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1. INTRODUCTION 

The Bernstein polynomials for a bounded function f on [0, 11 are 
defined by 

Rul x) = i f(&)P,,k(X), 
k=O 

where p,Jx) = (;) x”( 1 -x)” k. It is well known that if f~ C[O, l] and 
w(6) (6 > 0) is the modulus of continuity of .f’ on [0, 11, then 

max oi r< I IE,,(,J x) - f(x)1 d 2 a~(n~“~). 

For a step function f of bounded variation with finitely many steps in 
every closed subinterval of (0, I), Hoeffding [7] showed that 

lim 
,1 - x JI fl ’ IR,(f;x)-f(x)1 d.x= ;J(f), 

0 J (1) 

where 

J(f) = J; x’j2( 1 - X)“I 1LIf(x)l. 

However, the critical condition that f be a step function makes (1) merely 
a pathological result. Nevertheless, the interesting limit is a deep result. 

The purpose of this note is to give an asymptotic limit of the L, norm for 
a class of approximation operators. The results are obtained for the Feller 
operator L,(f, X) (cf. Khan [lo]) which contains various well-known 
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operators (see also Hahn [6] and Levikson [ 121). Section 2 gives some 
preliminaries and the main results arc established in Section 3. Several 
special cases are discussed in Section 4. 

2. PRELIMINARIES 

The author (cf. Khan [IO] ) extended the well-known properties of 
Bernstein polynomials to the Feller operator L,,(,f; x). Many well-known 
approximation operators such as Bernstein, Szasz, Weierstrass, Baskakov, 
and MeyerKonig-Zeller, etc.. are all special cases of L,(.f, x). Let 
A’,, A’,,... be iid (independent and identically distributed) random variables 
with mean x and variance a-‘(.~) (a(s) > 0) where s is a continuous 
parameter taking values in an interval IC R! = ( - X, x8). In what follows 
a(s) is assumed to be continuous in .Y E 1. Let ,f be a bounded continuous 
function on R. Set S,, = A’, + ‘. + X,, and define the Feller operator by 

L,,(.f;.r)=Ef’(S,,,:n)= /_I f’ ; dF,,,(f), 
ii 

(2 
. I 

where E denotes expectation and F,,,,(r) is the distribution function of S,, 
depending on s. F,,,,(r) is assumed to be continuous in X. Various proper- 
ties of L,,(j; X) can be found in Khan [IO]. 

For p > 0 and .Y E I define 

Ly(j: x) = ( ’ “dF,,,,(f)= E l,f(s,,jn)-f’(x)i”. (3) 
a i 

Clearly, Dfi(.f; .u) is bounded, and it is continuous in .Y for F,,,,(t) is 
assumed to be continuous in .Y. Note that D,,(,f; X) = D:,(,/; X) is precisely 
the quantity dictating the properties of L,,(,f; .u). For example, 
suP\EI D,,(,/; .u) --$ 0 (as n + ;r_ ) * L,,(,f; .u) +.f(-Y) uniformly in .Y E I. 
Moreover. it is known that max,, i y k ta I-u.fl -VI -./l-r)1 c 
max <,& I z.,, ~,,(.L -u) G K(4n ’ ‘) where t~( 6) is the modulus of continuity of 
,f‘ on finite [u. h]. The object here is to find the asymptotic rate of the 
related L,, norm. 

Let C(s) be a distribution function on 1. The L, norm is defined by 

. 
1 i’ 

li~,,(./‘)ll ,’ = 0;t.j: .u) dG(-u) 
i 

, p > 0. (4) 
I 

However, for the sake of notational simplicity the results will be stated for 
the quantity liD,,(,f’)ll::. 
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Assuming that ,f’ has bounded continuous derivative f”(.u) #O V-u E I 
define 

I’,,(,/‘) = [ ~J”(.Y) I,f”(s)l” dG(r). (5) 
*I 

Note that G(s) can be replaced by improper distribution (I/G(X) = du) if 
the relevant integrals exist as Riemann or Lebesgue integrals. 

Under some conditions it is proved that nP” ~~D,,(.f’)~i; + C,, V,,(f) as 
12 --+ x where C,, is an absolute constant. Moreover, it is also shown that 

provided that f’ has continuous derivatives ,j” and .f”’ on [u, h] 5 I. These 
results are established in Section 3 and several special cases are illustrated 
in Section 4. 

3. THE MAIN RESULTS 

The asymptotic limit of the L,, norm is given by 

THEOREM 1. Let f‘(-u) he a hounded c.ontinuous junction on 1?4’ MYth houn- 
ded continuous dcrivutiw f’(.u) # 0 V.Y E R. Let X,, XL,... he iid rundom 
wzriahles ivith mean x and tlariancr o’(.u) wlhere .Y is (I continuous parameter 
ic?th ~~lurs in un interval I g Iw. Assume that E /X, / ‘+” < xl (r 2 2, 6 > 0) 
and 4J.u) = E JX, - .vlr is G-integrable M,here G is u distrihution,fun~tion on 
I. Let L,,(./; x), Dg(f;.u), llD,,(.f‘)ll,,, und V,,(f) he d&wd h.v (2), (3). (4) 
und ( 5 ). resprctiwly. Then 

ond 

lim n” ’ lI~,,(.f‘)lI; = C,, I,, O<p6r, (6) II * I 

COROLLARY I. Let ,f(.r) he u continuous ,f’unction on R kvith continuous 
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derivative j”(s) # 0 Vx in ,finite closed interval [a, h] E I. Then under the 
remuining conditions of‘ Theorem 1, 

V,>(j’) = ) op(x) I.f”(-u)lp dx. 
a 0 

COROLLARY 2. The conclusions (6) und (7) remuin vulid Vp > 0 iJ’ 
EIX,lP<‘z. und ~$,(x)=EIX,-xl JJ is G-integrable Vp > 0. In particular, 
(6) and (7) hold Vp >O if X, has densit.y g,(y) =exp(yQ(x) - h(Q(x))) 
relative to u o-finite measure p und d,,(x) is G-integrable. 

Proof: Letting A’,, = I:‘= , X, and i,, = 1~: ,(A’, - X) we have 

.f’(S,,ln) =.f(-xl +~.f’tv), (8) 

where q=x+8h (O-CO< l), h=<,,,‘n. Since E IX,/‘< x8, q=q, +ar x, and 
,f“(.u) is continuous with ,j”(.x) # 0 Vx, using Cramer’s theorem it follows 
from the central limit theorem that 

where 4 denotes convergence in distribution and Z has standard normal 
distribution. From (8) we have 

R,, = &(f’(S,Jn) -.f’(.~)) =-?&f”(v)- 

Since .f“ is bounded, we have 

Now since A’,, X, ,... are iid with mean x and E lX,l’+” < c(, 
(oE IX, -x ‘+ A < x ), it follows from a result of Jogdeo and Dhar- 
madhikari [S] that 
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where C is a constant depending only on Y + 6. Hence it follows from (10) 
that 

E IR,,l’+’ < MCE IX, -x/‘+“. (12) 

Thus E IRnlrt6 is bounded and [ jR,,I’, n 3 1 1 is uniformly integrable 
sequence of random variables. Consequently, { IZ,l r, n 3 1) (Z,, defined by 
(9)) is also uniformly integrable. Hence it follows from moment con- 
vergence theorem (cf. Loeve [ 13, p. 1861) that 

lim O<pdr. 
II + x 

Since 

E I R,,I p = n”* D,“(,f; x) = a”(x) /f’(x)i” E /Z,,lp. 

it follows that 

lim npi2 DR(.J x) = Crap(x) I.f’(-u)l/‘. (13) n - X’ 

Now we claim that a”(~) I,f’(x)l P is G-integrable. Since if”1 p is bounded, it 
is enough to show that a”(.~) is G-integrable. For Y 3 2 Jensen’s inequality 
gives 

C/~,(X) = E(IX, -xI~)“~ 3 (E IX, -xI’)~:* = ar(x) 3 o”(x), r 3 p. 

Since 4,(x) (r 3 2) is assumed to be G-integrable, hence a”(x) is G- 
integrable. Moreover, E IR,I p 6 MCE IX, - .ylp = MC~,(X) by (12) and 
since d,(x) (r 2 p) is G-integrable, it follows from (13) and the dominated 
convergence theorem that 

lim np * II ~,,U”)ll fi = C, ~,,(.r’, = C, j Q”(.u) I.f”(-\-)lp dG(x), Ocpdr. 
,I - 7 I 

This proves Theorem 1. Corollary 1 is obvious. Corollary 2 follows from 
Theorem 1 and the fact that the distribution with the density 8,(y) = 
exp( ye(x) - @Q(x))) admits moments of all orders (cf. Lehmann [ 11 I). 

We will now prove another asymptotic result under some additional 
conditions. Let X, , X,,... be iid random variables with mean x and variance 
o*(x). Assume that the wf (moment generating function) 
$(fI) = E exp(BX,) is finite, and let h,, = C;= ,(X,-x)/n. It is known (cf. 
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Chernoff 141, Khan 19, p. 5061) that for (5 > 0 there exists a number p < I 
such that 

0 Ih,,l 3 d ) d 2p”, o<p< 1. (14) 

We can now prove 

THEOREM 2. Let X, , XL ,... hc iid rundom wriahles \t.ith meun x E I C_ R 
and rariuncc a’(.~) u,ith finite twgf” $((I) = E exp(HX, ). Let ,f’ he a continuous 
fimction on ,R \r,ith cmtinuous derivativrs f” mu’ f’” on ,fikitc~ closed interval 
[o. h] s I. und let L,,(,f; .u) hc defined h?l (2). Then 

,/im n 1” 1 L,,(,fi x) - f’(r)1 du =; !]: aZ(.u) I.f”‘(.Y)l d.x. (15) 
1’ -<, 

Proof. Let S,, = C:’ , k., and ;,, = 1; , (A’, - .u). Clearly, EC,, = 0 and 
EC: = nrr’(.y ). Using Taylor expansion we have 

f’(S,,in)=,f’(\-)+: f”l\)+~,ff’(r)+r,,. 

where r,, = (~~%z’)(,f”‘(.r + Oh,,) -,f”‘(s)), 0 < 0 < I. h,, = (,,/n. Hence taking 
expectations we have 

L,,(,f; .u) =,f(-y) + F,f”‘(.y) + Er,,. (16) 

Note that ~(h,,) = (,f”‘(s + Oh,,) -.f”‘(s)) +,I’ 0 as h,, +I” 0 (as n + 1~ ). 
Hence given i: > 0 we can choose 6 > 0 such that Iv(h,, )I <c whenever 
I/I,,~ <d. This is possible by a proper choice of n for h,, = i,,/n +“.’ 0 as 
n + XL. Hence for I E [u, h] we have 

IEr,,l < E (r,,I = ““~“(‘1”) I( lh,,l < 6 I 
,n 

+ 
El,: Mh,,)l 

2n’ 
I(lh,,l ad), 

where I is the usual indicator function. Thus 

It follows from Cauchy--Schwarz inequality that 

E<:Z(Ih,,l 3d)<\/E 11”,,14P(lh,,l 38). 

(17) 

(18) 
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Since E li,,J” < Cn’E IX, - .vlJ by (I I). hence it follows from (14), (17) and 
(18) that 

Thus 

Hence (15) follows from ( 16) and ( 19) and Theorem 2 is proved. 
Theorem 2 remains valid if X,, A’,,... are iid with density g,( ~3) = 

cxp( )$3(.x) ~ h(Q(x))) relative to a o-finite measure ,D. This is due to the fact 
that S,(J) admits finite mgf (cf. Lehmann [ll]). We remark in passing 
that if ,f‘ and j”‘~ C[a, h], then it is easy to see that 

4. SPECIAL CASES 

First of all (6) and (7) specialized to p = I give 

lim & ~lD,,(,f’)lI, = a(s) I f”(s)1 dG(.v)), 
,,’ I 

and 

which are analogous to (I ). We will now identify the limits in (6) and (7) 
for various special operators. The main emphasis is on the limits. 

(i) Bemsrein Operator. Let ,f’~ C[O, l] with continuous derivative 
,f“(.Y) # 0 v.x E [O, I], and let A’,, Xz ,... be iid with P(A’, = 1 ) = 
1 - P(X, = 0) = s, 0 < x < 1. Then (2) defines Bernstein polynomials 
B,,(,J; .Y) and 

W.fi -y) = i l.f‘(~l~)-f‘(-~)l”p,,.,(.~~. lI~,,(.l‘)ll; = [’ D:(f; .Y) rk 
h 0 “0 
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where P,Jx) = (;) xk( 1 -x)” ‘. Since EX, =x and o’(x) = x( 1 -x), (6) 
gives 

lim up;’ IlD,(f‘)ll; = C, I,: xP”( 1 -x)P:* l,f’(x)l p d,r vp 3 0, 
I, - 1 

and 

(ii) Szasz Operator. Let X, , X2,... be iid with P(X, = k) = eP ‘xk/k!. 
k =O, 1, 2,..., x 30. Then (2) defines Szasz operator S,(f; x) and 

Since EX, = a’(x)=x, it follows from (6) that 

,,llr”, rP2 lID,(f‘)lI;= C,, joy xp;* I.f’(x)lP dG(x) Vp>O, 

and 

I.f'(-XII dx, 06u<h<m. 

(iii ) Weierstrass Operator. Let X,, X2 ,... be iid with density g,(y) = 
(2~) ~ “’ exp( - t( J’ - x)‘), ~ co < ?; x < x. Then (2) defines Weierstrass 
operator 

WJ.Lx)= 
1 

and 

oR(f,X)= 
J 

f--j: If(x+u)-f‘(x)l”exp 
T 

Since EX, =x and a’(x) = 1, it follows from (6) that 

lim npi2 llD,(.f)l~;= C, [’ I,f’(x)lP dG(x), 
,I - I ” I 
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and 

where [u. h] is a finite closed interval. In particular, 

where V(.f’) is the total variation of ,f’ on [a, h]. 

(iv) Gummu Oprrotor. Let X,, X, ,... be iid with density 
g,.(y)=s -‘r -’ ‘) J’ 2 0, .Y > 0. Then (2) defines Gamma operator 

Since o’(x) = ,Y’, hence (6) gives 

lim np,’ liD,,(f)~I; = C, 1” XI’ I.f“(x)l” dG(.u), O<u<h<-x. 
I, . I L i, 

In particular, 

lim nij.’ 1” Dnp(,f; x) dK = c,, [‘I .KP 1.f ‘(x)1” dx, O<a<h<‘x,p>o. II’ I (I ” L, 

(v) Baskakov Operator. Let X,, X, ,... be iid with P(X, = k) = py’. 
k =O, 1, 2 ,... (0~ p< 1, p+y= 1). If p= (I t-s) ’ (~20) then (2) defines 
Baskakov operator 

and (6) and (7) hold with a’(.~) = .Y( I + .Y). 

(vi) Feller Operator. This is an example where Theorem 1 holds for 
only restrictive p. Let X, , X,,... be iid random variables with common den- 
sity 
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In what follows F,‘,,,,( J,) denotes the distribution function of S,, = 
X, + ... + A’,, and K,,,,( ~3) is the resulting density function. Letting 

some routine calculations show that 

dF,,, , ( 1‘) n! ‘I g,,.,( j’) = -=- CJ, c Uh 71 h m,,(t7-k)! (n2+(~~-n.u)2)“+’ 
Then (2) defines the Feller operator L,,(,/: s). The random variable A’, has 
all the moments of order p d 3 ~ 6 (b > 0) but none of order p 3 3. Hence it 
follows from Theorem 5 of Brown 12, p. 6613 that the moment con- 
vergence used in the proof of Theorem 1 holds for p < 3 - rS but fails for 
p 3 3. Since EX, = .Y and o’(.Y) = 1, we obtain from (6) that 

’ ,!im III’ - p,,(,/‘)~I;; = C’,, 1’ ’ I l”(.t-11” dG(.x-), /'d 3 - 6, 
. I " / 

a result with the same limit as in Example (iii) except for restrictive p. 
Several other special cases can be obtained from (6 ) and (7). Finally, 

(15) can be specialized to various operators by identifying O(X) in the 
asymptotic limit. For example, in the case of Bernstein polynomials we 
have 
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