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A result on "nite abelian groups is "rst proved and then used to solve problems in
"nite "elds. Particularly, all "nite "elds that have normal bases generated by general
Gauss periods are characterized and it is shown how to "nd normal bases of low
complexity. ( 2000 Academic Press
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1. INTRODUCTION AND MAIN RESULTS

We "rst prove a result on "nite abelian groups. We use the standard
notation SS,KT for the subgroup generated by the elements in S and
K together, and G/K, or G

K
, for the quotient group of G by K.

THEOREM 1.1. ¸et G be any ,nite abelian group. ¸et S be a subset and
K a subgroup of G such that G"SS,KT. ¹hen, for any direct product
G"G

1
?G

2
?2?G

t
, there is a subgroup H of the form

H"H
1
?H

2
?2?H

t
, H

i
QG

i
, 14i4t,

such that

G"SS,HT and
G

H
+

G

K
.
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Next we apply this theorem to some problems in "nite "elds that arise in the
work of Feisel et al. [7] on constructing normal bases from Gauss periods.

Gauss periods were invented by C. F. Gauss in 1796 in his famous
resolution of the problem of constructing regular polygons by straightedge
and compass (see [21]) and have been very useful in studying algebraic
structures and in number theory. In recent years, special Gauss periods have
been successfully used to construct normal bases of low complexity [4, 7, 11,
17] and for implementation of "nite "elds [2, 3, 19]. While Gauss periods can
be de"ned in any "nite Galois extension of an arbitrary "eld (see Pohst and
Zassenhaus [20, pp. 171}173] and van der Waerden [22, p. 169]), we only
consider them in "nite "elds.

DEFINITION 1.2 (Feisel et al., 1999). Let q be a prime power and r a posit-
ive integer with gcd(r, q)"1. Let Z

r
denote the ring of integers modulo r,

Z]
r

the multiplicative group of Z
r
and / (r)"DZ]

r
D"nk. Write r as r"r

1
r
2

where r
1

is the squarefree part of r and set

g (x)"xr2<
lDr2

+
1yiyvl(r2)

xrl
~i
3Z[x],

where l runs through all prime divisors of r
2

and vl (r2
) denotes the largest

integer v such that lv Dr
2
. For any subgroup K of Z]

r
of order k, a Gauss period

of type (n, K) over F
q
is de"ned as

a" +
a|K

g(ba)

where b is a primitive rth root of unity in F
qnk.

When r is a prime (or squarefree), r
2
"1 and g (x)"x. In this case, the

above de"nition agrees with Gauss' original one [13, Article 356], and since
there is only one subgroup K of order k in Z]

r
, we refer to a Gauss period of

type (n, k) instead of (n, K). To distinguish this case, we sometime call the
Gauss periods de"ned above general Gauss periods.

A normal basis for F
qn over F

q
is a basis of the form a, aq,2, aqn~1 for some

a3F
qn. Any such a is called a normal element of F

qn
over F

q
and the corre-

sponding basis is said to be generated by a.

THEOREM 1.3 (Feisel et al., 1999). A Gauss period of type (n,K) over F
q

generates a normal basis for F
qn

over F
q

i+ Sq, KT"Z]
r
.

The problem is to characterize the values of q and n for which there exist an
integer r and a subgroup K as above such that a Gauss period of type (n,K) is
normal. The experimental results in [7] indicate that such r may not exist for
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many values of q and n. For example, when q"2 and n is divisible by 8, no
such r were found by computers. Our Theorem 1.1 can now be applied to
resolve this problem.

THEOREM 1.4. ¸et q"pm, where p is a prime. ¹here exists an integer r such
that a Gauss period of type (n, K) is normal for F

qn
over F

q
for some subgroup

K of Z]
r

i+ gcd(m, n)"1 and if p"2 then 8Kn.

In the special case, when r is required to be a prime, the above theorem was
previously proved by Wassermann (1993). Theorem 1.4 characterizes exactly
which "nite "elds have normal bases generated by general Gauss periods. For
more information on how to perform fast arithmetic under normal bases
generated by Gauss periods, see [8}10, 12, 18].

In practice, the size of r is extremely important: smaller r results in smaller
complexity for the normal bases. We present computational results on the
size of r. We shall see from the proof of Theorem 1.4 that whenever the
required r exist, one can "nd squarefree r. Hence, for simplicity, we only
consider squarefree r. Note that there are some theoretical bounds on prime
r in [1, 5], however, these bounds are quite bad compared to the experimental
results presented in the tables below.

Suppose that r is given squarefree and nk"/ (r). The question is how to
e$ciently decide whether there is any subgroup K of order k in Z]

r
such that

Sq,KT"Z]
r
. It is possible that Sq,KT"Z]

r
for some subgroups K of order

k in Z]
r

while Sq,KTOZ]
r

for other subgroups K of the same cardinality. In
general, if r"nk#1 is not a prime then Z]

r
may have many subgroups of

order k. For instance, if k"2 and r has t distinct odd prime factors then
Z]
r

has at least 2t subgroups of order 2. Searching through all subgroups of
order k is time consuming. We solve this problem by the next result.

THEOREM 1.5. Suppose that r is squarefree, nD/ (r) and there is a subgroup
K-Z]

r
of order k"/ (r)/n with Sq,KT"Z]

r
. ¹hen n and k factor as

n"n
1
n
2
2n

t
, k"k

1
k
2
2k

t
, n

i
52, k

i
51

such that
(i) n

1
, n

2
,2, n

t
are pairwise relatively prime;

(ii) for each 14i4t, (n
i
, k

i
) is a prime Gauss pair for q, and r"<t

i/1
r
i

where r
i
"n

i
k
i
#1, 14i4t, are distinct.

Conversely, if (i) and (ii) are satis,ed then there is a Gauss period of type (n,H)
that generates a normal basis for F

qn
over F

q
of complexity at most

<t
i/1

(n
i
k1
i
!1) with k1

i
"k

i
if pDk

i
, and k1

i
"k

i
#1 otherwise where p is the

characteristic of F
q
.

Here and hereafter (n, k) is called a prime Gauss pair if r"nk#1 is a prime
and a Gauss period of type (n, k) is normal. The proof of Theorem 1.5 also
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shows how to "nd a subgroup H of order k such that a Gauss period of type
(k,H) generates a normal basis of the required complexity in the theorem.

The remainder of the paper is organized as follows. Theorem 1.1 is "rst
proved in Section 2. Theorems 1.4 and 1.5 are proved in Sections 3 and 4,
respectively. In Section 5, we discuss how to e$ciently search for low-
complexity normal bases generated by Gauss periods for any given n and q.
We give a table of percentages of n43000 for which F

qn
has a normal basis

from Gauss periods with small complexity for q3M2, 3, 5, 7, 11, 13, 17, 19,
23N. Our computation shows that general Gauss periods do yield many new
normal bases of low complexity.

2. PROOF OF THEOREM 1.1

The properties we use on Abelian groups can be found in any standard
textbook on modern algebra; see, for example, [14].

Without loss of generality, we may assume that S is a subgroup of G. We
"rst reduce the proof to the case where the order of G is a prime power. Let
n be the order of G. For a prime divisor p of n, let G(p) denote the p-Sylow
subgroup of G; similarly for G(p)

i
, S(p), K(p), etc. Then

G"<
pDn

G(p), SS,KT"<
pDn

SS(p), K(p)T,

where p runs through all distinct prime divisors of n. Also, G(p) has order
a power of p and

G(p)"G(p)
1

?G(p)
2

?2?G(p)
t

.

Suppose that there is a subgroup of G(p) of the form

H(p)"H(p)
1

? H(p)
2

?2?H(p)
t

, H(p)
i
QG(p)

i
,

such that

G(p)"SS(p), H(p)T and
G(p)

H(p)
+

G(p)

K(p)

for each prime divisor p of n. Let H
i
"<

pDn
H(p)

i
and

H"<
pDn

H(p)"H
1
?H

2
?2?H

t
.
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Then H satis"es the requirement of Theorem 1.1, since

SS,HT"<
pDn

SS(p),H(p)T"<
pDn

G(p)"G

and

G

H
+<

pDn

G(p)

H(p)
+<

pDn

G(p)

K(p)
+

G

K
.

So we may assume that G is a p-group; i.e., G has order a power of p. In this
case, it su$ces to prove the theorem when all the subgroups G

i
are cyclic,

since we can always decompose G
i
into a direct product of cyclic groups and

combine subgroups of the components to get the required H
i
of G

i
for all

14i4t.
Henceforth, we assume that G is a p-group and G

i
"Sa

i
T generated by a

i
,

14i4t. The number t is called the rank of G and a
1
, a

2
,2, a

t
form a basis

for G. We prove by induction on the rank t of G. When t"1, the theorem
holds trivially. Suppose that the theorem is true for any p-group of rank at
most t!1. We prove it for G of rank t.

If K"G, the theorem holds trivially. So assume that KOG. Denote the
elements of G/K by a6 , a3G. For convenience, we switch to the additive
notation for the group operation of G. Then

G"S#K and GM "Ma6 : a3SN.

As GM is "nite, there is an element of largest order in GM . Let a6 be any such
element with order pe. Then pe'1, as GM is not the identity group. There are
integers a

1
, a

2
,2, a

t
such that

a"a
1
a
1
#a

2
a
2
#2#a

t
a
t
.

Thus

a6 "a
1
a6
1
#a

2
a6
2
#2#a

t
a6
t
.

The order of a6 is equal to the least common multiple of the orders of a
i
a6
i
,

14i4t. Since all the orders are powers of p, there is an i such that a
i
a6
i
has

order pe. Without loss of generality, we assume that i"t. Note that pKa
t
,

since otherwise a6
t
3G1 would have order at least pe`1, contradicting to the

choice of a6 whose order pe is the largest. Suppose that G
t
has order pr. Then

the coe$cient of a
t
is computed modulo pr. As pKa

t
, an appropriate multiple

of a will make the coe$cient of a
t
into 1. So we may assume that a is of the
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form

a"b#a
t
3S, for some b3G

1
?2? G

t~1
, (1)

where a6 and a6
t
have the same order pe.

Denote GI "G
1
?2?G

t~1
. For any element g3G represented under the

basis a
1
,2, a

t
, we de"ne the projection of g via a into GI to be the element

g!ua where u is the coe$cient of a
t
in g. Let KI be the set of elements of

K projected into GI via a. Then KI is a subgroup of GI LG. As a3S, we still
have

G"SS, KI T. (2)

We shall show later that

GM +
GI
KI

?Sa6
t
T. (3)

Let SI be the subgroup consisting of all elements of S with tth component zero.
Since G

t
"Sa

t
T is a component in the direct product of G, (1) and (2) imply

that GI "SSI , KI T. Now GI /KI has rank at most t!1. By the induction hypoth-
esis, there is a subgroup HI of GI of the form

HI "H
1
?2?H

t~1
, H

i
QG

i
,

such that

GI "SSI , HI T and
GI
KI

+
GI
HI

.

Since pe is the order of a6
t
in G/K, pea

t
3K and the order pr of G

t
is at least pe.

Let H
t
"Spea

t
T. Then G

t
/H

t
is cyclic of order pe. So Sa6

t
T+G

t
/H

t
. Take

H"HI ?H
t
. Then, by (3),

G

H
+

GI
HI

?
G

t
H

t

+
GI
KI

? Sa
t
T+

G

K

and

SS,HT"SSI , a, HI , pea
t
T"SSI , HI , a, pea

t
T

"SGI , b#a
t
, pea

t
T"SGI , a

t
, pea

t
T"G,

as !b3GI and !b#a"a
t
. So the theorem follows by induction.
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It remains to prove (3). Since a6 3GM is of maximum order, Sa6 T is a direct
summant of GM . Hence

GM +
GI

Sa6 T
?Sa6 T. (4)

But Sa6 T+SK, aT/K. By the third isomorphism theorem of groups,

GM
Sa6 T

+
G/K

SK, aT/K
+

G

SK, aT
. (5)

Note that the elements of KI are linear combinations of a and elements of K.
We have

SK, aT"SK3 , aT"KI #SaT

where the sum is direct as KI has no common elements with SaT. Since
G"GI #SaT is also a direct sum, we have

G

SK, aT
"

GI #SaT
KI #SaT

+
GI
KI

?
SaT
SaT

+
GI
KI

.

It follows from (4) and (5) that

GM +
GI
KI

?Sa6 T+
GI
KI

?Sa6
t
T,

as a6
t
and a6 have the same order in GM . Hence (3) holds, and the proof is

complete. j

3. PROOF OF THEOREM 1.4

Denote the elements of Z]
r
/K by a6 , a3Z]

r
. Since dZ]

r
"/(r)"nk, Z]

r
/K

has order n. Spm, KT"Z]
r

i! p6 m has order n in Z]
r
/K. The latter happens i!

gcd(n, m)"1 and p6 has order n. Therefore Spm, KT"Z]
r

i! Sp, KT"Z]
r

and
gcd(n,m)"1.

We prove that if p"2 and 8Dn then Sp,KTOZ]
r

for any odd r with
/(r)"nk and any subgroup K of order k in Z]

r
. The following argument is

due to H. W. Lenstra, Jr. Suppose on the contrary that S2,KT"Z]
r
. Let

K
1
"S28, KT-Z]

r
. Then K

1
has order nk/8, and Z]

r
/K

1
is cyclic of order

8 generated by 21 . Suppose that r"pe1
1
pe2
2
2pet

t
where p

1
, p

2
,2, p

t
are distinct
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odd primes. Consider the natural homomorphism

Z]
r
+

t
<
i/1

Z]
peii

p
PZ]

r
/K

1
.

If p
i
I1 mod 8, then dZ]

peii
"(p

i
!1)pei~1

i
I0 mod 8, so p (Z]

peii
) and thus p (2

mod pei
i
) is in the subgroup of order 4 in Z]

r
/K

1
. If p

i
,1 mod 8, then 2 is

a quadratic residue mod p
i
and thus a square mod pei

i
, so p(2 mod pei

i
) is again

in the subgroup of order 4 in Z]
r
/K

1
. Therefore S2,K

1
TOZ]

r
, a contradic-

tion.
It remains to show that if p'2, or p"2 but 8Kn, then there is a positive

integer k such that (n, k) is a Gauss pair over F
p
, thus over F

pm when
gcd(m, n)"1. Suppose that n"n

1
n
2
2n

t
where n

1
, n

2
,2, n

t
are prime

powers of distinct primes. By Wassermann [24], for each 14i4t there is
a positive integer k

i
such that r

i
"n

i
k
i
#1 is a prime and Sp,K

i
T"Z]

ri
where

K
i
is the unique subgroup of order k

i
in Z]

ri
. If some of r

1
, r

2
,2, r

t
are equal,

say r
1
"r

2
, then r

1
"n

1
n
2
k@
1
#1 for some integer k@

1
, and (n@

1
, k@

1
) is a prime

Gauss pair where n@
1
"n

1
n
2
. So we can drop the pair (n

2
, k

2
) and r

2
. Now

n"n@
1
n
3
2n

t
with n@

1
, n

3
,2, n

t
pairwise relatively prime. We can repeat this

process until all the r's are distinct. Without loss of generality, we may assume
that r

1
, r

2
,2, r

n
are already distinct and n

1
, n

2
,2, n

t
are pairwise relatively

prime.
Let a

i
"+

a|Ki
ba
i

be a Gauss period of type (n
i
, k

i
) over F

p
where b

i
is

a primitive r
i
th root of unity in some extension of F

p
. Then a

i
is a normal

element in F
pni over F

p
. As n

1
, n

2
,2, n

t
are pairwise relatively prime, by

Theorem 4.3 in [16, p. 72], a"a
1
a
2
2a

t
is a normal element in F

p
n over F

p
. It

su$ces to show that a is a Gauss period. Let r"r
1
r
2
2r

t
. Since r

1
, r

2
,2, r

n
are distinct primes, by the Chinese remainder theorem,

Z
r
"Z

r1
=Z

r2
=2=Z

rt
, and Z]

r
"Z]

r1
=Z]

r2
=2=Z]

rt

where we identify Z
ri
with its embedding in Z

r
(similarly for Z]

ri
, and K

i
below)

and the sums are internal. Let

K"K
1
=K

2
=2=K

t
LZ]

r
.

Then

+
a|K

ba" +
ai|Ki, 1yiyt

ba1
1
ba2
2
2bat

t
"

t
<
i/1

+
ai|Ki

bai
i
"

t
<
i/1

a
i
"a.

Therefore a is a Gauss period of type (n,K). j
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4. PROOF OF THEOREM 1.5

Let r"r
1
r
2
2r

t
where r

1
, r

2
,2, r

t
are distinct primes. By the Chinese

remainder theorem,

Z]
r
"Z]

r1
=Z]

r2
=2=Z]

rt
,

here again we identify Z
ri
with its embedding in Z

r
and the sum is internal. By

Theorem 1.1 with S"MqN, there exists a subgroup H"H
1
=H

2
=2=H

t
,

where H
i
is a subgroup of Z]

ri
, such that

Z]
r
"Sq,H' and

Z]
r

K
+

Z]
r

H
.

Note that

Z]
r

H
+

Z]
r1

H
1

=
Z]

r
H

2

=2=
Z]
rt

H
t

. (6)

Let n
i
"dZ]

ri
/H

i
and k

i
"dH

i
for 14i4t. Then r

i
"n

i
k
i
#1, 14i4t,

and n"dZ]
r
/K"dZ]

r
/H"n

1
n
2
2n

t
. Now Sq,HT"Z]

r
implies that

Z]
r
/H is cyclic. It follows from (6) that n

1
, n

2
,2, n

t
are pairwise relatively

prime. Also,

Z]
r
"Sq,HT"Sq,H

1
T =Sq,H

2
T=2=Sq,H

t
T

implies that Sq,H
i
T"Z]

ri
for 14i4t. Hence (n

i
, k

i
) is a Gauss pair over

F
q
for 14i4t. Obviously k"DKD"DHD"k

1
2k

t
.

Finally, for the last claim of the theorem, taking the subgroup
H"H

1
=H

2
=2=H

t
in Z]

r
where H

i
is the unique subgroup of order k

i
in

Z]
ri
, let a"a

1
a
2
2a

t
where a

i
is a Gauss period of type (n

i
, k

i
) over F

q
,

14i4t. Then a is a Gauss period of type (n,H) by the proof of Theorem 1.4.
Since a

i
is normal in F

qni
over F

q
and the n

i
's are pairwise relatively prime, a is

normal in F
qn

over F
q

By Exercise 4.2 in [16, p. 73], the complexity of the
normal basis generated by a is equal to the product of those generated by
a
i
for F

qni
, 14i4t. The claim follows. j

5. NORMAL BASES OF LOW COMPLEXITY

Let n be a positive integer and q"pm where p is a prime and m is a positive
integer. We want to construct a normal basis of low complexity for F

qn over
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F
q
. Theorem 1.4 says that if gcd(m, n)"1 then a normal basis for F

qn
over

F
q

can always be constructed from Gauss periods except for p"2 and 8Dn.
Since any basis for F

p
n over F

p
is still a basis for F

qn
over F

q
when gcd(m, n)"1,

we will concentrate only on the "elds F
p
n over F

p
. To the author's knowledge,

there is currently no known construction of normal bases of low complexity
for F

2n over F
2
when 8Dn, and little is known for F

qn
over F

q
when gcd(m, n)'1;

see Blake et al. [6] for a construction of normal bases with complexity 3n!2
for F

qn
over F

q
when nD(q!1) or n"p.

Recall that (n, k) is a prime Gauss pair if r"nk#1 is a prime and
Sq,KT"Z]

r
where K is the unique subgroup of Z]

r
of order k. We call (n, k)

a Gauss pair over F
q

if nk"/ (r) for some squarefree integer r with
gcd(r, q)"1 and if there is a subgroup K in Z]

r
of order k such that

Sq,KT"Z]
r
. De"ne

i@
q
(n)"G

min Mk : (n, k) is a prime Gauss pair over F
q
N, if k exists,

R, if no such k exists;

and

i
q
(n)"G

min Mk : (n, k) is a Gauss pair over F
q
N, if such k exists,

R, if no such k exists.

As a prime Gauss pair is always a Gauss pair, i
q
(n)4i@

q
(n).

In the prime case, i@
q
(n) measures the complexity of the corresponding

normal basis. In the general case, however, we do not know the precise
relationship between i

q
(n) and the complexity of the normal basis. We

introduce another measure. By Theorem 1.5, if the conditions (i) and (ii) are
satis"ed then there is a Gauss period that generates a normal basis of
complexity at most <t

i/1
(n

i
k1
i
!1). When a Gauss period comes from the set

M(n
1
, k

1
),2, (n

t
, k

t
)N of pairs, we say that it is of type M(n

1
, k

1
),2, (n

t
, k

t
)N.

De"ne

G
q
(n)"

1

n
minG1#

t
<
i/1

(n
i
k1
i
!1)H ,

where k1
i
is the same as de"ned in Theorem 1.5 and the minimum is taken over

all the collections of pairs M(n
1
, k

1
),2, (n

t
, k

t
)N that satisfy the conditions (i)

and (ii) in Theorem 1.5. G
q
(n) is approximately the same as i

p
(n) but G

q
(n)

measures more accurately the complexity of normal bases. For example,
when n"15 and p"2, a Gauss period of type (15, 4) yields a normal basis of
complexity 15 )4!1"59, and a Gauss period of type M(3, 2), (5, 2)N yields
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a normal basis complexity (3 )2!1)(5 )2!1)"45; both have the same k but
with di!erent complexities. In fact, G

2
(15)"46/15+3.07 but i

2
(15)"4.

Given a prime p and a positive integer n, we want to compute G
p
(n). We

need to search for an appropriate factorization n"n
1
n
2
2n

t
and positive

integers k
1
, k

2
,2 , k

t
such that (i) and (ii) are satis"ed and such that

<t
i/1

(n
i
k1
i
!1) is minimized. To do this we "rst factor n as

n"P
1
P
2
2Pl ,

where P
i
are prime powers and l is the number of distinct prime factors of n.

Then we partition MP
1
, P

2
,2,PlN to form all possible factorizations

n"n
1
n
2
2n

t
, t4l, where n

1
, n

2
,2, n

t
are pairwise relatively prime. For

each factorization n"n
1
n
2
2n

t
and for each 14i4t, "nd the smallest

positive integer k
i
such that (n

i
,k

i
) is a prime Gauss pair. If r"<t

i/1
(n

i
k
i
#1)

is squarefree then we have a normal basis of complexity at most
<t

i/1
(n

i
k1
i
!1). Take the smallest complexity among all such factorizations of

n. For example, if n"154"2 ) 7 ) 11 then we can factor n as

(2) (7) (11), (2 )11) (7), (2) (7 )11), (2 )7) (11), (2 )7 )11).

For p"2 and for m3M2, 7, 11, 14, 22, 77, 154N, the smallest prime Gauss
pairs (m, k) are

(2, 1), (7, 4), (11, 2), (14, 2), (22, 3), (77, 6), (154, 25).

The optimal combination is M(11, 2), (14, 2)N. So there is a Gauss period of
type M(11, 2), (14, 2)N that generates a normal basis for F

2154 of complexity
(11 )2!1)(14 )2!1)"567, and G

2
(154)"568/154+3.69. Note that

i@
2
(154)"25, and the smallest complexity of normal bases from prime Gauss

periods is 154 ) (25#1)!1"4003. In this case general Gauss periods yield
normal bases with much smaller complexity.

To test if any given pair (n, k) is a prime Gauss pair for p, we check if the
following conditions are satis"ed, r"nk#1 must be a prime and
gcd(e, n)"1 where e is the index of p modulo r. The latter condition is
equivalent to

pn@vI1 (mod r) for each prime factor v of n.

When n and p are given, the smallest prime Gauss pair (n, k) is found by trying
k"1, 2, 3,2. Adleman and Lenstra [1] and Bach and Shallit [5] prove
under the extended Riemann hypothesis that i@

p
(n)4cn3 log2 (np) for some

absolute constant c. But our computer experiment shows that such k is much
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smaller. For example, i@
2
(3i)(6i and i@

3
(2i )(6i for all 14i41000. It

would be interesting to have a better theoretical bound for i
p
(n).

We still need to generate all the partitions of MP
1
, P

2
,2, PlN. The number

of partitions of a set with l distinct elements is called a Bell number, denoted
by Bell(l), which is exponential in l. All the partitions of a set M1, 2,2, lN of
l distinct elements can be generated recursively as follows. Let m"Bell
(i!1). Suppose that

S
1
, S

2
,2, S

m

is a list of all partitions of M1, 2,2, i!1N for some i'1. For each partition
S
j
"s

j1
X s

j2
X2X s

jv
with v parts, 14j4m, form v#1 partitions of

M1, 2,2, iN:

s
j1

Xs
j2

X2Xs
jv
XMiN, S

jw
, 14w4v, (7)

where S
jw

is the partition S
j
with its wth part s

jw
replaced by s

jw
with i added.

Then all the partitions of M1, 2,2, iN is the union of (7) for 14j4m. Since
each partition of M1, 2,2, i!1N has at most i!1 parts, the above algorithm
shows that Bell(i)4i Bell(i!1). So Bell(l)4l!. (Of course, the number of
partitions is at most the number of permutations.) Note that the ith prime is
at least i#1. We have Bell(l)(n for any positive integer n with l distinct
TABLE 1
Percentages of n43000 with Gp(n)4k

kCp 2 3 5 7 11 13 17 19 23

2 20.2 5.67 6.00 5.37 5.47 5.50 5.30 5.50 5.37
3 22.8 28.0 21.4 20.0 20.0 20.0 19.8 20.3 20.1
4 48.6 28.0 28.1 26.3 26.3 26.5 25.7 26.3 26.2
5 48.6 40.0 41.7 37.7 39.7 37.6 39.1 38.0 39.6
6 61.2 59.1 45.8 45.4 46.2 44.8 47.0 45.3 46.5
7 62.7 59.1 58.0 60.4 58.6 57.0 59.5 58.2 59.1
8 69.4 65.2 62.3 61.4 63.6 60.4 64.0 61.5 63.9
9 70.2 76.5 71.2 71.5 71.4 69.6 72.4 70.1 70.6
10 75.7 77.6 78.2 74.2 74.6 72.6 76.0 73.5 73.7
15 81.9 92.2 91.7 90.8 90.6 89.0 90.8 89.8 90.2
20 85.3 95.8 96.6 96.0 95.7 95.1 95.4 95.0 95.8
25 86.6 98.3 98.1 98.5 98.1 98.1 97.9 97.6 98.2
30 87.0 99.2 99.2 99.2 99.2 98.7 98.8 98.4 98.9
35 87.2 99.5 99.6 99.6 99.7 99.6 99.5 99.2 99.6
40 87.4 99.8 99.7 99.8 99.8 99.8 99.6 99.3 99.7
50 87.5 99.9 99.8 100.0 100.0 99.9 99.9 99.8 99.9



TABLE 2
Values of n42000 Where i@2(n)!G2 (n)520

General Prime

n Types k r Cplex k r Cplex Di!

154 M(14, 2), (11, 2)N 4 667 567 25 3,851 4,003 22
415 M(5, 2), (83, 2)N 4 1,837 1,485 28 11,621 11,619 24
477 M(9, 2), (53, 2)N 4 2,033 1,785 46 21,943 21,941 42
514 M(2, 1), (257, 6)N 6 4,629 4,623 33 16,963 17,475 25
862 M(2, 1), (431, 2)N 2 2,589 2,583 31 26,723 27,583 29
884 M(4, 1), (221, 2)N 2 2,215 3,087 27 23,869 24,751 25
885 M(177, 4), (5, 2)N 8 7,799 6,363 28 24,781 24,779 21
954 M(106, 1), (9, 2)N 2 2,033 3,587 49 46,747 47,699 46
996 M(12, 1), (83, 2)N 2 2,171 3,795 43 42,829 43,823 40
1073 M(29, 2), (37, 4)N 8 8,791 8,379 30 32,191 32,189 22
1189 M(29, 2), (41, 2)N 4 4,897 4,617 24 28,537 28,535 20
1209 M(93, 4), (13, 4)N 16 19,769 18,921 38 45,943 45,941 22
1227 M(3, 2), (409, 4)N 8 11,459 8,175 34 41,719 41,717 27
1335 M(3, 2), (5, 2), (89, 2)N 8 13,783 7,965 44 58,741 58,739 38
1410 M(470, 2), (3, 2)N 4 6,587 4,695 42 59,221 59,219 39
1431 M(27, 6), (53, 2)N 12 17,441 16,905 40 57,241 57,239 28
1465 M(5, 2), (293, 2)N 4 6,457 5,265 30 43,951 43,949 26
1476 M(36, 1), (41, 2)N 2 3,071 5,751 25 36,901 38,375 22
1545 M(3, 2), (515, 2)N 4 7,217 5,145 28 43,261 43,259 25
1572 M(4, 1), (393, 2)N 2 3,935 5,495 25 39,301 40,871 23
1605 M(3, 2), (535, 4)N 8 14,987 10,695 32 51,361 51,359 25
1635 M(3, 2), (545, 2)N 4 7,637 5,445 38 62,131 62,129 35
1674 M(2, 1), (837, 6)N 6 15,069 15,063 33 55,243 56,915 25
1691 M(19, 10), (89, 2)N 20 34,189 33,453 42 71,023 71,021 22
1719 M(9, 2), (191, 2)N 4 7,277 6,477 24 41,257 41,255 20
1724 M(4, 1), (431, 2)N 2 4,315 6,027 27 46,549 48,271 25
1771 M(161, 6), (11, 2)N 12 22,241 20,265 40 70,841 70,839 29
1833 M(3, 2), (611, 2)N 4 8,561 6,105 26 47,659 47,657 23
1842 M(614, 2), (3, 2)N 4 8,603 6,135 25 46,051 47,891 23
1908 M(36, 1), (53, 2)N 2 3,959 7,455 25 47,701 49,607 22
1962 M(218, 5), (9, 2)N 10 20,729 22,219 50 98,101 98,099 39
1964 M(4, 1), (491, 2)N 2 4,915 6,867 29 56,957 58,919 27
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prime factors. Therefore one can generate all the partitions of MP
1
,P

2
,2,PlN

in time linear in n.
Using the above algorithm, we computed G

p
(n) for n43000 and

p3M2, 3, 5, 7, 11, 13, 17, 19, 23N. In Table 1, we tabulated the percentages of
the values of n with G

p
(n)4k for various small values of k. Note that for

p"2, the percentage is relatively small for k'2 compared to other p's. The
reason is that whenever 8Dn, F

2n has no normal bases from Gauss periods. For
all p3M3, 5, 7, 11, 13, 17, 19, 23N, G

p
(n)410 for more than 70% of n43000,



TABLE 3
Values of n42000 Where i@p(n)!Gp (n)520

General Prime

p n Types k r Cplex k r Cplex Di!

3 159 M(3, 2), (53, 2)N 4 749 1,264 34 5,407 5,564 27
3 415 M(5, 2), (83, 2)N 4 1,837 3,472 30 12,451 12,449 22
3 450 M(50, 2), (9, 2)N 4 1,919 3,874 33 14,851 14,849 24
3 495 M(99, 2), (5, 2)N 4 2,189 4,144 30 14,851 14,849 22
3 534 M(6, 1), (89, 2)N 2 1,253 2,926 27 14,419 14,417 22
3 942 M(6, 1), (157, 10)N 10 10,997 18,986 43 40,507 41,447 24
3 1078 M(98, 2), (11, 2)N 4 4,531 9,376 34 36,653 37,729 26
3 1189 M(29, 2), (41, 2)N 4 4,897 10,492 30 35,671 35,669 21
3 1195 M(5, 2), (239, 2)N 4 5,269 10,024 28 33,461 34,654 21
3 1220 M(4, 1), (305, 6)N 6 9,155 12,803 29 35,381 36,599 20
3 1375 M(125, 2), (11, 2)N 4 5,773 11,968 34 46,751 48,124 26
3 1438 M(2, 2), (719, 2)N 4 7,195 10,780 57 81,967 81,965 50
3 1498 M(2, 2), (749, 2)N 4 7,495 11,230 40 59,921 61,417 34
3 1592 M(8, 2), (199, 4)N 8 13,549 22,862 35 55,721 57,311 22
3 1710 M(18, 1), (95, 2)N 2 3,629 9,940 27 46,171 46,169 21
3 1771 M(161, 6), (11, 2)N 12 22,241 30,880 40 70,841 72,610 24
3 1815 M(363, 4), (5, 2)N 8 15,983 25,396 44 79,861 81,674 31
5 407 M(11, 2), (37, 4)N 8 3,427 5,888 36 14,653 15,058 23
5 415 M(5, 2), (83, 2)N 4 1,837 3,472 42 17,431 17,844 35
5 693 M(9, 2), (77, 6)N 12 8,797 13,988 52 36,037 36,728 33
5 836 M(4, 3), (209, 2)N 6 5,447 9,390 36 30,097 30,931 26
5 917 M(7, 4), (131, 2)N 8 7,627 13,328 36 33,013 33,928 22
5 1105 M(5, 2), (221, 2)N 4 4,873 9,268 30 33,151 33,149 22
5 1107 M(27, 4), (41, 2)N 8 9,047 16,348 40 44,281 44,279 25
5 1122 M(102, 1), (11, 2)N 2 2,369 6,496 46 51,613 52,733 41
5 1242 M(46, 1), (27, 4)N 4 5,123 12,194 41 50,923 52,163 32
5 1488 M(16, 1), (93, 4)N 4 6,341 14,384 34 50,593 52,079 25
5 1496 M(136, 1), (11, 2)N 2 3,151 8,672 36 53,857 55,351 31
5 1497 M(3, 2), (499, 4)N 8 13,979 19,952 56 83,833 85,328 44
5 1524 M(12, 3), (127, 4)N 12 18,833 29,798 44 67,057 68,579 25
5 1558 M(2, 1), (779, 2)N 2 4,677 7,008 34 52,973 54,529 31
5 1586 M(2, 1), (793, 6)N 6 14,277 16,650 32 50,753 52,337 23
5 1605 M(3, 2), (535, 4)N 8 14,987 21,392 32 51,361 52,964 20
5 1908 M(36, 1), (53, 2)N 2 3,959 11,218 32 61,057 62,963 27
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and G
p
(n)420 for more than 95% of n43000. To see how much general

Gauss periods improve over prime Gauss periods, we list in Tables 2, 3, and
4 the values of n42000 for which i@

p
(n)!G

p
(n)520 for p3M2, 3, 5, 7, 11N,

where &&Cplex'' denotes complexity and &&Di! '' is the di!erence of complexities
divided by n. General Gauss periods indeed give many new normal bases of
low complexity.



TABLE 4
Values of n42000 Where i@p(n)!Gp (n)520

General Prime

p n Types k r Cplex k r Cplex Di!

7 276 M(4, 1), (69, 2)N 2 695 1,442 41 11,317 11,591 37
7 415 M(5, 2), (83, 2)N 4 1,837 3,472 28 11,621 11,619 20
7 1004 M(4, 1), (251, 2)N 2 2,515 5,264 24 24,097 25,099 20
7 1166 M(106, 1), (11, 2)N 2 2,461 6,752 32 37,313 38,477 27
7 1194 M(2, 2), (597, 4)N 8 11,945 14,920 63 75,223 75,221 51
7 1275 M(51, 2), (25, 4)N 8 10,403 18,848 40 51,001 52,274 26
7 1386 M(126, 1), (11, 2)N 2 2,921 8,032 25 34,651 36,035 20
7 1545 M(309, 2), (5, 2)N 4 6,809 12,964 30 46,351 47,894 23
7 1662 M(554, 2), (3, 4)N 8 14,417 23,254 48 79,777 81,437 35
7 1664 M(128, 2), (13, 4)N 8 13,621 24,512 48 79,873 81,535 34
7 1771 M(161, 6), (11, 2)N 12 22,241 36,032 40 70,841 72,610 21
7 1794 M(78, 1), (23, 2)N 2 3,713 10,540 48 86,113 87,905 43
7 1826 M(22, 1), (83, 2)N 2 3,841 10,664 38 69,389 71,213 33
7 1855 M(5, 2), (371, 2)N 4 8173 15,568 40 74,201 76,054 33
7 1986 M(2, 2), (993, 2)N 4 9,935 14,890 26 51,637 53,621 20
7 1996 M(4, 1), (499, 4)N 4 9,985 17,458 40 79,841 81,835 32
7 2000 M(16, 1), (125, 2)N 2 4,267 11,594 48 96,001 97,999 43
11 106 M(2, 1), (53, 2)N 2 321 474 28 2,969 3,073 25
11 334 M(2, 1), (167, 14)N 14 7,017 7,512 45 15,031 15,363 24
11 375 M(3, 2), (125, 2)N 4 1,757 2,992 38 14,251 14,624 31
11 750 M(250, 1), (3, 2)N 2 1,757 3,992 28 21,001 21,749 24
11 805 M(35, 2), (23, 2)N 4 3,337 7,072 28 22,541 23,344 20
11 1054 M(2, 1), (527, 8)N 8 12,651 14,226 34 35,837 36,889 22
11 1300 M(100, 1), (13, 4)N 4 5,353 12,736 52 67,601 68,899 43
11 1431 M(27, 4), (53, 2)N 8 11,663 21,172 36 51,517 52,946 22
11 1476 M(36, 2), (41, 2)N 4 6,059 13,054 30 44,281 45,755 22
11 1728 M(64, 3), (27, 4)N 12 21,037 34,170 45 77,761 79,487 26
11 1810 M(2, 1), (905, 2)N 2 5,433 8,142 24 43,441 45,249 21
11 1833 M(3, 2), (611, 2)N 4 8,561 14,656 34 62,323 64,154 27
11 1887 M(3, 2), (629, 2)N 4 8,813 15,088 28 52,837 54,722 21
11 1902 M(2, 1), (951, 10)N 10 28,533 31,380 41 77,983 79,883 26
11 1908 M(36, 2), (53, 2)N 4 7,811 16,906 30 57,241 59,147 22
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