On generalized competition index of a primitive tournament

Min Soo Sim ${ }^{\text {a }}$, Hwa Kyung Kim ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Integrated Technology, Yonsei University, Incheon 406-840, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematics Education, Sangmyung University, Seoul 110-743, Republic of Korea

ARTICLE INFO

Article history:

Received 10 January 2010
Received in revised form 17 March 2011
Accepted 11 August 2011
Available online 10 September 2011

Keywords:
Competition index
m-competition index
Scrambling index
Tournament

Abstract

For positive integers k and m and a digraph D, the k-step m-competition graph $C_{m}^{k}(D)$ of D has the same set of vertices as D and an edge between vertices x and y if and only if there exist m distinct vertices $v_{1}, v_{2}, \ldots, v_{m}$ in D such that there exist directed walks of length k from x to v_{i} and from y to v_{i} for $1 \leq i \leq m$. The m-competition index of a primitive digraph D is the smallest positive integer k such that $C_{m}^{k}(D)$ is a complete graph. In this paper, we study the m-competition indices of primitive tournaments and provide an upper bound for the m-competition index of a primitive tournament.

© 2011 Elsevier B.V. All rights reserved.

1. Preliminaries and notations

In this paper, we follow the terminology and notation used in [1,3-6]. Let $D=(V, E)$ denote a digraph (directed graph) with vertex set $V=V(D)$, arc set $E=E(D)$, and order n. Loops are permitted but multiple arcs are not. A walk from x to y in a digraph D is a sequence of vertices $x, v_{1}, \ldots, v_{t}, y \in V(D)$ and a sequence of $\operatorname{arcs}\left(x, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{t}, y\right) \in E(D)$, where the vertices and arcs are not necessarily distinct. A closed walk is a walk from x to y where $x=y$. A cycle is a closed walk from x to y with distinct vertices except for $x=y$.

The length of a walk W is the number of arcs in W. The notation $x \xrightarrow{k} y$ is used to indicate that there exists a walk from x to y of length k. The notation $x \rightarrow y$ indicates that there exists an $\operatorname{arc}(x, y)$. The distance from vertex x to vertex y in D is the length of the shortest walk from x to y, and it is denoted by $d_{D}(x, y)$. An l-cycle is a cycle of length l.

A digraph D is called strongly connected if for each pair of vertices x and y in $V(D)$, there exists a walk from x to y. For a strongly connected digraph D, the index of imprimitivity of D is the greatest common divisor of the lengths of the cycles in D, and it is denoted by $l(D)$. If D is a trivial digraph of order $1, l(D)$ is undefined. For a strongly connected digraph D, D is primitive if $l(D)=1$.

If D is a primitive digraph of order n, there exists some positive integer k such that there exists a walk of length exactly k from each vertex x to each vertex y. The smallest such k is called the exponent of D, and it is denoted by $\exp (\mathrm{D})$. For a positive integer m where $1 \leq m \leq n$, we define the m-competition index of a primitive digraph D, denoted by $k_{m}(D)$, as the smallest positive integer k such that for every pair of vertices x and y, there exist m distinct vertices $v_{1}, v_{2}, \ldots, v_{m}$ such that $x \xrightarrow{k} v_{i}$ and $y \xrightarrow{k} v_{i}$ for $1 \leq i \leq m$ in D.

Kim [7] introduced the m-competition index as a generalization of the competition index presented in [6]. Akelbek and Kirkland [1,2] introduced the scrambling index of a primitive digraph D, denoted by $k(D)$. In the case of primitive digraphs, the definitions of the scrambling index and competition index are identical. Furthermore, we have $k(D)=k_{1}(D)$.

[^0]For a positive integer k and a primitive digraph D, we define the k-step outneighborhood of a vertex x as

$$
N^{+}\left(D^{k}: x\right)=\{v \in V(D) \mid x \xrightarrow{k} v\} .
$$

We define the k-step outneighborhood of a vertex set X as $N^{+}\left(D^{k}: X\right)=\cup_{x \in X} N^{+}\left(D^{k}: x\right)$. We define the k-step common outneighborhood of vertices x and y as $N^{+}\left(D^{k}: x, y\right)=N^{+}\left(D^{k}: x\right) \cap N^{+}\left(D^{k}: y\right)$.

We define the local m-competition index of vertices x and y as $k_{m}(D: x, y)=\min \left\{k:\left|N^{+}\left(D^{t}: x, y\right)\right| \geq m\right.$ where $\left.t \geq k\right\}$. We also define the local m-competition index of x as $k_{m}(D: x)=\max _{y \in V(D)}\left\{k_{m}(D: x, y)\right\}$. Then, we have

$$
k_{m}(D)=\max _{x \in V(D)} k_{m}(D: x)=\max _{x, y \in V(D)} k_{m}(D: x, y)
$$

From the definitions of $k_{m}(D), k_{m}(D: x)$, and $k_{m}(D: x, y)$, we have $k_{m}(D: x, y) \leq k_{m}(D: x) \leq k_{m}(D)$. On the basis of the definitions of the m-competition index and the exponent of D of order n, we can write $k_{m}(D) \leq \exp (D)$, where m is a positive integer with $1 \leq m \leq n$. Furthermore, we have $k_{n}(D)=\exp (D)$ and

$$
k(D)=k_{1}(D) \leq k_{2}(D) \leq \cdots \leq k_{n}(D)=\exp (D)
$$

This is a generalization of the scrambling index and exponent. There exist many researches about exponents and their generalization; for example, [9].

An n-tournament T_{n} is a digraph with n vertices in which every pair of vertices is joined by exactly one arc. Assigning an orientation to each edge of a complete graph results in a tournament.

Proposition 1 (Moon and Pullman [8]). An n-tournament T_{n} is primitive if and only if T_{n} is irreducible (strongly connected) and $n>3$.

Theorem 2 (Moon and Pullman [8]). Each vertex of a strongly connected tournament T_{n}, when $n \geq 3$, is contained in at least one simple cycle of each length between 3 and n, inclusive.

Some results about $k_{1}\left(T_{n}\right)$ and $k_{n}\left(T_{n}\right)$ have been presented in [6,8].
Theorem 3 (Kim [6]). For a primitive n-tournament T_{n} where $n \geq 5$, we have

$$
k_{1}\left(T_{n}\right) \leq 3
$$

and the bound is sharp for all $n \geq 5$.
Proposition 4 (Kim [6]). Let $n \geq 5$. For a positive integer k where $2 \leq k \leq 3$, there exists a primitive n-tournament T_{n} with $k_{1}\left(T_{n}\right)=k$.

Theorem 5 (Moon and Pullman [8]). For a primitive n-tournament T_{n}, we have

$$
k_{n}\left(T_{n}\right) \leq n+2
$$

Proposition 6 (Moon and Pullman [8]). Let $n \geq 6$. For a positive integer k where $3 \leq k \leq n+2$, there exists a primitive n-tournament T_{n} such that $k_{n}\left(T_{n}\right)=k$.

2. Main results

Some results on the generalized exponents of tournaments have been presented in [9]. In this paper, we study $k_{m}\left(T_{n}\right)$ for a strongly connected n-tournament T_{n} where $n \geq 5$ and $1 \leq m \leq n$ as another generalization of an exponent.
Definition 7. Suppose $A, B \subset V(D)$ and $x \in V(D)$. We define the following notation:
$A \Rightarrow B: a \rightarrow b$ for any $a \in A$ and for any $b \in B$.
$x \Rightarrow B: x \rightarrow b$ for any $b \in B$.
$A \Rightarrow x: a \rightarrow x$ for any $a \in A$.
Lemma 8. Let T_{n} be a primitive n-tournament and A be a nonempty subset of $V\left(T_{n}\right)$. Then, $\left|N^{+}\left(T_{n}: A\right)\right| \geq|A|$ and $\mid N^{+}\left(T_{n}\right.$: A) $\cap A|\geq|A|-1$.

Proof. If $A=V\left(T_{n}\right)$, then $N^{+}\left(T_{n}: A\right)=V\left(T_{n}\right)$. We have the result. Suppose $A \neq V\left(T_{n}\right)$. Then, $\left|N^{+}\left(T_{n}: A\right) \backslash A\right| \geq 1$ since T_{n} is strongly connected, and $\left|A \backslash N^{+}\left(T_{n}: A\right)\right| \leq 1$. Therefore, $\left|N^{+}\left(T_{n}: A\right)\right| \geq|A|$ and $\left|N^{+}\left(T_{n}: A\right) \cap A\right| \geq|A|-1$. This establishes the result.
Lemma 9. Let T_{n} be a primitive n-tournament where $n \geq 5$. Then,

$$
k_{2}\left(T_{n}\right) \leq 4
$$

Proof. Let x and y be two vertices in $V\left(T_{n}\right)$. Then, $N^{+}\left(T_{n}^{3}: x, y\right) \neq \phi$ by Theorem 3. If $\left|N^{+}\left(T_{n}^{3}: x, y\right)\right| \geq 2$, then we have $\left|N^{+}\left(T_{n}^{4}: x, y\right)\right| \geq 2$ by Lemma 8. Then, $k_{2}\left(T_{n}: x, y\right) \leq 4$. Suppose that $N^{+}\left(T_{n}^{3}: x, y\right)=\{u\}$. Then there exists a vertex v such that $u \rightarrow v$ since T_{n} is strongly connected. Denote $A=V\left(T_{n}\right) \backslash\{u, v\}$ and $B=N^{+}\left(T_{n}: v\right) \cap A$. In this notion, we have
$A \Rightarrow u, u \rightarrow v, v \Rightarrow B$, and $A \backslash B \Rightarrow v$. By Theorem 2, we also have

$$
A \Rightarrow u \xrightarrow{3} u \quad \text { and } \quad u \xrightarrow{4} u
$$

We will show that $v \xrightarrow{4} u$. Note that $|A| \geq 3$ and $B \neq \phi$ because T_{n} is strongly connected.
Case $1 .|B| \geq 3$.
There exists a walk of length 2 in B since T_{n} is a tournament. Let $a_{1} \xrightarrow{2} a_{2}$ be such walk where $a_{1}, a_{2} \in B$. Then, $v \rightarrow a_{1} \xrightarrow{2} a_{2} \rightarrow u$.
Case 2. $|B|=2$.
Let $B=\{a, b\}$ where $a \rightarrow b$. Then, $|A \backslash B| \geq 1$ since $|A| \geq 3$. If $A \backslash B \Rightarrow\{a, b\}$, then T_{n} is not strongly connected because there exists no walk from a to a vertex in $A \backslash B$. Therefore, it is impossible that $A \backslash B \Rightarrow\{a, b\}$.
Subcase 2.1. $N^{+}\left(T_{n}: b\right) \cap(A \backslash B)=\phi$.
There exists a vertex $c \in N^{+}\left(T_{n}: a\right) \cap(A \backslash B)$ such that $a \rightarrow c \rightarrow b$. Then, $v \rightarrow a \rightarrow c \rightarrow b \rightarrow u$.
Subcase 2.2. $N^{+}\left(T_{n}: b\right) \cap(A \backslash B) \neq \phi$.
There exists a vertex $c \in N^{+}\left(T_{n}: b\right) \cap(A \backslash B)$ such that $a \rightarrow b \rightarrow c$. Then, $v \rightarrow a \rightarrow b \rightarrow c \rightarrow u$.
Case 3. $|B|=1$.
Let $B=\{a\}$. Then, $|A \backslash B| \geq 2$ since $|A| \geq 3$. We also have $N^{+}\left(T_{n}: a\right) \cap(A \backslash B) \neq \phi$ since T_{n} is strongly connected.
Subcase 3.1. $\left|N^{+}\left(T_{n}: a\right) \cap(A \backslash B)\right| \geq 2$.
There exist two vertices $b, c \in \bar{N}^{+}\left(T_{n}: a\right) \cap(A \backslash B)$ such that $a \rightarrow b \rightarrow c$. Then, $v \rightarrow a \rightarrow b \rightarrow c \rightarrow u$.
Subcase 3.2. $\left|N^{+}\left(T_{n}: a\right) \cap(A \backslash B)\right|=1$.
Let $N^{+}\left(T_{n}: a\right) \cap(A \backslash B)=\{b\}$. It is impossible that $A \backslash\{a, b\} \Rightarrow b$ since T_{n} is strongly connected. Therefore, there exists a vertex $c \in A \backslash\{a, b\}$ such that $a \rightarrow b \rightarrow c$ because $A \backslash\{a, b\} \neq \phi$. Then, $v \rightarrow a \rightarrow b \rightarrow c \rightarrow u$.
In all cases, $v \xrightarrow{4} u$. Then, $u \in N^{+}\left(T_{n}^{4}: x, y\right)$. Therefore, $\{u, v\} \subset N^{+}\left(T_{n}^{4}: x, y\right)$ and $k_{2}\left(T_{n}: x, y\right) \leq 4$. This establishes the result.

Lemma 10. Let T_{n} be a primitive n-tournament where $n \geq 5$. Then,

$$
k_{3}\left(T_{n}\right) \leq 5
$$

Proof. Let x and y be two vertices in $V\left(T_{n}\right)$. By Lemma 9, we have $\left|N^{+}\left(T_{n}^{4}: x, y\right)\right| \geq 2$. If $\left|N^{+}\left(T_{n}^{4}: x, y\right)\right| \geq 3$, then we have $\left|N^{+}\left(T_{n}^{5}: x, y\right)\right| \geq 3$ by Lemma 8. Then, $k_{3}\left(T_{n}: x, y\right) \leq 5$. Suppose that $N^{+}\left(T_{n}^{4}: x, y\right)=\{u, v\}$. If $\left|N^{+}\left(T_{n}:\{u, v\}\right)\right| \geq 3$, then $k_{3}\left(T_{n}: x, y\right) \leq 5$. Suppose that $N^{+}\left(T_{n}:\{u, v\}\right)=\{v, w\}$ for a vertex w. Denote $A=V\left(T_{n}\right) \backslash\{u, v, w\}$ and $B=N^{+}\left(T_{n}: w\right) \cap A$. In this notion, we have $A \Rightarrow\{u, v\}, u \rightarrow v \rightarrow w, w \Rightarrow B$, and $A \backslash B \Rightarrow w$. By Theorem 2, we have

$$
A \Rightarrow u \xrightarrow{4} u, u \xrightarrow{5} u, \quad \text { and } \quad w \xrightarrow{3} w \Rightarrow B \Rightarrow u
$$

Note that $B \neq \phi$ because T_{n} is strongly connected.
Case 1. $n=5$.
Let $A=\{a, b\}$ where $a \rightarrow b$. Then, we have $w \rightarrow a$ since T_{n} is strongly connected.
Subcase 1.1. $w \rightarrow u$.
We have $v \xrightarrow{3} v \rightarrow w \rightarrow u$. Then, $u \in N^{+}\left(T_{n}^{5}: x, y\right)$ and $\{u, v, w\} \subset N^{+}\left(T_{n}^{5}: x, y\right)$. Therefore, $k_{3}\left(T_{n}: x, y\right) \leq 5$.
Subcase 1.2. $u \rightarrow w$.
There are two cases such as $w \rightarrow b$ or $b \rightarrow w$. In these cases, we can check $k_{3}\left(T_{n}\right)=5$.
Case 2. $n \geq 6$.
We have $|A| \geq 3$. We will show that $v \xrightarrow{5} u$.
Subcase 2.1. $|B| \geq 3$.
There exists a walk of length 2 in B since T_{n} is a tournament. Let $a_{1} \xrightarrow{2} a_{2}$ be such walk where $a_{1}, a_{2} \in B$. Then, $v \rightarrow w \rightarrow a_{1} \xrightarrow{2} a_{2} \rightarrow u$.
Subcase 2.2. $|B|=2$.
Let $B=\{a, b\}$ where $a \rightarrow b$. Then, $|A \backslash B| \geq 1$ since $|A| \geq 3$. If $A \backslash B \Rightarrow\{a, b\}$, then T_{n} is not strongly connected because there exists no walk from a to a vertex in $A \backslash B$. Therefore, it is impossible that $A \backslash B \Rightarrow\{a, b\}$.
Subcase 2.2.1. $N^{+}\left(T_{n}: b\right) \cap(A \backslash B)=\phi$.
There exists a vertex $c \in N^{+}\left(T_{n}: a\right) \cap(A \backslash B)$ such that $a \rightarrow c \rightarrow b$. Then, $v \rightarrow w \rightarrow a \rightarrow c \rightarrow b \rightarrow u$.
Subcase 2.2.2. $N^{+}\left(T_{n}: b\right) \cap(A \backslash B) \neq \phi$.
There exists a vertex $c \in N^{+}\left(T_{n}: b\right) \cap(A \backslash B)$ such that $a \rightarrow b \rightarrow c$. Then, $v \rightarrow w \rightarrow a \rightarrow b \rightarrow c \rightarrow u$.
Subcase 2.3. $|B|=1$.
Let $B=\{a\}$. Then, $|A \backslash B| \geq 2$ since $|A| \geq 3$. We have $N^{+}\left(T_{n}: a\right) \cap(A \backslash B) \neq \phi$ since T_{n} is strongly connected.
Subcase 2.3.1. $\left|N^{+}\left(T_{n}: a\right) \cap(A \backslash B)\right| \geq 2$.
There exist two vertices $b, c \in N^{+}\left(T_{n}: a\right) \cap(A \backslash B)$ such that $a \rightarrow b \rightarrow c$. Then, $v \rightarrow w \rightarrow a \rightarrow b \rightarrow c \rightarrow u$.

Subcase 2.3.2. $\left|N^{+}\left(T_{n}: a\right) \cap(A \backslash B)\right|=1$.
Let $N^{+}\left(T_{n}: a\right) \cap(A \backslash B)=\{b\}$. It is impossible that $A \backslash\{a, b\} \Rightarrow b$ since T_{n} is strongly connected. Therefore, there exists a vertex $c \in A \backslash\{a, b\}$ such that $a \rightarrow b \rightarrow c$ because $A \backslash\{a, b\} \neq \phi$. Then, $v \rightarrow w \rightarrow a \rightarrow b \rightarrow c \rightarrow u$.
If $n \geq 6$, then we have $v \xrightarrow{5} u$. Therefore, $u \in N^{+}\left(T_{n}^{5}: x, y\right)$ and $\{u, v, w\} \subset N^{+}\left(T_{n}^{5}: x, y\right)$. We have $k_{3}\left(T_{n}: x, y\right) \leq 5$. This establishes the result.

Lemma 11. Let T_{n} be a primitive n-tournament where $n \geq 5$ and m be a positive integer such that $3 \leq m \leq n-2$. If $k_{m}\left(T_{n}\right) \leq m+2$, then we have

$$
k_{m+1}\left(T_{n}\right) \leq m+3
$$

Proof. Suppose that there exists a primitive n-tournament T_{n} such that $k_{m}\left(T_{n}\right) \leq m+2$ and $k_{m+1}\left(T_{n}\right)>m+3$ for a positive integer m. Then, we can find two vertices x and y such that $\left|N^{+}\left(T_{n}^{m+3}: x, y\right)\right|<m+1$ and $\left|N^{+}\left(T_{n}^{m+2}: x, y\right)\right| \geq m$. Let $N^{+}\left(T_{n}^{m+2}: x, y\right)=V^{\prime}$. If $\left|V^{\prime}\right|>m$ or $\left|N^{+}\left(T_{n}: V^{\prime}\right)\right|>m$, then we have $\left|N^{+}\left(T_{n}^{m+3}: x, y\right)\right| \geq m+1$. Therefore, we have $\left|V^{\prime}\right|=m$ and $\left|N^{+}\left(T_{n}: V^{\prime}\right)\right|=m$. Because T_{n} is strongly connected, $N^{+}\left(T_{n}: V^{\prime}\right) \backslash V^{\prime} \neq \phi$. In addition, we have $\left|N^{+}\left(T_{n}: V^{\prime}\right) \cap V^{\prime}\right|=m-1$ by Lemma 8 . Then, there exists a vertex $u \in V^{\prime}$ such that $u \Rightarrow V^{\prime} \backslash\{u\}$. Furthermore, there exists a vertex $v(\neq u)$ such that $N^{+}\left(T_{n}: V^{\prime}\right) \backslash V^{\prime}=\{v\}$.

Denote $C=V^{\prime} \backslash\{u\}, C^{\prime}=\{x \mid x \rightarrow v\} \cap C, A=V\left(T_{n}\right) \backslash V^{\prime} \backslash\{v\}$, and $B=N^{+}\left(T_{n}: v\right) \cap A$. Note that $B \neq \phi$ and $C \neq \phi$ because T_{n} is strongly connected. In this notion, we have

$$
A \Rightarrow V^{\prime}, \quad u \Rightarrow C, \quad v \Rightarrow B, \quad A \backslash B \Rightarrow v, \quad \text { and } \quad C^{\prime} \Rightarrow v
$$

Let $b \in B$. For each vertex $c \in C$, we have

$$
c \xrightarrow{l} v \xrightarrow{1} b,
$$

where $l \leq m-1$ because $|C|=m-1$. Then, we have $d_{T_{n}}(c, b) \leq m$. In addition, we have $A \Rightarrow C^{\prime} \Rightarrow v \rightarrow b, u \Rightarrow C^{\prime} \Rightarrow$ $v \rightarrow b$, and $v \rightarrow b$. In all cases, we have $d_{T_{n}}(z, b) \leq m$ for each vertex $z \in V\left(T_{n}\right)$ because $m \geq 3$.

By Theorem 2, there exists a q-cycle containing b where $q=m+3-d_{T_{n}}(z, b) \geq 3$. Then, we have $z \xrightarrow{m+3} b$ for each vertex $z \in V\left(T_{n}\right)$. Therefore, we have $\{b, v\} \cup C \subset N^{+}\left(T_{n}^{m+3}: x, y\right)$. This is contrary to $\left|N^{+}\left(T_{n}^{m+3}: x, y\right)\right|<m+1$. This establishes the result.

Theorem 12. Let T_{n} be a primitive n-tournament where $n \geq 5$. For a positive integer m such that $1 \leq m \leq n$, we have

$$
k_{m}\left(T_{n}\right) \leq m+2,
$$

and the bound is sharp for all $n \geq 5$.
Proof. By Theorems 3 and 5, Lemmas 9-11, we have

$$
k_{m}\left(T_{n}\right) \leq m+2
$$

where $1 \leq m \leq n$. Consider an n-tournament $F=(V, E)$ for $n \geq 5$, as follows.

$$
\begin{aligned}
& V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \\
& E=\left\{\left(v_{i}, v_{i+1}\right) \mid 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{n}, v_{1}\right)\right\} \cup\left\{\left(v_{i}, v_{j}\right) \mid 2 \leq j+1<i \leq n\right\} .
\end{aligned}
$$

Because there exists an n-cycle, F is primitive. We have $N^{+}\left(F^{2}: v_{1}, v_{2}\right)=\phi$ and for a positive integer p such that $3 \leq p \leq n+2$, we have $N^{+}\left(F^{p}: v_{1}, v_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p-2}\right\}$. Therefore, we have $k_{m}(F) \geq m+2$ for $1 \leq m \leq n$. This establishes the result.

Example 13. The condition $n \geq 5$ in Theorem 12 is essential. Consider the strongly connected 4-tournament T_{4} whose adjacency matrix is given as

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Then, we have $k_{1}\left(T_{4}\right)=4, k_{2}\left(T_{4}\right)=6, k_{3}\left(T_{4}\right)=8$ and, $k_{4}\left(T_{4}\right)=9$. We have $k_{m}\left(T_{4}\right)>m+2$ for $m=1,2,3,4$.
Theorem 14. Let $n \geq 6$ and $1 \leq m \leq n$. For a positive integer k where $3 \leq k \leq m+2$, there exists a primitive n-tournament T_{n} such that $k_{m}\left(T_{n}\right)=k$.

Proof. If $m=1$ or $m=n$, this holds by Propositions 4 and 6 , respectively. Suppose $2 \leq m \leq n-1$ and $3 \leq k \leq m+2$. Let $p=n-3-m+k$.

Case 1. $p \geq 4$.
Consider an n-tournament F for $n \geq 6$ as follows.

$$
\begin{aligned}
& V(F)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \\
& E(F)=\left\{\left(v_{i+1}, v_{i}\right) \mid 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{1}, v_{n}\right)\right\} \cup\left\{\left(v_{i}, v_{j}\right) \mid p \leq j<i \leq n\right\} \cup\left\{\left(v_{i}, v_{j}\right) \mid 1 \leq i \leq p-1, i+2 \leq j \leq n\right\}
\end{aligned}
$$

We have $N^{+}\left(F^{2}: v_{p}, v_{p+1}\right)=\phi$. For $1 \leq x<y \leq n$ and $1 \leq i \leq p+1$, we have

$$
\begin{aligned}
& N^{+}\left(F^{i+2}: v_{p}, v_{p+1}\right)=\left\{v_{p+2-i}, v_{p+3-i}, \ldots, v_{n}\right\} \\
& \left|N^{+}\left(F^{i+2}: v_{x}, v_{y}\right)\right| \geq n-p+i-1
\end{aligned}
$$

Therefore, we have $k_{m}(F)=m+p+3-n=k$ because $n-m \leq p \leq n-1$.
Case 2. $p \leq 3$.
We have

$$
\{(k, m) \mid p \leq 3\}=\{(3, n-3),(3, n-2),(3, n-1),(4, n-2),(4, n-1),(5, n-1)\}
$$

We will find tournaments with this condition. Consider n-tournaments F_{1}, and F_{2} for $n \geq 6$, and F_{3} for $n \geq 7$ as follows.

$$
V\left(F_{1}\right)=V\left(F_{2}\right)=V\left(F_{3}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

and

$$
\begin{aligned}
E\left(F_{1}\right)= & \left\{\left(v_{i+1}, v_{i}\right) \mid 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{1}, v_{n}\right)\right\} \cup\left\{\left(v_{i}, v_{j}\right) \mid 3 \leq j<i \leq n\right\} \cup\left\{\left(v_{i}, v_{j}\right) \mid 1 \leq i \leq 2, i+2 \leq j \leq n\right\} \\
& \cup\left\{\left(v_{4}, v_{n}\right)\right\} \backslash\left\{\left(v_{n}, v_{4}\right)\right\}, \\
E\left(F_{2}\right)= & \left\{\left(v_{i+1}, v_{i}\right) \mid 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{1}, v_{n}\right)\right\} \cup\left\{\left(v_{i}, v_{j}\right) \mid 2 \leq j<i \leq n\right\} \cup\left\{\left(v_{i}, v_{j}\right) \mid i=1,3 \leq j \leq n\right\} \\
& \cup\left\{\left(v_{3}, v_{n}\right)\right\} \backslash\left\{\left(v_{n}, v_{3}\right)\right\}, \\
E\left(F_{3}\right)= & \left\{\left(v_{i}, v_{i+1}\right) \mid 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{n}, v_{1}\right)\right\} \cup\left\{\left(v_{i}, v_{j}\right) \mid 2 \leq j+1<i \leq n\right\} \cup\left\{\left(v_{2}, v_{n}\right)\right\} \backslash\left\{\left(v_{n}, v_{2}\right)\right\} .
\end{aligned}
$$

Subcase 2.1. $k_{m}\left(F_{1}\right)$.
We have

$$
\begin{aligned}
& N^{+}\left(F_{1}^{3}: v_{2}, v_{3}\right)=\left\{v_{3}, v_{4}, \ldots, v_{n}\right\}, \\
& N^{+}\left(F_{1}^{4}: v_{2}, v_{3}\right)=\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}
\end{aligned}
$$

For $1 \leq i<j \leq n$, we have $\left|N^{+}\left(F_{1}^{4}: v_{i}, v_{j}\right)\right| \geq n-1$. Therefore, we have $k_{n-1}\left(F_{1}\right)=4$.
Subcase 2.2. $k_{m}\left(F_{2}\right)$.
We have

$$
\begin{aligned}
& N^{+}\left(F_{2}^{2}: v_{2}, v_{4}\right)=\left\{v_{n}\right\}, \\
& N^{+}\left(F_{2}^{3}: v_{2}, v_{4}\right)=\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}
\end{aligned}
$$

For $1 \leq i<j \leq n$, we have $\left|N^{+}\left(F_{2}^{3}: v_{i}, v_{j}\right)\right| \geq n-1$. Therefore, we have $k_{n-3}\left(F_{2}\right)=k_{n-2}\left(F_{2}\right)=k_{n-1}\left(F_{2}\right)=3$.
Subcase 2.3. $k_{m}\left(F_{3}\right)$.
We have

$$
\begin{aligned}
& N^{+}\left(F_{3}^{3}: v_{1}, v_{3}\right) \subset\left\{v_{1}, v_{3}, v_{6}\right\}, \\
& N^{+}\left(F_{3}^{4}: v_{1}, v_{3}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-2}\right\},
\end{aligned}
$$

and $k_{n}\left(F_{3}\right)=5$. For $1 \leq i<j \leq n$, we have $\left|N^{+}\left(F_{3}^{4}: v_{i}, v_{j}\right)\right| \geq n-2$. Therefore, we have $k_{n-2}\left(F_{3}\right)=4$ and $k_{n-1}\left(F_{3}\right)=5$.
Subcase 2.4. $k_{m}\left(F_{4}\right)$.
Let F_{4} be 6-tournament whose adjacency matrix is given as

$$
\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right] .
$$

We have $k_{4}\left(F_{4}\right)=4$ and $k_{5}\left(F_{4}\right)=5$.
This establishes the result.

Example 15. Let F_{1}, F_{2}, F_{3}, and F_{4} be 5-tournaments whose adjacency matrices are respectively given as

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0
\end{array}\right],} \\
& {\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0
\end{array}\right] .}
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
& k_{2}\left(F_{3}\right)=k_{3}\left(F_{3}\right)=k_{4}\left(F_{3}\right)=3, \\
& k_{2}\left(F_{1}\right)=k_{3}\left(F_{2}\right)=k_{4}\left(F_{4}\right)=k_{5}\left(F_{4}\right)=4, \\
& k_{3}\left(F_{1}\right)=k_{4}\left(F_{2}\right)=5, \\
& k_{4}\left(F_{1}\right)=k_{5}\left(F_{2}\right)=6, \\
& k_{5}\left(F_{1}\right)=7 .
\end{aligned}
$$

By Proposition 4, there exists a 5-tournament whose 1-competition index is 3 . Let m be a positive integer such that $2 \leq m \leq 4$. For a positive integer k such that $3 \leq k \leq m+2$, there exists a 5-tournament T_{5} such that $k_{m}\left(T_{5}\right)=k$. Also, there exists a 5 -tournament whose 5 -competition index is 4,6 or 7 . However, we cannot find a 5 -tournament whose 5 -competition index is 3 or 5 .

3. Closing remark

Akelbek and Kirkland [1] provided the concept of the scrambling index of a primitive digraph. Kim [7] introduced a generalized competition index $k_{m}(D)$ as another generalization of the exponent $\exp (D)$ and scrambling index $k(D)$ for a primitive digraph D. In this paper, we study $k_{m}\left(T_{n}\right)$ as an extension of the results presented in $[6,8]$.

Acknowledgment

The authors would like to thank an anonymous referee for his or her outstanding job of suggesting changes.

References

[1] M. Akelbek, S. Kirkland, Coefficients of ergodicity and the scrambling index, Linear Algebra Appl. 430 (2009) 1111-1130.
[2] M. Akelbek, S. Kirkland, Primitive digraphs with the largest scrambling index, Linear Algebra Appl. 430 (2009) 1099-1110.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[4] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
[5] H.H. Cho, S.-R. Kim, Y. Nam, The m-step competition graph of a digraph, Discrete Appl. Math. 105 (2000) 115-127.
[6] H.K. Kim, Competition indices of tournaments, Bull. Korean Math. Soc. 45 (2008) 385-396.
[7] H.K. Kim, Generalized competition index of a primitive digraph, Linear Algebra Appl. 433 (2010) 72-79.
[8] J.W. Moon, N.J. Pullman, On the power of tournament matrices, J. Combin. Theory 3 (1967) 1-9.
[9] B. Zhou, J. Shen, On generalized exponents of tournaments, Taiwanese J. Math. 6 (2002) 565-572.

[^0]: * Corresponding author.

 E-mail addresses: digivice123@naver.com (M.S. Sim), indices@smu.ac.kr (H.K. Kim).

