Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On generalized competition index of a primitive tournament

Min Soo Sim^a, Hwa Kyung Kim^{b,*}

^a School of Integrated Technology, Yonsei University, Incheon 406-840, Republic of Korea
^b Department of Mathematics Education, Sangmyung University, Seoul 110-743, Republic of Korea

ARTICLE INFO

Article history: Received 10 January 2010 Received in revised form 17 March 2011 Accepted 11 August 2011 Available online 10 September 2011

Keywords: Competition index m-competition index Scrambling index Tournament

ABSTRACT

For positive integers k and m and a digraph D, the k-step m-competition graph $C_m^k(D)$ of D has the same set of vertices as D and an edge between vertices x and y if and only if there exist m distinct vertices v_1, v_2, \ldots, v_m in D such that there exist directed walks of length k from x to v_i and from y to v_i for $1 \le i \le m$. The m-competition index of a primitive digraph D is the smallest positive integer k such that $C_m^k(D)$ is a complete graph. In this paper, we study the m-competition indices of primitive tournaments and provide an upper bound for the m-competition index of a primitive digraph D.

© 2011 Elsevier B.V. All rights reserved.

1. Preliminaries and notations

In this paper, we follow the terminology and notation used in [1,3–6]. Let D = (V, E) denote a *digraph* (directed graph) with vertex set V = V(D), arc set E = E(D), and order n. Loops are permitted but multiple arcs are not. A *walk* from x to y in a digraph D is a sequence of vertices $x, v_1, \ldots, v_t, y \in V(D)$ and a sequence of arcs $(x, v_1), (v_1, v_2), \ldots, (v_t, y) \in E(D)$, where the vertices and arcs are not necessarily distinct. A *closed walk* is a walk from x to y where x = y. A *cycle* is a closed walk from x to y with distinct vertices except for x = y.

The *length of a walk W* is the number of arcs in *W*. The notation $x \xrightarrow{k} y$ is used to indicate that there exists a walk from *x* to *y* of length *k*. The notation $x \rightarrow y$ indicates that there exists an arc (x, y). The *distance* from vertex *x* to vertex *y* in *D* is the length of the shortest walk from *x* to *y*, and it is denoted by $d_D(x, y)$. An *l*-cycle is a cycle of length *l*.

A digraph *D* is called *strongly connected* if for each pair of vertices *x* and *y* in *V*(*D*), there exists a walk from *x* to *y*. For a strongly connected digraph *D*, the *index of imprimitivity* of *D* is the greatest common divisor of the lengths of the cycles in *D*, and it is denoted by l(D). If *D* is a trivial digraph of order 1, l(D) is undefined. For a strongly connected digraph *D*, *D* is primitive if l(D) = 1.

If *D* is a primitive digraph of order *n*, there exists some positive integer *k* such that there exists a walk of length exactly *k* from each vertex *x* to each vertex *y*. The smallest such *k* is called the *exponent* of *D*, and it is denoted by exp(D). For a positive integer *m* where $1 \le m \le n$, we define the *m*-competition index of a primitive digraph *D*, denoted by $k_m(D)$, as the smallest positive integer *k* such that for every pair of vertices *x* and *y*, there exist *m* distinct vertices v_1, v_2, \ldots, v_m such that $x \xrightarrow{k} v_i$ and $y \xrightarrow{k} v_i$ for $1 \le i \le m$ in *D*.

Kim [7] introduced the *m*-competition index as a generalization of the competition index presented in [6]. Akelbek and Kirkland [1,2] introduced the scrambling index of a primitive digraph *D*, denoted by k(D). In the case of primitive digraphs, the definitions of the scrambling index and competition index are identical. Furthermore, we have $k(D) = k_1(D)$.

* Corresponding author. E-mail addresses: digivice123@naver.com (M.S. Sim), indices@smu.ac.kr (H.K. Kim).

⁰⁰¹²⁻³⁶⁵X/ $\$ - see front matter $\$ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2011.08.012

For a positive integer k and a primitive digraph D, we define the k-step outneighborhood of a vertex x as

$$N^+(D^k:x) = \left\{ v \in V(D) | x \stackrel{k}{\longrightarrow} v \right\}.$$

We define the *k*-step outneighborhood of a vertex set X as $N^+(D^k : X) = \bigcup_{x \in X} N^+(D^k : x)$. We define the *k*-step common outneighborhood of vertices x and y as $N^+(D^k : x, y) = N^+(D^k : x) \cap N^+(D^k : y)$.

We define the *local m-competition index* of vertices x and y as $k_m(D : x, y) = \min\{k : |N^+(D^t : x, y)| \ge m$ where $t \ge k\}$. We also define the *local m-competition index* of x as $k_m(D : x) = \max_{y \in V(D)} \{k_m(D : x, y)\}$. Then, we have

$$k_m(D) = \max_{x \in V(D)} k_m(D:x) = \max_{x, y \in V(D)} k_m(D:x,y)$$

From the definitions of $k_m(D)$, $k_m(D : x)$, and $k_m(D : x, y)$, we have $k_m(D : x, y) \le k_m(D : x) \le k_m(D)$. On the basis of the definitions of the *m*-competition index and the exponent of *D* of order *n*, we can write $k_m(D) \le \exp(D)$, where *m* is a positive integer with $1 \le m \le n$. Furthermore, we have $k_n(D) = \exp(D)$ and

$$k(D) = k_1(D) \le k_2(D) \le \cdots \le k_n(D) = \exp(D).$$

This is a generalization of the scrambling index and exponent. There exist many researches about exponents and their generalization; for example, [9].

An *n*-tournament T_n is a digraph with *n* vertices in which every pair of vertices is joined by exactly one arc. Assigning an orientation to each edge of a complete graph results in a tournament.

Proposition 1 (Moon and Pullman [8]). An n-tournament T_n is primitive if and only if T_n is irreducible (strongly connected) and n > 3.

Theorem 2 (Moon and Pullman [8]). Each vertex of a strongly connected tournament T_n , when $n \ge 3$, is contained in at least one simple cycle of each length between 3 and n, inclusive.

Some results about $k_1(T_n)$ and $k_n(T_n)$ have been presented in [6,8].

Theorem 3 (*Kim* [6]). For a primitive *n*-tournament T_n where $n \ge 5$, we have

$$k_1(T_n) \leq 3$$

and the bound is sharp for all $n \ge 5$.

Proposition 4 (*Kim* [6]). Let $n \ge 5$. For a positive integer k where $2 \le k \le 3$, there exists a primitive n-tournament T_n with $k_1(T_n) = k$.

Theorem 5 (Moon and Pullman [8]). For a primitive n-tournament T_n , we have

$$k_n(T_n) \leq n+2.$$

Proposition 6 (Moon and Pullman [8]). Let $n \ge 6$. For a positive integer k where $3 \le k \le n + 2$, there exists a primitive n-tournament T_n such that $k_n(T_n) = k$.

2. Main results

Some results on the generalized exponents of tournaments have been presented in [9]. In this paper, we study $k_m(T_n)$ for a strongly connected *n*-tournament T_n where $n \ge 5$ and $1 \le m \le n$ as another generalization of an exponent.

Definition 7. Suppose $A, B \subset V(D)$ and $x \in V(D)$. We define the following notation:

- $A \Rightarrow B: a \rightarrow \hat{b}$ for any $a \in A$ and for any $b \in B$.
- $x \Rightarrow B: x \to b$ for any $b \in B$.

 $A \Rightarrow x: a \rightarrow x$ for any $a \in A$.

Lemma 8. Let T_n be a primitive n-tournament and A be a nonempty subset of $V(T_n)$. Then, $|N^+(T_n : A)| \ge |A|$ and $|N^+(T_n : A) \cap A| \ge |A| - 1$.

Proof. If $A = V(T_n)$, then $N^+(T_n : A) = V(T_n)$. We have the result. Suppose $A \neq V(T_n)$. Then, $|N^+(T_n : A) \setminus A| \ge 1$ since T_n is strongly connected, and $|A \setminus N^+(T_n : A)| \le 1$. Therefore, $|N^+(T_n : A)| \ge |A|$ and $|N^+(T_n : A) \cap A| \ge |A| - 1$. This establishes the result. \Box

Lemma 9. Let T_n be a primitive *n*-tournament where $n \ge 5$. Then,

 $k_2(T_n) \leq 4.$

Proof. Let *x* and *y* be two vertices in $V(T_n)$. Then, $N^+(T_n^3 : x, y) \neq \phi$ by Theorem 3. If $|N^+(T_n^3 : x, y)| \ge 2$, then we have $|N^+(T_n^4 : x, y)| \ge 2$ by Lemma 8. Then, $k_2(T_n : x, y) \le 4$. Suppose that $N^+(T_n^3 : x, y) = \{u\}$. Then there exists a vertex *v* such that $u \to v$ since T_n is strongly connected. Denote $A = V(T_n) \setminus \{u, v\}$ and $B = N^+(T_n : v) \cap A$. In this notion, we have

 $A \Rightarrow u, u \rightarrow v, v \Rightarrow B$, and $A \setminus B \Rightarrow v$. By Theorem 2, we also have

 $A \Rightarrow u \stackrel{3}{\rightarrow} u \text{ and } u \stackrel{4}{\rightarrow} u.$

We will show that $v \xrightarrow{4} u$. Note that $|A| \ge 3$ and $B \ne \phi$ because T_n is strongly connected. *Case* 1, |B| > 3.

There exists a walk of length 2 in *B* since T_n is a tournament. Let $a_1 \xrightarrow{2} a_2$ be such walk where $a_1, a_2 \in B$. Then, $v \to a_1 \xrightarrow{2} a_2 \to u$.

Case 2. |B| = 2.

Let $B = \{a, b\}$ where $a \to b$. Then, $|A \setminus B| \ge 1$ since $|A| \ge 3$. If $A \setminus B \Rightarrow \{a, b\}$, then T_n is not strongly connected because there exists no walk from a to a vertex in $A \setminus B$. Therefore, it is impossible that $A \setminus B \Rightarrow \{a, b\}$.

Subcase 2.1. $N^+(T_n : b) \cap (A \setminus B) = \phi$.

There exists a vertex $c \in N^+(T_n : a) \cap (A \setminus B)$ such that $a \to c \to b$. Then, $v \to a \to c \to b \to u$. Subcase 2.2. $N^+(T_n : b) \cap (A \setminus B) \neq \phi$.

There exists a vertex $c \in N^+(T_n : b) \cap (A \setminus B)$ such that $a \to b \to c$. Then, $v \to a \to b \to c \to u$. *Case* 3. |B| = 1.

Let $B = \{a\}$. Then, $|A \setminus B| \ge 2$ since $|A| \ge 3$. We also have $N^+(T_n : a) \cap (A \setminus B) \ne \phi$ since T_n is strongly connected. Subcase 3.1. $|N^+(T_n : a) \cap (A \setminus B)| \ge 2$.

There exist two vertices $b, c \in \overline{N^+}(T_n : a) \cap (A \setminus B)$ such that $a \to b \to c$. Then, $v \to a \to b \to c \to u$. Subcase 3.2. $|N^+(T_n : a) \cap (A \setminus B)| = 1$.

Let $N^+(T_n : a) \cap (A \setminus B) = \{b\}$. It is impossible that $A \setminus \{a, b\} \Rightarrow b$ since T_n is strongly connected. Therefore, there exists a vertex $c \in A \setminus \{a, b\}$ such that $a \to b \to c$ because $A \setminus \{a, b\} \neq \phi$. Then, $v \to a \to b \to c \to u$. In all cases, $v \xrightarrow{4} u$. Then, $u \in N^+(T_n^4 : x, y)$. Therefore, $\{u, v\} \subset N^+(T_n^4 : x, y)$ and $k_2(T_n : x, y) \leq 4$. This establishes the

In all cases, $v \to u$. Then, $u \in N^+(I_n^* : x, y)$. Therefore, $\{u, v\} \subset N^+(I_n^* : x, y)$ and $k_2(I_n : x, y) \leq 4$. This establishes the result. \Box

Lemma 10. Let T_n be a primitive n-tournament where $n \ge 5$. Then,

 $k_3(T_n) \leq 5.$

Proof. Let *x* and *y* be two vertices in $V(T_n)$. By Lemma 9, we have $|N^+(T_n^4 : x, y)| \ge 2$. If $|N^+(T_n^4 : x, y)| \ge 3$, then we have $|N^+(T_n^5 : x, y)| \ge 3$ by Lemma 8. Then, $k_3(T_n : x, y) \le 5$. Suppose that $N^+(T_n^4 : x, y) = \{u, v\}$. If $|N^+(T_n : \{u, v\})| \ge 3$, then $k_3(T_n : x, y) \le 5$. Suppose that $N^+(T_n^4 : x, y) = \{u, v\}$. If $|N^+(T_n : \{u, v\})| \ge 3$, then $k_3(T_n : x, y) \le 5$. Suppose that $N^+(T_n : \{u, v\}) = \{v, w\}$ for a vertex *w*. Denote $A = V(T_n) \setminus \{u, v, w\}$ and $B = N^+(T_n : w) \cap A$. In this notion, we have $A \Rightarrow \{u, v\}, u \rightarrow v \rightarrow w, w \Rightarrow B$, and $A \setminus B \Rightarrow w$. By Theorem 2, we have

 $A \Rightarrow u \stackrel{4}{\rightarrow} u, u \stackrel{5}{\rightarrow} u, \text{ and } w \stackrel{3}{\rightarrow} w \Rightarrow B \Rightarrow u.$

Note that $B \neq \phi$ because T_n is strongly connected.

Case 1. n = 5.

Let $A = \{a, b\}$ where $a \to b$. Then, we have $w \to a$ since T_n is strongly connected.

Subcase 1.1. $w \rightarrow u$.

We have $v \xrightarrow{3} v \to w \to u$. Then, $u \in N^+(T_n^5 : x, y)$ and $\{u, v, w\} \subset N^+(T_n^5 : x, y)$. Therefore, $k_3(T_n : x, y) \le 5$. Subcase 1.2. $u \to w$.

There are two cases such as $w \to b$ or $b \to w$. In these cases, we can check $k_3(T_n) = 5$.

Case 2. $n \ge 6$.

We have $|A| \ge 3$. We will show that $v \stackrel{5}{\rightarrow} u$.

Subcase 2.1. $|B| \ge 3$.

There exists a walk of length 2 in *B* since T_n is a tournament. Let $a_1 \xrightarrow{2} a_2$ be such walk where $a_1, a_2 \in B$. Then, $v \to w \to a_1 \xrightarrow{2} a_2 \to u$.

Subcase 2.2. |B| = 2.

Let $B = \{a, b\}$ where $a \to b$. Then, $|A \setminus B| \ge 1$ since $|A| \ge 3$. If $A \setminus B \Rightarrow \{a, b\}$, then T_n is not strongly connected because there exists no walk from a to a vertex in $A \setminus B$. Therefore, it is impossible that $A \setminus B \Rightarrow \{a, b\}$. Subcase 2.2.1. $N^+(T_n : b) \cap (A \setminus B) = \phi$.

There exists a vertex $c \in N^+(T_n : a) \cap (A \setminus B)$ such that $a \to c \to b$. Then, $v \to w \to a \to c \to b \to u$. Subcase 2.2.2. $N^+(T_n : b) \cap (A \setminus B) \neq \phi$.

There exists a vertex $c \in N^+(T_n : b) \cap (A \setminus B)$ such that $a \to b \to c$. Then, $v \to w \to a \to b \to c \to u$. Subcase 2.3. |B| = 1.

Let $B = \{a\}$. Then, $|A \setminus B| \ge 2$ since $|A| \ge 3$. We have $N^+(T_n : a) \cap (A \setminus B) \ne \phi$ since T_n is strongly connected. Subcase 2.3.1. $|N^+(T_n : a) \cap (A \setminus B)| \ge 2$.

There exist two vertices $b, c \in N^+(T_n : a) \cap (A \setminus B)$ such that $a \to b \to c$. Then, $v \to w \to a \to b \to c \to u$.

Subcase 2.3.2. $|N^+(T_n : a) \cap (A \setminus B)| = 1$.

Let $N^+(T_n : a) \cap (A \setminus B) = \{b\}$. It is impossible that $A \setminus \{a, b\} \Rightarrow b$ since T_n is strongly connected. Therefore, there exists a vertex $c \in A \setminus \{a, b\}$ such that $a \to b \to c$ because $A \setminus \{a, b\} \neq \phi$. Then, $v \to w \to a \to b \to c \to u$.

If $n \ge 6$, then we have $v \xrightarrow{5} u$. Therefore, $u \in N^+(T_n^5 : x, y)$ and $\{u, v, w\} \subset N^+(T_n^5 : x, y)$. We have $k_3(T_n : x, y) \le 5$. This establishes the result. \Box

Lemma 11. Let T_n be a primitive n-tournament where $n \ge 5$ and m be a positive integer such that $3 \le m \le n-2$. If $k_m(T_n) \le m+2$, then we have

 $k_{m+1}(T_n) \le m+3.$

Proof. Suppose that there exists a primitive *n*-tournament T_n such that $k_m(T_n) \le m + 2$ and $k_{m+1}(T_n) > m + 3$ for a positive integer *m*. Then, we can find two vertices *x* and *y* such that $|N^+(T_n^{m+3} : x, y)| < m + 1$ and $|N^+(T_n^{m+2} : x, y)| \ge m$. Let $N^+(T_n^{m+2} : x, y) = V'$. If |V'| > m or $|N^+(T_n : V')| > m$, then we have $|N^+(T_n^{m+3} : x, y)| \ge m + 1$. Therefore, we have |V'| = m and $|N^+(T_n : V')| = m$. Because T_n is strongly connected, $N^+(T_n : V') \setminus V' \ne \phi$. In addition, we have $|N^+(T_n : V') \cap V'| = m - 1$ by Lemma 8. Then, there exists a vertex $u \in V'$ such that $u \Rightarrow V' \setminus \{u\}$. Furthermore, there exists a vertex $v(\ne u)$ such that $N^+(T_n : V') \setminus V' = \{v\}$.

Denote $C = V' \setminus \{u\}$, $C' = \{x | x \to v\} \cap C$, $A = V(T_n) \setminus V' \setminus \{v\}$, and $B = N^+(T_n : v) \cap A$. Note that $B \neq \phi$ and $C \neq \phi$ because T_n is strongly connected. In this notion, we have

 $A \Rightarrow V', \quad u \Rightarrow C, \quad v \Rightarrow B, \quad A \setminus B \Rightarrow v, \text{ and } C' \Rightarrow v.$

Let $b \in B$. For each vertex $c \in C$, we have

$$c \xrightarrow{l} v \xrightarrow{1} b$$
,

where $l \le m - 1$ because |C| = m - 1. Then, we have $d_{T_n}(c, b) \le m$. In addition, we have $A \Rightarrow C' \Rightarrow v \rightarrow b$, $u \Rightarrow C' \Rightarrow v \rightarrow b$, and $v \rightarrow b$. In all cases, we have $d_{T_n}(z, b) \le m$ for each vertex $z \in V(T_n)$ because $m \ge 3$.

By Theorem 2, there exists a *q*-cycle containing *b* where $q = m + 3 - d_{T_n}(z, b) \ge 3$. Then, we have $z \xrightarrow{m+3} b$ for each vertex $z \in V(T_n)$. Therefore, we have $\{b, v\} \cup C \subset N^+(T_n^{m+3} : x, y)$. This is contrary to $|N^+(T_n^{m+3} : x, y)| < m + 1$. This establishes the result. \Box

Theorem 12. Let T_n be a primitive n-tournament where $n \ge 5$. For a positive integer m such that $1 \le m \le n$, we have

$$k_m(T_n) \leq m+2,$$

and the bound is sharp for all $n \ge 5$.

Proof. By Theorems 3 and 5, Lemmas 9–11, we have

 $k_m(T_n) \leq m+2$

where $1 \le m \le n$. Consider an *n*-tournament F = (V, E) for $n \ge 5$, as follows.

 $V = \{v_1, v_2, \dots, v_n\},\$ $E = \{(v_i, v_{i+1}) | 1 \le i \le n-1\} \cup \{(v_n, v_1)\} \cup \{(v_i, v_j) | 2 \le j+1 < i \le n\}.$

Because there exists an *n*-cycle, *F* is primitive. We have $N^+(F^2 : v_1, v_2) = \phi$ and for a positive integer *p* such that $3 \le p \le n+2$, we have $N^+(F^p : v_1, v_2) = \{v_1, v_2, \dots, v_{p-2}\}$. Therefore, we have $k_m(F) \ge m+2$ for $1 \le m \le n$. This establishes the result. \Box

Example 13. The condition $n \ge 5$ in Theorem 12 is essential. Consider the strongly connected 4-tournament T_4 whose adjacency matrix is given as

Γ0	0	1	1	
1	0	0	0	
0	1	0	0	·
L0	1	1	0_	

Then, we have $k_1(T_4) = 4$, $k_2(T_4) = 6$, $k_3(T_4) = 8$ and, $k_4(T_4) = 9$. We have $k_m(T_4) > m + 2$ for m = 1, 2, 3, 4.

Theorem 14. Let $n \ge 6$ and $1 \le m \le n$. For a positive integer k where $3 \le k \le m + 2$, there exists a primitive n-tournament T_n such that $k_m(T_n) = k$.

Proof. If m = 1 or m = n, this holds by Propositions 4 and 6, respectively. Suppose $2 \le m \le n - 1$ and $3 \le k \le m + 2$. Let p = n - 3 - m + k.

Case 1. $p \ge 4$.

Consider an *n*-tournament *F* for $n \ge 6$ as follows.

$$V(F) = \{v_1, v_2, \dots, v_n\},$$

$$E(F) = \{(v_{i+1}, v_i) | 1 \le i \le n-1\} \cup \{(v_1, v_n)\} \cup \{(v_i, v_j) | p \le j < i \le n\} \cup \{(v_i, v_j) | 1 \le i \le p-1, i+2 \le j \le n\}.$$

We have $N^+(F^2 : v_p, v_{p+1}) = \phi$. For $1 \le x < y \le n$ and $1 \le i \le p + 1$, we have

$$N^{+}(F^{i+2}:v_{p},v_{p+1}) = \{v_{p+2-i},v_{p+3-i},\ldots,v_{n}\},\$$

$$|N^{+}(F^{i+2}:v_{x},v_{y})| \ge n-p+i-1.$$

Therefore, we have $k_m(F) = m + p + 3 - n = k$ because $n - m \le p \le n - 1$.

Case 2. $p \leq 3$.

We have

$$\{(k, m) | p \le 3\} = \{(3, n-3), (3, n-2), (3, n-1), (4, n-2), (4, n-1), (5, n-1)\}.$$

We will find tournaments with this condition. Consider *n*-tournaments F_1 , and F_2 for $n \ge 6$, and F_3 for $n \ge 7$ as follows.

$$V(F_1) = V(F_2) = V(F_3) = \{v_1, v_2, \dots, v_n\},\$$

and

$$E(F_1) = \{(v_{i+1}, v_i) | 1 \le i \le n-1\} \cup \{(v_1, v_n)\} \cup \{(v_i, v_j) | 3 \le j < i \le n\} \cup \{(v_i, v_j) | 1 \le i \le 2, i+2 \le j \le n\} \cup \{(v_4, v_n)\} \setminus \{(v_n, v_4)\},$$

$$E(F_2) = \{(v_{i+1}, v_i) | 1 \le i \le n-1\} \cup \{(v_1, v_n)\} \cup \{(v_i, v_j) | 2 \le j < i \le n\} \cup \{(v_i, v_j) | i = 1, 3 \le j \le n\} \cup \{(v_3, v_n)\} \setminus \{(v_n, v_3)\},$$

$$E(F_3) = \{(v_i, v_{i+1}) | 1 \le i \le n-1\} \cup \{(v_n, v_1)\} \cup \{(v_i, v_j) | 2 \le j+1 < i \le n\} \cup \{(v_2, v_n)\} \setminus \{(v_n, v_2)\}.$$

Subcase 2.1. $k_m(F_1)$.

We have

 $N^+(F_1^3:v_2,v_3) = \{v_3,v_4,\ldots,v_n\},$ $N^+(F_1^4:v_2,v_3) = \{v_2,v_3,\ldots,v_n\}.$

For $1 \le i < j \le n$, we have $|N^+(F_1^4 : v_i, v_j)| \ge n - 1$. Therefore, we have $k_{n-1}(F_1) = 4$.

Subcase 2.2. $k_m(F_2)$.

We have

$$N^{+}(F_{2}^{2}:v_{2},v_{4}) = \{v_{n}\},$$

$$N^{+}(F_{2}^{3}:v_{2},v_{4}) = \{v_{2},v_{3},\ldots,v_{n}\}$$

For $1 \le i < j \le n$, we have $|N^+(F_2^3 : v_i, v_j)| \ge n - 1$. Therefore, we have $k_{n-3}(F_2) = k_{n-2}(F_2) = k_{n-1}(F_2) = 3$. Subcase 2.3. $k_m(F_3)$.

We have

$$\begin{split} N^+(F_3^3:v_1,v_3) &\subset \{v_1,v_3,v_6\},\\ N^+(F_3^4:v_1,v_3) &= \{v_1,v_2,\ldots,v_{n-2}\}, \end{split}$$

and $k_n(F_3) = 5$. For $1 \le i < j \le n$, we have $|N^+(F_3^4 : v_i, v_j)| \ge n - 2$. Therefore, we have $k_{n-2}(F_3) = 4$ and $k_{n-1}(F_3) = 5$. Subcase 2.4. $k_m(F_4)$.

Let F_4 be 6-tournament whose adjacency matrix is given as

□	0	0	0	0	ר1	
1	0	0	0	1	1	
1	1	0	0	1	1	
1	1	1	0	0	0	·
1	0	0	1	0	0	
$\lfloor 0 \rfloor$	0	0	1	1	0_	

We have $k_4(F_4) = 4$ and $k_5(F_4) = 5$. This establishes the result. \Box **Example 15.** Let *F*₁, *F*₂, *F*₃, and *F*₄ be 5-tournaments whose adjacency matrices are respectively given as

Γ0	1	0	0	0		Γ0	1	0	0	0	
0	0	1	0	0		0	0	1	1	0	
1	0	0	1	0	,	1	0	0	1	0	
1	1	0	0	1		1	0	0	0	1	
1	1	1	0	0_		1	1	1	0	0	
Γ0	1	0	0	0		Γ0	1	0	1	0	
0	0	1	1	1		0	0	1	0	1	
1	0	0	1	0	,	1	0	0	1	0	
1	0	0	0	1		0	1	0	0	1	
1	0	1	0	0		1	0	1	0	0	

Then, we have

 $\begin{aligned} k_2(F_3) &= k_3(F_3) = k_4(F_3) = 3, \\ k_2(F_1) &= k_3(F_2) = k_4(F_4) = k_5(F_4) = 4, \\ k_3(F_1) &= k_4(F_2) = 5, \\ k_4(F_1) &= k_5(F_2) = 6, \\ k_5(F_1) &= 7. \end{aligned}$

By Proposition 4, there exists a 5-tournament whose 1-competition index is 3. Let *m* be a positive integer such that $2 \le m \le 4$. For a positive integer *k* such that $3 \le k \le m + 2$, there exists a 5-tournament T_5 such that $k_m(T_5) = k$. Also, there exists a 5-tournament whose 5-competition index is 4, 6 or 7. However, we cannot find a 5-tournament whose 5-competition index is 3 or 5.

3. Closing remark

Akelbek and Kirkland [1] provided the concept of the scrambling index of a primitive digraph. Kim [7] introduced a generalized competition index $k_m(D)$ as another generalization of the exponent exp(D) and scrambling index k(D) for a primitive digraph D. In this paper, we study $k_m(T_n)$ as an extension of the results presented in [6,8].

Acknowledgment

The authors would like to thank an anonymous referee for his or her outstanding job of suggesting changes.

References

- [1] M. Akelbek, S. Kirkland, Coefficients of ergodicity and the scrambling index, Linear Algebra Appl. 430 (2009) 1111–1130.
- [2] M. Akelbek, S. Kirkland, Primitive digraphs with the largest scrambling index, Linear Algebra Appl. 430 (2009) 1099–1110.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
- [4] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
- [5] H.H. Cho, S.-R. Kim, Y. Nam, The *m*-step competition graph of a digraph, Discrete Appl. Math. 105 (2000) 115–127.
- [6] H.K. Kim, Competition indices of tournaments, Bull. Korean Math. Soc. 45 (2008) 385-396.
- [7] H.K. Kim, Generalized competition index of a primitive digraph, Linear Algebra Appl. 433 (2010) 72–79.
- [8] J.W. Moon, N.J. Pullman, On the power of tournament matrices, J. Combin. Theory 3 (1967) 1–9.
- [9] B. Zhou, J. Shen, On generalized exponents of tournaments, Taiwanese J. Math. 6 (2002) 565-572.