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In this paper, some attractivity results for fractional functional differential equations are
obtained by using the fixed point theorem. By constructing equivalent fractional integral
equations, research on the attractivity of fractional functional and neutral differential
equations is skillfully converted into a discussion about the existence of fixed points for
equivalent fractional integral equations. Two examples are also provided to illustrate our
main results.
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1. Introduction

Consider the initial value problem (IVP for short) of the following fractional functional differential equation:
CDαx(t) = f (t, xt), t ∈ (t0, ∞), t0 ≥ 0, 0 < α < 1,
x(t) = φ(t), t0 − τ ≤ t ≤ t0,

(1)

where Dα is the Caputo fractional derivative, f : J × C([−τ , 0], R) → R, where J = (t0, ∞), is a given function satisfying
some assumptions that will be specified later, τ > 0, and φ ∈ C([t0 − τ , t0], R). If x ∈ C([t0 − τ , ∞), R), then, for any
t ∈ [t0, ∞), define xt by xt(θ) = x(t + θ) for −τ ≤ θ ≤ 0.

In recent years, there has been a significant development in solving ordinary and partial differential equations involving
fractional derivatives [1]; see, for example, the monographs [2–4]; also, see [5–8] for initial value problems of nonlinear
fractional differential equations; [9–12] for boundary value problems of nonlinear fractional differential equations; [1,13,14]
for fractional functional differential equations; [15–18] for fractional impulsive differential equations; [19–21] for fractional
evolution equations; [22,23] for fractional difference equations; and [24–26] for fractional partial differential equations.

However, there are few works on the stability of solutions for fractional differential equations. Some local asymptotical
stability, Mittag-Leffler stability, and linear matrix inequality (LMI) stability are discussed in [27–30], and the attractivity of
nonlinear fractional differential equations is discussed by Deng [27] using the principle of contraction mappings; but there
is no work on the attractivity of fractional functional differential equations.

In this paper, we investigate the attractivity of solutions for fractional functional differential equations by using fixed
point theorems: research on the attractivity is skillfully converted into a discussion about the existence of fixed points. A
similar idea can be found in integer-order differential equations [31–35].

The rest of the paper is organized as follows. In Section 2, we recall some useful preliminaries. In Section 3, we give some
sufficient conditions of the attractivity of the solutions. Finally, two examples are given to illustrate our main results.
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2. Preliminaries

Let us recall the following known definitions. For more details, see [1,14].

Definition 2.1. The fractional integral of order γ with the lower limit zero for a function f is defined as

Iγ f (t) =
1

0(γ )

∫ t

t0

f (s)
(t − s)1−γ

ds, t > t0, γ > 0,

provided that the right-hand side is point-wise defined on [t0, ∞), where 0(·) is the gamma function.

Definition 2.2. The Riemann–Liouville derivative of order γ with the lower limit zero for a function f ∈ Cn([t0, ∞), R) can
be written as

Dγ f (t) =
1

0(n − γ )

dn

dtn

∫ t

t0

f (s)
(t − s)γ+1−n

ds, t > t0, n − 1 < γ < n.

Definition 2.3 ([2]). Caputo’s derivative of order γ for a function f ∈ Cn+1([t0, ∞), R) can be written as

CDγ f (t) = Dγ f (t) −

n−1−
k=0

f (k)(t0)
0(k − γ + 1)

tk−γ , t > t0, n − 1 < γ < n.

Remark 2.4. (1) If f (t) ∈ Cn+1([0, ∞), R), then

CDγ f (t) =
1

0(n − γ )

∫ t

0

f (n)(s)
(t − s)γ+1−n

ds = In−γ f (n)(t), t > 0, n − 1 < γ < n.

(2) The Caputo derivative of a constant is equal to zero, i.e., if x(t) = c , then CDαc = 0. However, Dαc =
ct−α

0(1−α)
.

Definition 2.5. The solution x(t) of IVP (1) is said to be attractive if there exists a constant b0(t0) > 0 such that |φ(s)| ≤

b0 (s ∈ [t0 − τ , t0]) implies that x(t, t0, φ) → 0 as t → ∞.

Theorem 2.6 (Schauder Fixed Point Theorem, [36]). If U is a nonempty, closed, bounded convex subset of a Banach space X and
T : U → U is completely continuous, then T has a fixed point in U.

3. Main results

Let ‖xt‖ = sup−τ≤θ≤0 |x(t+θ)| for t ∈ J . Lp(J, R) is the Lp spacewith the norm ‖x‖p =


∞

t0
|x(t)|pdt

1/p

for 1 ≤ p < ∞.

In this section, we always assume that f (t, xt) satisfies the following condition.
(H0) f (t, xt) is Lebesgue measurable with respect to t on [t0, ∞), and f (t, ϕ) is continuous with respect to ϕ on

C([−τ , 0], R).

By condition (H0), IVP (1) is equivalent to the following equation [1]:

x(t) =

φ(t0) +
1

0(α)

∫ t

t0
(t − s)α−1f (s, xs)ds, t > t0,

φ(t), t ∈ [t0 − τ , t0];
(2)

that is,

x(t) =


1

0(α)

∫ t

t0
(t − s)α−1


φ(t0)

0(1 − α)
(s − t0)−α

+ f (s, xs)


ds, t > t0,

φ(t), t ∈ [t0 − τ , t0].

Define the operator

Ax(t) =

φ(t0) +
1

0(α)

∫ t

t0
(t − s)α−1f (s, xs)ds, t > t0,

φ(t), t ∈ [t0 − τ , t0].
(3)

Obviously, x(t) is a solution of IVP (1) if it is a fixed point of the operator A.
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Lemma 3.1. Assume that f (t, xt) satisfies conditions (H0) and the following.

(H1) There is a constant γ1 > 0 such thatφ(t0) +
1

0(α)

∫ t

t0
(t − s)α−1f (s, xs)ds

 ≤ (t − t0)−γ1

for t ∈ J .

(H2) There exists a constant α1 ∈ (0, α) such that f ∈ L
1
α1 (J × C([−τ , 0], R), R).

Then IVP (1) has at least one solution x ∈ C([t0 − τ , ∞), R).

Proof. Define the set

S1 = {x|x ∈ C([t0 − τ , ∞), R), |x(t)| ≤ (t − t0)−γ1 for t ≥ t̃ > t0}.

It is easy to prove that S1 is a closed, bounded, and convex subset of R, where t̃ is a constant.
To prove that IVP (1) has a solution, we shall prove that the operator A has a fixed point in S1.
We first show that Amaps S1 in S1.
For t > t0, apply condition (H1) to the operator A. We have |Ax(t)| ≤ (t − t0)−γ1 ; then AS1 ⊂ S1.
Nextly, we show that A is continuous.
For any xm, x ∈ S1, m = 1, 2, . . . with limm→∞ |xm − x| = 0, by the continuity of f (t, xt), we have limm→∞ f (t, xmt ) =

f (t, xt) for t > t0.
Let ε > 0 be given, there exists a T > t0 such that t ≥ T implies that (t − t0)−γ1 < ε

2 .
Let ν =

α−1
1−α1

; then 1 + ν > 0, since α1 ∈ (0, α). For t0 < t ≤ T , we have

|(Axm)(t) − (Ax)(t)| ≤
1

0(α)

∫ t

t0
(t − s)α−1

|f (s, xms ) − f (s, xs)|ds

≤
1

0(α)

∫ t

t0
[(t − s)α−1

]
1

1−α1 ds
1−α1 [∫ t

t0
|f (s, xms ) − f (s, xs)|

1
α1 ds

]α1

≤
1

0(α)


1

1 + ν
(t − t0)1+ν

1−α1
[∫ T

t0
|f (s, xms ) − f (s, xs)|

1
α1 ds

]α1

≤
1

0(α)


1

1 + ν
(T − t0)1+ν

1−α1

(T − t0)α1 sup
t0≤s≤T

|f (s, xms ) − f (s, xs)|

→ 0 as m → ∞.

For t > T , we have

|(Axm)(t) − (Ax)(t)| =

 1
0(α)

∫ t

t0
(t − s)α−1f (s, xms )ds −

1
0(α)

∫ t

t0
(t − s)α−1f (s, xs)ds


≤ 2(t − t0)−γ1 ≤ ε.

Then, for t > t0, it is clear that

|(Axm)(t) − (Ax)(t)| → 0 as m → ∞,

which implies that A is continuous for t > t0.
Lastly, we prove that AS1 is equicontinuous.
Let ε > 0 be given. There is a T > t0 such that (t − t0)−γ1 < ε

2 for t > T . Let t1, t2 > t0 and t2 > t1.
If t1, t2 ∈ (t0, T ], similar to the proof of Theorem 1 in [37], by condition (H2) we have

|(Ax)(t2) − (Ax)(t1)| ≤

 1
0(α)

∫ t2

t0
(t2 − s)α−1f (s, xs)ds −

1
0(α)

∫ t1

t0
(t1 − s)α−1f (s, xs)ds


≤

1
0(α)

∫ t1

t0
[(t1 − s)α−1

− (t2 − s)α−1
]|f (s, xs)|ds +

1
0(α)

∫ t2

t1
(t2 − s)α−1

|f (s, xs)|ds

≤
1

0(α)

∫ t1

t0


(t1 − s)α−1

− (t2 − s)α−1

 1
1−α1

ds

1−α1∫ t1

t0
|f (s, xs)|

1
α1 ds

α1

+
1

0(α)

∫ t2

t1
(t2 − s)

α−1
1−α1 ds

1−α1∫ t2

t1
|f (s, xs)|

1
α1 ds

α1
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≤
1

0(α)

∫ t1

t0


(t1 − s)

α−1
1−α1 − (t2 − s)

α−1
1−α1


ds

1−α1∫ t1

t0
|f (s, xs)|

1
α1 ds

α1

+
1

0(α)

∫ t2

t1
(t2 − s)

α−1
1−α1 ds

1−α1∫ t2

t1
|f (s, xs)|

1
α1 ds

α1

≤
1

0(α)


1

1 + ν

1−α1
(t1 − t0)

α−1
1−α1

+1
+ (t2 − t1)

α−1
1−α1

+1

− (t2 − t0)
α−1
1−α1

+1

1−α1∫ T

t0
|f (s, xs)|

1
α1 ds

α1

+
1

0(α)


1

1 + ν

1−α1
(t2 − t1)

α−1
1−α1

+1

1−α1∫ T

t0
|f (s, xs)|

1
α1 ds

α1

≤
1

0(α)


1

1 + ν

1−α1∫ T

t0
|f (s, xs)|

1
α1 ds

α1

(t2 − t1)α−α1

→ 0 as t2 → t1. (4)

If t1, t2 > T , then we have

|(Ax)(t2) − (Ax)(t1)| ≤

 1
0(α)

∫ t2

t0
(t2 − s)α−1f (s, xs)ds −

1
0(α)

∫ t1

t0
(t1 − s)α−1f (s, xs)ds


≤ (t2 − t0)−γ1 + (t1 − t0)−γ1 ≤ ε. (5)

If t0 < t1 < T < t2, note that t2 → t1 implies that t2 → T and T → t1, and according to the above discussion we have

|(Ax)(t2) − (Ax)(t1)| ≤ |(Ax)(t2) − (Ax)(T )| + |(Ax)(T ) − (Ax)(t1)| → 0 as t2 → t1. (6)

Combining (4)–(6), we obtain that |(Ax)(t2) − (Ax)(t1)| → 0 as t2 → t1 for t1, t2 > t0. Then AS1 is equicontinuous.
Meanwhile, AS1 is relatively compact because AS1 ⊂ S1 is uniformly bounded. Thus A is completely continuous on S1. By

Theorem 2.6, the Schauder fixed point theorem, we deduce that A has a fixed point in S1 which is a solution of IVP (1). �

Theorem 3.2. Assume that conditions (H0)–(H2) hold; then the zero solution of (1) is attractive.

Proof. By Lemma 3.1, the solution of (1) exists and is in S1. All functions x(t) in S1 tend to 0 as t → ∞. Then the solution of
(1) tends to zero as t → ∞. �

Lemma 3.3. Assume that the function f (t, xt) satisfies conditions (H0) and the following.

(H3)

 φ(t0)
0(1−α)

(t − t0)−α
+ f (t, xt)

 ≤ l(t)‖xt‖ for any t ∈ J and x ∈ C([t0 − τ , ∞), R), where l ∈ C(J, R+) satisfies that

(i) there is a constant γ2 > 0 such that 1
0(α)

 t
t0
(t − s)α−1l(s)(s − t0)−γ2ds ≤ (t − t0)−γ2 for t ∈ J;

(ii) there is a constant α2 ∈ (0, α) such that l ∈ L
1
α2 (J, R+).

Then IVP (1) has at least one solution x ∈ C([t0 − τ , ∞), R).

Proof. Define the set

S2 = {x|x ∈ C([t0 − τ , ∞), R), ‖xt‖ ≤ (t − t0)−γ2 for t ≥ t̃ > t0}.

It is easy to show that S2 is a closed, bounded, and convex subset of R.
To prove that (1) has a solution, we shall prove that the operator A has a fixed point in S2.
We first show that A maps S2 in S2.
For t > t0, applying condition (H3), we have

|(Ax)(t)| =

φ(t0) +
1

0(α)

∫ t

t0
(t − s)α−1f (s, xs)ds


=

Iα


φ(t0)
0(1 − α)

(t − t0)−α


+

1
0(α)

∫ t

t0
(t − s)α−1f (s, xs)ds
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=

 1
0(α)

∫ t

t0
(t − s)α−1


φ(t0)

0(1 − α)
(s − t0)−α

+ f (s, xs)


ds


≤

1
0(α)

∫ t

t0
(t − s)α−1

 φ(t0)
0(1 − α)

(s − t0)−α
+ f (s, xs)

 ds
=

1
0(α)

∫ t

t0
(t − s)α−1l(s)‖xs‖ds

≤
1

0(α)

∫ t

t0
(t − s)α−1l(s)(s − t0)−γ2ds

≤ (t − t0)−γ2 , (7)

which implies that AS2 ⊂ S2.
Next, we show that AS2 is equicontinuous.
Let ε > 0 be given. Since limt→∞(t − t0)−γ2 = 0, there is a T ′ > t0 such that (t − t0)−γ2 < ε

2 for t > T ′. At the same time,
max{‖xt‖ : t0 ≤ t ≤ T ′

} exists by x ∈ C([t0 − τ , ∞), R). Let Φ = max{‖xt‖ : t0 ≤ t ≤ T ′
}, and let t1, t2 > t0 and t2 > t1.

If t1, t2 ∈ (t0, T ′
], we have

|(Ax)(t2) − (Ax)(t1)| =

 1
0(α)

∫ t1

t0
(t1 − s)α−1f (s, xs)ds −

1
0(α)

∫ t2

t0
(t2 − s)α−1f (s, xs)ds


≤

1
0(α)

∫ t1

t0
[(t1 − s)α−1

− (t2 − s)α−1
]|f (s, xs)|ds +

1
0(α)

∫ t2

t1
(t2 − s)α−1

|f (s, xs)|ds

≤
1

0(α)

∫ t1

t0
((t1 − s)α−1

− (t2 − s)α−1)


|φ(t0)|

0(1 − α)
(s − t0)−α

+ l(s)‖xs‖


ds

+
1

0(α)

∫ t2

t1
(t2 − s)α−1


|φ(t0)|

0(1 − α)
(s − t0)−α

+ l(s)‖xs‖


ds

=
2|φ(t0)|

0(α)0(1 − α)

∫ t2

t1
(t2 − s)α−1(s − t0)−αds

+
1

0(α)

∫ t1

t0
[(t1 − s)α−1

− (t2 − s)α−1
]l(s)‖xs‖ds +

1
0(α)

∫ t2

t1
(t2 − s)α−1l(s)‖xs‖ds

≤
2|φ(t0)|

0(α)0(1 − α)

∫ 1

t1−t0
t2−t0

(1 − s)α−1s−αds

+
Φ

0(α)

∫ t1

t0
[(t1 − s)α−1

− (t2 − s)α−1
]l(s)ds +

Φ

0(α)

∫ t2

t1
(t2 − s)α−1l(s)ds

≤
2|φ(t0)|

0(α)0(1 − α)

∫ 1

t1−t0
t2−t0

(1 − s)α−1s−αds

+
Φ

0(α)

∫ t1

t0

[
(t1 − s)α−1

− (t2 − s)α−1
] 1

1−α2
ds

1−α2

×

∫ t1

t0
(l(s))

1
α2 ds

α2

+
Φ

0(α)

∫ t2

t1
(t2 − s)

α−1
1−α2 ds

1−α2∫ t2

t1
(l(s))

1
α2 ds

α2

≤
2|φ(t0)|

0(α)0(1 − α)

∫ 1

t1−t0
t2−t0

(1 − s)α−1s−αds

+
Φ

0(α)


1

1 + ν ′

1−α2∫ T ′

t0
(l(s))

1
α2 ds

α2

(t2 − t1)α−α2 , (8)

where ν ′
=

α−1
1−α2

. Since
 1
0 (1 − s)α−1s−αds,

 T ′

t0
(l(s))

1
α2 ds, and Φ exist, from (8) we obtain

|(Ax)(t2) − (Ax)(t1)| → 0 as t2 → t1. (9)
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From condition (H3) it follows that

−φ(t0) −

∫ t

t0
(t − s)α−1l(s)‖xs‖ds ≤

∫ t

t0
(t − s)α−1f (s, xs)ds ≤ −φ(t0) +

∫ t

t0
(t − s)α−1l(s)‖xs‖ds.

If t1, t2 > T ′, we have

(Ax)(t2) − (Ax)(t1) =
1

0(α)

∫ t1

t0
(t1 − s)α−1f (s, xs)ds −

1
0(α)

∫ t2

t0
(t2 − s)α−1f (s, xs)ds

≤
1

0(α)

∫ t2

t0
(t2 − s)α−1l(s)‖xs‖ds +

1
0(α)

∫ t1

t0
(t1 − s)α−1l(s)‖xs‖ds

≤
1

0(α)

∫ t2

t0
(t2 − s)α−1l(s)(s − t0)−γ2ds +

1
0(α)

∫ t1

t0
(t1 − s)α−1l(s)(s − t0)−γ2ds

≤ (t2 − t0)−γ2 + (t1 − t0)−γ2

≤ ε. (10)

Similar to (10), we have

(Ax)(t2) − (Ax)(t1) ≥ −ε. (11)

Combining (10) and (11) leads to

|(Ax)(t2) − (Ax)(t1)| ≤ ε. (12)

If t0 < t1 < T ′ < t2,

|(Ax)(t2) − (Ax)(t1)| = |(Ax)(t2) − (Ax)(T )| + |(Ax)(T ) − (Ax)(t1)| → 0 as t2 → t1. (13)

Combining (9), (12) and (13), we obtain that |(Ax)(t2) − (Ax)(t1)| → 0 as t2 → t1 for t1, t2 > t0.
Then AS2 is equicontinuous.
The remaining part of the proof is similar to that of Lemma 3.1, so we omit it. �

Similar to Theorem 3.2, from Lemma 3.3 we have the following.

Theorem 3.4. Assume that conditions (H0) and (H3) hold. Then the solution of (1) is attractive.

Theorem 3.5. Assume that condition (H0) holds, and also assume the following.
(H4) There exists a constant β1 ∈ (α, 1) such that φ(t0)

0(1 − α)
(t − t0)−α

+ f (t, xt)
 ≤

0(1 + α − β1)

0(1 − β1)
(t − t0)−β1

holds for all t ∈ J .
Then IVP (1) has at least one solution x ∈ C([t0 − τ , ∞), R) which is attractive.

Proof. Define the set

S3 = {x|x ∈ C([t0 − τ , ∞), R), |x(t)| ≤ (t − t0)−γ3 for t ≥ t̃ > t0},

where γ3 = α − β1. S3 is a closed, bounded, and convex subset of R.
To prove that IVP (1) has a solution which is attractive, we only prove that A maps S3 in S3; the remaining part of the

proof is similar to that of Lemma 3.3 and Theorem 3.4.
For t > t0, applying condition (H4), we have

|(Ax)(t)| =

φ(t0) +
1

0(α)

∫ t

t0
(t − s)α−1f (s, xs)ds


≤

1
0(α)

∫ t

t0
(t − s)α−1

 φ(t0)
0(1 − α)

(s − t0)−α
+ f (s, xs)

 ds
≤

1
0(α)

∫ t

t0
(t − s)α−1 0(1 + α − β1)

0(1 − β1)
(s − t0)−β1ds

= (t − t0)α−β1

= (t − t0)−γ3 , (14)

which implies that AS3 ⊂ S3. �
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Theorem 3.6. Assume that condition (H0) holds, and assume the following.

(H5) There exist constants l1 > 0 and β2 > 1
1−α

such that φ(t0)
0(1 − α)

(t − t0)−α
+ f (t, xt)

 ≤ l1‖xt‖β2 .

Then IVP (1) has at least one solution x ∈ C([t0 − τ , ∞), R) which is attractive provided that

l10(1 − β2γ4)

0(1 + α − β2γ4)
≤ 1,

where
α

β2 − 1
< γ4 <

1
β2

.

Proof. From β2 > 1
1−α

, we have α
β2−1 < 1

β2
, which implies that γ4 exists. From γ4 < 1

β2
, we have that 0(1− β2γ4) > 0 and

0(1 + α − β2γ4) > 0.
Define the set

S4 = {x|x ∈ C([t0 − τ , ∞), R), ‖xt‖ ≤ (t − t0)−γ4 for t ≥ t̃ > t0}.

Similar to the proof of Theorem 3.5, we may deduce that A has a fixed point in S4 which is a solution of IVP (1), and this
solution is attractive. �

The attractive results of solutions of IVP (1) can be extended to the corresponding fractional neutral differential equations
CDα(x(t) − g(t, xt)) = f (t, xt), t > t0, 0 < α < 1,
x(t) = φ(t), t0 − τ ≤ t ≤ t0.

(15)

Under condition (H0), IVP (15) is equivalent to the following equation:

x(t) =

φ(t0) − g(t0, xt0) + g(t, xt) +
1

0(α)

∫ t

t0
(t − s)α−1f (s, xs)ds, t > t0,

φ(t), t0 − τ ≤ t ≤ t0.
(16)

Define the operator B as follows:

Bx(t) =

φ(t0) − g(t0, xt0) + g(t, xt) +
1

0(α)

∫ t

t0
(t − s)α−1f (s, xs)ds, t > t0,

φ(t), t0 − τ ≤ t ≤ t0.
(17)

For the sake of simplicity, in the following, we directly give the theorems of attractivity, and the proofs of these theorems
are similar to the corresponding ones discussed above.

Theorem 3.7. Assume that condition (H0) holds, and assume the following.

(H′

1) There is a constant γ1 > 0 such thatφ(t0) − g(t0, xt0) + g(t, xt) +
1

0(α)

∫ t

t0
(t − s)α−1f (s, xs)ds

 ≤ (t − t0)−γ1

for t ∈ J .

(H′

2) g is completely continuous and there exists a constant α1 ∈ (0, α) such that f ∈ L
1
α1 (J × C([−τ , 0], R), R).

Then IVP (15) has at least one solution x ∈ S1 which is attractive.

Theorem 3.8. Assume that condition (H0) and the following conditions are satisfied.

(H′

3)  k1
0(1 − α)

(φ(t0) − g(t0, xt0))(t − t0)−α
+ f (t, xt)

 ≤ l(t)‖xt‖

for any t ∈ J and x ∈ C([t0 − τ , ∞), R), where k1 ∈ R and l ∈ C(J, R+) satisfies that
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(i) there exist constants γ2, l2 > 0 such that
1

0(α)

∫ t

t0
(t − s)α−1l(s)(s − t0)−γ2ds ≤ l2(t − t0)−γ2 for t ∈ J;

(ii) there is a constant α2 ∈ (0, α) such that l ∈ L
1
α2 (J, R+).

(H6) g is completely continuous and there exist constants l3 > 0 and k2 ∈ R such thatk2(φ(t0) − g(t0, xt0)) + g(t, xt)
 ≤ l3‖xt‖.

Then IVP (15) has at least one solution x ∈ S2 which is attractive provided that

k1 + k2 = 1, and l2 + l3 ≤ 1.

Theorem 3.9. Assume that condition (H0) and the following conditions are satisfied.

(H′

4) There exist constants k3 ∈ R, β1 ∈ (α, 1) and l4 > 0 such that k3
0(1 − α)

(φ(t0) − g(t0, xt0))(t − t0)−α
+ f (t, xt)

 ≤
l40(1 + α − β1)

0(1 − β1)
(t − t0)−β1

hold for all t ∈ J .
(H7) g is completely continuous and there exist constants l5 > 0 and k4 ∈ R such thatk4(φ(t0) − g(t0, xt0)) + g(t, xt)

 ≤ l5(t − t0)α−β1 .

Then IVP (15) has at least one solution x ∈ S3 which is attractive provided that

k3 + k4 = 1, and l4 + l5 ≤ 1.

Theorem 3.10. Assume that condition (H0) and the following conditions are satisfied.

(H′

5) There exist constants k5 ∈ R, l6 > 0 and β2 > 1
1−α

such that k5
0(1 − α)

(φ(t0) − g(t0, xt0))(t − t0)−α
+ f (t, xt)

 ≤ l6‖xt‖β2 .

(H8) g is completely continuous and there exist constants l7 > 0 and k6 ∈ R such thatk6(φ(t0) − g(t0, xt0)) + g(t, xt)
 ≤ l7‖xt‖.

Then IVP (15) has at least one solution x ∈ S4 which is attractive provided that

k5 + k6 = 1, l7 +
l60(1 − β2γ4)

0(1 + α − β2γ4)
≤ 1,

where

α

β2 − 1
< γ4 <

1
β2

.

4. Examples

Example 4.1. Consider the fractional functional differential equation
CD

1
2 x(t) =

1
5
(t + 1)−

3
4 sin4


x

t −

π

2


, t > 0,

x(t) = sin t, t ∈


−

π

2
, 0

,

(18)

where f (t, xt) =
1
5 (t + 1)−

3
4 sin4 x t −

π
2


and x(0) = 0. It is obvious that condition (H0) holds.
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Fig. 1. Numerical solution of (18).

Letm(t) =
1
5 (t + 1)−

3
4 ; then |f (t, xt)| ≤ m(t). It follows that

1
0(α)

∫ t

t0
(t − s)α−1m(s)ds =

1
0
 1
2

 ∫ t

0
(t − s)−

1
2
1
5
(s + 1)−

3
4 ds

≤
1

50
 1
2

 ∫ t

0
(t − s)−

1
2 s−

3
4 ds

=
0
 1
4


50
 3
4

 t− 1
4 . (19)

Here, 1 = 0(1) < 0
 3
4


< 0

 1
2


=

√
π yields that

0
 1
4


0
 3
4

 =

√
2π

0
 3
4

2 <
√
2π < 5. (20)

Combining inequalities (19) and (20), it follows that

1
0
 1
2

 ∫ t

0
(t − s)−

1
2
1
5
(s + 1)−

3
4 ds < t−

1
4 .

Then  1
0
 1
2

 ∫ t

0
(t − s)−

1
2 f (s, xs)ds

 < t−
1
4 ,

which, together with x(0) = 0, implies that condition (H1) holds.
Let α1 =

1
4 ∈


0, 1

2


. We have∫

∞

t0
|f (t, xt)|

1
α1 dt ≤

∫
∞

t0
(m(t))

1
α1 dt =

∫
∞

0


1
5
(t + 1)−

3
4

4

dt =
1

1250
,

which implies that condition (H2) holds. Thus the solution of (18) is existent and attractive by Lemma 3.1 and Theorem 3.2.
The approximate solution is obtained by the Adams-type predictor–corrector method [38], which is displayed in Fig. 1 for
the step size h = 0.1. Fig. 1 numerically illustrates the attractive result of (18).

Example 4.2. Consider the fractional functional differential equationCD
1
2 x(t) =

1
2
(t + 1)−

7
4 x(t − 1), t > 0,

x(t) = t, t ∈ [−1, 0],
(21)

where f (t, xt) =
1
2 (t + 1)−

7
4 x(t − 1) and x(0) = 0. It is easy to show that condition (H0) holds.
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Fig. 2. Numerical solution of (21).

Let l(t) =
1
2 (t + 1)−

7
4 . Since x(0) = 0, we have

|f (t, xt)| = l(t)|x(t − 1)| ≤ l(t)‖xt‖.

For t ≥ 1, we have

1
0(α)

∫ t

t0
(t − s)α−1l(s)s−1ds =

1
0
 1
2

 ∫ t

0
(t − s)−

1
2
1
2
(s + 1)−

7
4 s−1ds

≤
1

0
 1
2

 ∫ t

0
(t − s)−

1
2
1
2
s−

7
4 −1ds

=
0

−

7
4


20

−

5
4

 t− 9
4 . (22)

Since 0
 1
4


=

−

3
4

 
−

7
4


0

−

7
4


and 0

 3
4


=

−

1
4

 
−

5
4


0

−

5
4


, together with (20) we have

0

−

7
4


20

−

5
4

 =
50
 1
4


420

 3
4

 ≤
25
42

< 1. (23)

Combining inequalities (22) and (23), it follows that

1
0
 1
2

 ∫ t

0
(t − s)−

1
2
1
2
(s + 1)−

7
4 s−1ds < t−

9
4 < t−1 for t ≥ 1,

which implies that condition (i) of (H3) holds.
Let α2 =

1
4 ∈


0, 1

2


. We have

∫
∞

t0
(l(t))

1
α2 dt =

∫
∞

0


1
2
(t + 1)−

7
4

4

dt =
1
96

, (24)

which implies that condition (ii) of (H3) holds. Thus the solution of (21) is existent and attractive by Lemma 3.3 and
Theorem 3.4. The numerical solution of (21) is displayed in Fig. 2 for the step size h = 0.1. Fig. 2 numerically illustrates
the attractive result of (21).
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