, the
animals were sacrificed with a ketamine/xylazine mixture.

Biochemical parameters

The lung samples were homogenized in lysis buffer using a
Teflon homogenizer. Ferritin concentration was quantified using
an indirect ‘sandwich’ ELISA assay, accordingly to the procedure
developed previously in our laboratory [30]. Ferritin was immu-
noprecipitated and ferritin-bound iron was measured as pre-
viously described [31].
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Histology parameters

BAL using 1ml of saline solution was performed immediately
after sacrifice. BAL fluid on cytospin slides was fixed and stained
with Diff-Quick, and counted under a light microscope. Following
lavage, the lungs were excised, filled with a 4% paraformaldehyde
solution, and sliced longitudinally into 3 parts. The middle third
was embedded in paraffin, randomly sliced, and stained with
eosin–hematoxylin. The intensity of the peribronchial and peri-
vascular cellular infiltration and mucous content was assessed
(n¼5 per group).

Periodic Acid Schiff (PAS) staining was used to assess epithelial
cells metaplasia, and Masson’s trichrome staining was used to
evaluate the presence of fibrous connective tissue.

Statistical analysis

The data was analyzed using repeated one-way ANOVA fol-
lowed by the Scheffe post-hoc test for multiple comparisons (with
α¼0.05). Differences between mean values with pr0.05 were
considered statistically significant.

Results

Thirty two mice were studied, four groups of 8 mice.
The concentrations of ferritin in the lungs are shown in Fig. 1A.

The baseline ferritin concentration, observed in the control lungs,
was 0.1770.02 mg ferritin/mg protein. A significant increase was
found in asthmatic (non-treated) lungs, at 0.4570.06 mg/mg
protein. In i/n treated lungs, a value of 0.2870.04 mg ferritin/mg
protein was observed, and in the lungs treated by both i/p and i/n,
ferritin concentration was down-regulated to a level only slightly
above the control group.

Although the levels of ferritin saturation with iron (Fig. 1B) in
the lungs of asthmatic and control mice were similar, the total
amount of ferritin-bound iron (FBI) was 2.7 times higher in
asthmatic mice lungs, due to a higher ferritin concentration
(Fig. 1A). Treatment with Zn/Ga�DFO, either i/pþ i/n, or i/n only,
decreased both the general amount of ferritin and the level of iron
saturation. There were no significant differences in FBI between
the treated groups.

The amounts of eosinophils and neutrophils in BAL fluid are
shown in Fig. 2. The eosinophil count (Fig. 2A) from the control
group was the lowest at 2.070.5�104 cells/ml, but asthma
caused �5.5 fold increase (po0.05). No statistically significant
differences were found between asthmatic mice lungs and lungs
from the i/pþ i/n group. However, sub-baseline levels were found
in the i/n only group.

Neutrophil count (Fig. 2B) in control mice was 6.872.3�104

cells/ml. In non-treated asthmatic mice, a 6.3-fold increase was
detected (po0.05). In the asthmatic-treated group 3 (Zn/Ga�DFO,
i/pþ i/n), the value decreased to 29.874.3�104 cells/ml, but was
still significantly above the control value (po0.05). In i/n-only
treated mice, neutrophils concentration decreased to slightly
below baseline, 2.070.4�104 cells/ml, which was significantly
different (po0.05) from the values found in asthmatic sham-
treated and in the i/pþ i/n-treated asthmatic mice.

Comparing mucous content values (Table 1), we found that
both methods of treatment were able to reduce mucous levels to
the baseline values.

Histological parameters are shown in Fig. 3. The histological
score was based on integer values scaled from 0 to 3. In general,
the different experimental groups showed congruent results for
peri-bronchial staining for fibrous connective tissue (C). Similar to
the previous results, the asthmatic group received the highest

average score at �2.5, while the control level was 0. Both modes
of treatment succeeded in decreasing the asthma-associated
parameters by at least 1.5-fold, however, the i/n treatment showed
a more profound effect than the i/pþ i/n treatment. Representative
slides of PAS staining demonstrating the effect of Zn/Ga�DFO on
epithelial cell metaplasia are shown in Fig. 4.

Discussion

The present study focused on the role of iron and iron-catalyzed
oxidative injury in the asthmatic inflammatory process. Recently,
we showed that iron re-distribution plays an important role in the
NP inflammatory pathway, and that this effect was exaggerated in
asthmatics [8]. In the current study, we sequestrated iron using Zn/
Ga�DFO, a specific iron chelator developed in our laboratory, and
tested its effects on several asthma-associated parameters using a
classic murine OVA model.

Maintenance of iron homeostasis is of utmost importance to the
physiology and pathophysiology of the respiratory system. Local iron
deficiency can impair the growth and proliferation of cells responsible
for inflammatory response and tissue repair [32,33]. Cellular iron
homeostasis is maintained through post-transcriptional regulation of

Fig. 1. The concentration of ferritin (A) and Fe-saturated ferritin (B) in mice lungs.
Ferritin concentration was quantified using an indirect ‘sandwich’ ELISA assay in
accordance with a procedure developed previously in our laboratory [30]. ELISA 96-
well microplates were pre-coated with goat anti-rat L-ferritin antibody. Rabbit
anti-rat H-ferritin was used as the secondary antibody. Plates were treated with
goat anti-rabbit IgG conjugated with β-galactosidase. Chlorophenol Red-β-D-
Galactopyranoside was then added and the plates were analyzed using a micro-
plate reader with test (570 nm) and reference (630 nm) filters. Ferritin-bound iron
was measured as follows. In order to reach a concentration of 2mg ferritin/1ml,
several samples from each group were pooled together. Ferritin was immune-
precipitated using a mixture of anti-H and anti-L ferritin antibodies, developed in
our lab. The precipitate was dissolved in nitric acid, and iron content was
determined spectrophotometrically with batho-phenanthroline bi-sulfonate, using
535 nm filters. Means7SE are shown. n Denotes po0.05 vs. the control; # denotes
po0.05 vs. the asthmatic non-treated group.
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ferritin and transferrin receptor (TfR) via iron regulatory proteins (IRP).
In the mRNA of ferritin and TfR, there are iron-responsive elements
(IRE) that can bind or release the IRPs, thereby blocking or enabling
translation and protein synthesis [34]. Inflammatory mediators, such
as hydrogen peroxide and nitric oxide, may also regulate IRP activity in
order to increase ferritin and TfR synthesis during inflammatory
processes. In fact, ferritin accumulation and inflammation have been
linked by several published reports [35,36]. Understanding the rela-
tionship between iron homeostasis and inflammation is of great
importance, especially since the respiratory tract is open to the
external environment and constantly exposed to potentially inflam-
matory stimuli [37]. The therapeutic effect of DFO is based on a
chelation of labile, redox-active iron, directly associated with an
inflammatory process.

Treatment with Zn/Ga�DFO complexes via both administra-
tion methods decreased the level of ferritin and the level of FBI in
asthmatic mice lungs (Fig. 1). However, the treatment by intranasal

Table 1
Mucous content in mice lungs.

Group Mucous content value

Asthma 0.8 7 0.2*

Control 0
AsthmaþZn/Ga�DFO i/n 0
Asthma þ Zn/Ga–DFO i/pþ i/n 0

Average7ME is shown.
* Denotes po0.05 vs. the control.

Fig. 3. Histology scores of mice lungs from the experimental groups: peri-
broncheal infiltrate (A), PAS (B) and Mason’s trichrome (C) staining. Following
lung lavage, the lungs were excised and filled paraformaldehyde and sliced
longitudinally into 3 parts. The middle third was embedded in paraffin, randomly
sliced, and stained with eosin-hematoxylin. The intensity of the peribronchial and
perivascular cellular infiltration was assessed semi-quantitatively by light micro-
scopy on a 0–3 scale as follows: 0¼no, or practically no inflammatory cells; 1¼a
narrow rim of inflammatory cells surrounding most of the bronchioles/blood
vessels, best visualized by high power filed; 2¼a rim of inflammatory cells 3–4
cells thick, surrounding most of the bronchioles/blood vessels; and 3¼a prominent
rim of inflammatory cells, 5 or more cells thick, surrounding most of the
bronchioles/blood vessels. Periodic acid Schiff (PAS) staining was used to assess
metaplasia of epithelial cells, and Masson’s trichrome staining was used to evaluate
the presence of fibrous connective tissue. Both were scored as follows: 0 – none,
1 – mild, 2 – moderate, 3 – significant [47]. Histological assessment was performed
by an independent pathologist, blinded to the study groups. Means7SE is shown.
n Denotes po0.05 vs. the control; # denotes po0.05 vs. the asthmatic non-
treated group.

Fig. 2. The amount of eosinophils (A) and neutrophils (B) in mice BAL fluid.
To estimate the anti-inflammatory effect of the treatment provided, the amounts
of eosinophils and neutrophils in bronchoalveolar lavages (BAL) were measured.
BAL using 1ml of a buffered saline solution was performed immediately after the
ketamine/xylazine injection. BAL fluid on cytospin slides was fixed and stained
with diff-quick. Differential cell counts were obtained under a light microscope.
Mean7SE is shown. n Denotes po0.05 vs. the control; # denotes po0.05 vs. the
asthmatic sham-treated group.
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instillations alone demonstrated a more profound therapeutic
effect. Since the allergenic effect of OVA extends through the
whole organism [38], we expected a general inflammation-
associated increase in the concentration of labile iron. Thus, only
a part of Zn/Ga�DFO injected i/p reached the site of inflammation
in active form without iron ion bound. On the other hand, while
the complex, from the beginning of the treatment, was adminis-
tered by intranasal instillation, being applied almost directly on
the site of inflammation, the pathogenic local iron accumulation in
the lungs was immediately reduced, and therapeutic effect was
significantly improved.

Kruzel et al. showed that lactoferrin (LTF), a pleiotropic 80-kDa
glycoprotein with iron-binding properties, exhibited a potent anti-
allergic effect [39]. Bournazou et al. showed that LTF acted as a
powerful specific inhibitor of eosinophil migration [40]. Our
results (Fig. 2) corroborate these findings. However, only local
treatment via intra-nasal instillations decreased the level of
eosinophils in the BAL of asthmatic mice lungs.

Neutrophil levels in BAL fluid was reduced by both methods of
administration. Consistently with our previous observations, intra-
nasal instillations demonstrated a much higher efficacy in reducing
this parameter compared to systemic treatment by i/p injections.
Both methods of treatment for clearing asthma-induced respiratory
mucous were successful, eliminating it completely.

The same trend was observed in all parameters of the three
histology scores (Fig. 3). A pivotal role of ROS in asthma-induced
lung remodeling was reported [41]. Chelation of labile iron,
involved in ROS formation, by Zn/Ga�DFO complex did not
completely abolish asthma-induced lung remodeling, but reduced
it significantly, and, similar to the results observed in the BAL
experiments, intra-nasal instillations were much more effective
than i/p injections. In contrast to iron accumulation, tissue
remodeling and white blood cell infiltration are local processes,
and direct application of the drug in situ is markedly more
effective than systemic treatment. Comparing the results of two
assays employing an OVA-induced murine model of asthma, one
using the Zn/Ga�DFO complex, a potentially novel anti-asthmatic
drug, and one using 2-Methoxyestradiol (ME), a steroidal anti-
asthmatic compound, one may conclude that the novel complex
exerts an equivalent, if not a better effect as ME [42]. However, in
the current study, animals were subjected to a prophylactic
treatment, while ME was administered after the onset of asthma.

In addition to their effects together with DFO, zinc and gallium
by themselves bear anti-oxidant and anti-inflammatory potentials
[12–16], with reports that zinc possibly possess direct anti-
asthmatic effects as well [43,44]. Thus, the newly suggested Zn/
Ga�DFO complex probably acts via the combination of three
different mechanisms – anti-oxidative, anti-inflammatory, and
iron–chelating – simultaneously. These findings are in accord with
a line of previous publications, showing a beneficial effect of Zn/
Ga�DFO complex on several organs, exposed to different kinds of
stress, such as heart and retina under ischemia-reperfusion con-
ditions, and chemically injured cornea or lens under hyperbaric
oxygen conditions. In these applications, the complex has been
demonstrated to reduce the levels of malondialdehyde and DHBA
(the indicators of lipid peroxidation and hydroxyl radical forma-
tion, respectively), and generally increased a systemic antioxidant
status [20,21,29,45].

According to the results by Obolensky et al. [46], the compo-
nents of the complex, Zn and DFO, when administered alone,
showed a lesser, partial effect, while the conclusion about the
synergy, existing between zinc and DFO in the Zn/Ga�DFO
complex can be drawn.

We conclude that Zn/Ga�DFO complex has a significant
potential as an anti-asthmatic drug. However, several assays are
required in order to clarify its mechanism of action, to study its
effects in humans, and to investigate its systemic effects.
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