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a b s t r a c t

For positive integers k and m and a digraph D, the k-step m-competition graph Ck
m(D) of D

has the same set of vertices as D and an edge between vertices x and y if and only if there
existm distinct vertices v1, v2, . . . , vm in D such that there exist directed walks of length k
from x to vi and from y to vi for 1 ≤ i ≤ m. Them-competition index of a primitive digraph
D is the smallest positive integer k such that Ck

m(D) is a complete graph. In this paper, we
study them-competition indices of primitive tournaments and provide an upper bound for
them-competition index of a primitive tournament.

© 2011 Elsevier B.V. All rights reserved.

1. Preliminaries and notations

In this paper, we follow the terminology and notation used in [1,3–6]. Let D = (V , E) denote a digraph (directed graph)
with vertex set V = V (D), arc set E = E(D), and order n. Loops are permitted but multiple arcs are not. A walk from x to y
in a digraph D is a sequence of vertices x, v1, . . . , vt , y ∈ V (D) and a sequence of arcs (x, v1), (v1, v2), . . . , (vt , y) ∈ E(D),
where the vertices and arcs are not necessarily distinct. A closed walk is a walk from x to y where x = y. A cycle is a closed
walk from x to ywith distinct vertices except for x = y.

The length of a walk W is the number of arcs in W . The notation x
k

→ y is used to indicate that there exists a walk from
x to y of length k. The notation x → y indicates that there exists an arc (x, y). The distance from vertex x to vertex y in D is
the length of the shortest walk from x to y, and it is denoted by dD(x, y). An l-cycle is a cycle of length l.

A digraph D is called strongly connected if for each pair of vertices x and y in V (D), there exists a walk from x to y. For a
strongly connected digraph D, the index of imprimitivity of D is the greatest common divisor of the lengths of the cycles in
D, and it is denoted by l(D). If D is a trivial digraph of order 1, l(D) is undefined. For a strongly connected digraph D,D is
primitive if l(D) = 1.

If D is a primitive digraph of order n, there exists some positive integer k such that there exists a walk of length exactly k
from each vertex x to each vertex y. The smallest such k is called the exponent ofD, and it is denoted by exp(D). For a positive
integer m where 1 ≤ m ≤ n, we define the m-competition index of a primitive digraph D, denoted by km(D), as the smallest
positive integer k such that for every pair of vertices x and y, there existm distinct vertices v1, v2, . . . , vm such that x

k
−→ vi

and y
k

−→ vi for 1 ≤ i ≤ m in D.
Kim [7] introduced the m-competition index as a generalization of the competition index presented in [6]. Akelbek and

Kirkland [1,2] introduced the scrambling index of a primitive digraph D, denoted by k(D). In the case of primitive digraphs,
the definitions of the scrambling index and competition index are identical. Furthermore, we have k(D) = k1(D).
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For a positive integer k and a primitive digraph D, we define the k-step outneighborhood of a vertex x as

N+(Dk
: x) =


v ∈ V (D)|x

k
−→ v


.

We define the k-step outneighborhood of a vertex set X as N+(Dk
: X) = ∪x∈X N+(Dk

: x). We define the k-step common
outneighborhood of vertices x and y as N+(Dk

: x, y) = N+(Dk
: x) ∩ N+(Dk

: y).
We define the local m-competition index of vertices x and y as km(D : x, y) = min{k : |N+(Dt

: x, y)| ≥ m where t ≥ k}.
We also define the local m-competition index of x as km(D : x) = maxy∈V (D){km(D : x, y)}. Then, we have

km(D) = max
x∈V (D)

km(D : x) = max
x,y∈V (D)

km(D : x, y).

From the definitions of km(D), km(D : x), and km(D : x, y), we have km(D : x, y) ≤ km(D : x) ≤ km(D). On the basis of
the definitions of the m-competition index and the exponent of D of order n, we can write km(D) ≤ exp(D), where m is a
positive integer with 1 ≤ m ≤ n. Furthermore, we have kn(D) = exp(D) and

k(D) = k1(D) ≤ k2(D) ≤ · · · ≤ kn(D) = exp(D).

This is a generalization of the scrambling index and exponent. There exist many researches about exponents and their
generalization; for example, [9].

An n-tournament Tn is a digraph with n vertices in which every pair of vertices is joined by exactly one arc. Assigning an
orientation to each edge of a complete graph results in a tournament.

Proposition 1 (Moon and Pullman [8]). An n-tournament Tn is primitive if and only if Tn is irreducible (strongly connected) and
n > 3.

Theorem 2 (Moon and Pullman [8]). Each vertex of a strongly connected tournament Tn, when n ≥ 3, is contained in at least
one simple cycle of each length between 3 and n, inclusive.

Some results about k1(Tn) and kn(Tn) have been presented in [6,8].

Theorem 3 (Kim [6]). For a primitive n-tournament Tn where n ≥ 5, we have

k1(Tn) ≤ 3

and the bound is sharp for all n ≥ 5.

Proposition 4 (Kim [6]). Let n ≥ 5. For a positive integer k where 2 ≤ k ≤ 3, there exists a primitive n-tournament Tn with
k1(Tn) = k.

Theorem 5 (Moon and Pullman [8]). For a primitive n-tournament Tn, we have

kn(Tn) ≤ n + 2.

Proposition 6 (Moon and Pullman [8]). Let n ≥ 6. For a positive integer k where 3 ≤ k ≤ n + 2, there exists a primitive
n-tournament Tn such that kn(Tn) = k.

2. Main results

Some results on the generalized exponents of tournaments have been presented in [9]. In this paper, we study km(Tn) for
a strongly connected n-tournament Tn where n ≥ 5 and 1 ≤ m ≤ n as another generalization of an exponent.

Definition 7. Suppose A, B ⊂ V (D) and x ∈ V (D). We define the following notation:
A ⇒ B: a → b for any a ∈ A and for any b ∈ B.
x ⇒ B: x → b for any b ∈ B.
A ⇒ x: a → x for any a ∈ A.

Lemma 8. Let Tn be a primitive n-tournament and A be a nonempty subset of V (Tn). Then, |N+(Tn : A)| ≥ |A| and |N+(Tn :

A) ∩ A| ≥ |A| − 1.
Proof. If A = V (Tn), then N+(Tn : A) = V (Tn). We have the result. Suppose A ≠ V (Tn). Then, |N+(Tn : A) \A| ≥ 1 since Tn is
strongly connected, and |A \ N+(Tn : A)| ≤ 1. Therefore, |N+(Tn : A)| ≥ |A| and |N+(Tn : A) ∩ A| ≥ |A| − 1. This establishes
the result. �

Lemma 9. Let Tn be a primitive n-tournament where n ≥ 5. Then,

k2(Tn) ≤ 4.

Proof. Let x and y be two vertices in V (Tn). Then, N+(T 3
n : x, y) ≠ φ by Theorem 3. If |N+(T 3

n : x, y)| ≥ 2, then we have
|N+(T 4

n : x, y)| ≥ 2 by Lemma 8. Then, k2(Tn : x, y) ≤ 4. Suppose that N+(T 3
n : x, y) = {u}. Then there exists a vertex v

such that u → v since Tn is strongly connected. Denote A = V (Tn) \ {u, v} and B = N+(Tn : v) ∩ A. In this notion, we have
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A ⇒ u, u → v, v ⇒ B, and A \ B ⇒ v. By Theorem 2, we also have

A ⇒ u
3

→ u and u
4

→ u.

We will show that v
4

→ u. Note that |A| ≥ 3 and B ≠ φ because Tn is strongly connected.
Case 1. |B| ≥ 3.

There exists a walk of length 2 in B since Tn is a tournament. Let a1
2

→ a2 be such walk where a1, a2 ∈ B. Then,
v → a1

2
→ a2 → u.

Case 2. |B| = 2.
Let B = {a, b} where a → b. Then, |A \ B| ≥ 1 since |A| ≥ 3. If A \ B ⇒ {a, b}, then Tn is not strongly connected because

there exists no walk from a to a vertex in A \ B. Therefore, it is impossible that A \ B ⇒ {a, b}.
Subcase 2.1. N+(Tn : b) ∩ (A \ B) = φ.

There exists a vertex c ∈ N+(Tn : a) ∩ (A \ B) such that a → c → b. Then, v → a → c → b → u.
Subcase 2.2. N+(Tn : b) ∩ (A \ B) ≠ φ.

There exists a vertex c ∈ N+(Tn : b) ∩ (A \ B) such that a → b → c . Then, v → a → b → c → u.
Case 3. |B| = 1.

Let B = {a}. Then, |A \ B| ≥ 2 since |A| ≥ 3. We also have N+(Tn : a) ∩ (A \ B) ≠ φ since Tn is strongly connected.
Subcase 3.1. |N+(Tn : a) ∩ (A \ B)| ≥ 2.

There exist two vertices b, c ∈ N+(Tn : a) ∩ (A \ B) such that a → b → c. Then, v → a → b → c → u.
Subcase 3.2. |N+(Tn : a) ∩ (A \ B)| = 1.

Let N+(Tn : a) ∩ (A \ B) = {b}. It is impossible that A \ {a, b} ⇒ b since Tn is strongly connected. Therefore, there exists
a vertex c ∈ A \ {a, b} such that a → b → c because A \ {a, b} ≠ φ. Then, v → a → b → c → u.
In all cases, v

4
→ u. Then, u ∈ N+(T 4

n : x, y). Therefore, {u, v} ⊂ N+(T 4
n : x, y) and k2(Tn : x, y) ≤ 4. This establishes the

result. �

Lemma 10. Let Tn be a primitive n-tournament where n ≥ 5. Then,

k3(Tn) ≤ 5.

Proof. Let x and y be two vertices in V (Tn). By Lemma 9, we have |N+(T 4
n : x, y)| ≥ 2. If |N+(T 4

n : x, y)| ≥ 3, then we have
|N+(T 5

n : x, y)| ≥ 3 by Lemma 8. Then, k3(Tn : x, y) ≤ 5. Suppose that N+(T 4
n : x, y) = {u, v}. If |N+(Tn : {u, v})| ≥ 3, then

k3(Tn : x, y) ≤ 5. Suppose thatN+(Tn : {u, v}) = {v, w} for a vertexw. Denote A = V (Tn)\{u, v, w} and B = N+(Tn : w)∩A.
In this notion, we have A ⇒ {u, v}, u → v → w, w ⇒ B, and A \ B ⇒ w. By Theorem 2, we have

A ⇒ u
4

→ u, u
5

→ u, and w
3

→ w ⇒ B ⇒ u.

Note that B ≠ φ because Tn is strongly connected.
Case 1. n = 5.

Let A = {a, b} where a → b. Then, we have w → a since Tn is strongly connected.
Subcase 1.1. w → u.

We have v
3

→ v → w → u. Then, u ∈ N+(T 5
n : x, y) and {u, v, w} ⊂ N+(T 5

n : x, y). Therefore, k3(Tn : x, y) ≤ 5.
Subcase 1.2. u → w.

There are two cases such as w → b or b → w. In these cases, we can check k3(Tn) = 5.
Case 2. n ≥ 6.

We have |A| ≥ 3. We will show that v
5

→ u.
Subcase 2.1. |B| ≥ 3.

There exists a walk of length 2 in B since Tn is a tournament. Let a1
2

→ a2 be such walk where a1, a2 ∈ B. Then,
v → w → a1

2
→ a2 → u.

Subcase 2.2. |B| = 2.
Let B = {a, b} where a → b. Then, |A \ B| ≥ 1 since |A| ≥ 3. If A \ B ⇒ {a, b}, then Tn is not strongly connected because

there exists no walk from a to a vertex in A \ B. Therefore, it is impossible that A \ B ⇒ {a, b}.
Subcase 2.2.1. N+(Tn : b) ∩ (A \ B) = φ.

There exists a vertex c ∈ N+(Tn : a) ∩ (A \ B) such that a → c → b. Then, v → w → a → c → b → u.
Subcase 2.2.2. N+(Tn : b) ∩ (A \ B) ≠ φ.

There exists a vertex c ∈ N+(Tn : b) ∩ (A \ B) such that a → b → c . Then, v → w → a → b → c → u.
Subcase 2.3. |B| = 1.

Let B = {a}. Then, |A \ B| ≥ 2 since |A| ≥ 3. We have N+(Tn : a) ∩ (A \ B) ≠ φ since Tn is strongly connected.
Subcase 2.3.1. |N+(Tn : a) ∩ (A \ B)| ≥ 2.

There exist two vertices b, c ∈ N+(Tn : a) ∩ (A \ B) such that a → b → c. Then, v → w → a → b → c → u.
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Subcase 2.3.2. |N+(Tn : a) ∩ (A \ B)| = 1.
Let N+(Tn : a) ∩ (A \ B) = {b}. It is impossible that A \ {a, b} ⇒ b since Tn is strongly connected. Therefore, there exists

a vertex c ∈ A \ {a, b} such that a → b → c because A \ {a, b} ≠ φ. Then, v → w → a → b → c → u.

If n ≥ 6, then we have v
5

→ u. Therefore, u ∈ N+(T 5
n : x, y) and {u, v, w} ⊂ N+(T 5

n : x, y). We have k3(Tn : x, y) ≤ 5.
This establishes the result. �

Lemma 11. Let Tn be a primitive n-tournament where n ≥ 5 and m be a positive integer such that 3 ≤ m ≤ n − 2. If
km(Tn) ≤ m + 2, then we have

km+1(Tn) ≤ m + 3.

Proof. Suppose that there exists a primitive n-tournament Tn such that km(Tn) ≤ m + 2 and km+1(Tn) > m + 3 for a
positive integer m. Then, we can find two vertices x and y such that |N+(Tm+3

n : x, y)| < m + 1 and |N+(Tm+2
n : x, y)| ≥ m.

Let N+(Tm+2
n : x, y) = V ′. If |V ′

| > m or |N+(Tn : V ′)| > m, then we have |N+(Tm+3
n : x, y)| ≥ m + 1. Therefore, we

have |V ′
| = m and |N+(Tn : V ′)| = m. Because Tn is strongly connected, N+(Tn : V ′) \ V ′

≠ φ. In addition, we have
|N+(Tn : V ′)∩V ′

| = m−1 by Lemma 8. Then, there exists a vertex u ∈ V ′ such that u ⇒ V ′
\ {u}. Furthermore, there exists

a vertex v(≠ u) such that N+(Tn : V ′) \ V ′
= {v}.

Denote C = V ′
\ {u}, C ′

= {x|x → v} ∩ C, A = V (Tn) \ V ′
\ {v}, and B = N+(Tn : v) ∩ A. Note that B ≠ φ and C ≠ φ

because Tn is strongly connected. In this notion, we have

A ⇒ V ′, u ⇒ C, v ⇒ B, A \ B ⇒ v, and C ′
⇒ v.

Let b ∈ B. For each vertex c ∈ C , we have

c
l

→ v
1

→ b,

where l ≤ m − 1 because |C | = m − 1. Then, we have dTn(c, b) ≤ m. In addition, we have A ⇒ C ′
⇒ v → b, u ⇒ C ′

⇒

v → b, and v → b. In all cases, we have dTn(z, b) ≤ m for each vertex z ∈ V (Tn) because m ≥ 3.

By Theorem 2, there exists a q-cycle containing b where q = m + 3 − dTn(z, b) ≥ 3. Then, we have z
m+3
−→ b for each

vertex z ∈ V (Tn). Therefore, we have {b, v} ∪ C ⊂ N+(Tm+3
n : x, y). This is contrary to |N+(Tm+3

n : x, y)| < m + 1. This
establishes the result. �

Theorem 12. Let Tn be a primitive n-tournament where n ≥ 5. For a positive integer m such that 1 ≤ m ≤ n, we have

km(Tn) ≤ m + 2,

and the bound is sharp for all n ≥ 5.

Proof. By Theorems 3 and 5, Lemmas 9–11, we have

km(Tn) ≤ m + 2

where 1 ≤ m ≤ n. Consider an n-tournament F = (V , E) for n ≥ 5, as follows.

V = {v1, v2, . . . , vn},

E = {(vi, vi+1)|1 ≤ i ≤ n − 1} ∪ {(vn, v1)} ∪ {(vi, vj)|2 ≤ j + 1 < i ≤ n}.

Because there exists an n-cycle, F is primitive. We have N+(F 2
: v1, v2) = φ and for a positive integer p such that

3 ≤ p ≤ n + 2, we have N+(F p
: v1, v2) = {v1, v2, . . . , vp−2}. Therefore, we have km(F) ≥ m + 2 for 1 ≤ m ≤ n.

This establishes the result. �

Example 13. The condition n ≥ 5 in Theorem 12 is essential. Consider the strongly connected 4-tournament T4 whose
adjacency matrix is given as0 0 1 1

1 0 0 0
0 1 0 0
0 1 1 0

 .

Then, we have k1(T4) = 4, k2(T4) = 6, k3(T4) = 8 and, k4(T4) = 9. We have km(T4) > m + 2 form = 1, 2, 3, 4.

Theorem 14. Let n ≥ 6 and 1 ≤ m ≤ n. For a positive integer k where 3 ≤ k ≤ m + 2, there exists a primitive n-tournament
Tn such that km(Tn) = k.

Proof. Ifm = 1 orm = n, this holds by Propositions 4 and 6, respectively. Suppose 2 ≤ m ≤ n − 1 and 3 ≤ k ≤ m + 2. Let
p = n − 3 − m + k.
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Case 1. p ≥ 4.
Consider an n-tournament F for n ≥ 6 as follows.

V (F) = {v1, v2, . . . , vn},

E(F) = {(vi+1, vi)|1 ≤ i ≤ n − 1} ∪ {(v1, vn)} ∪ {(vi, vj)|p ≤ j < i ≤ n} ∪ {(vi, vj)|1 ≤ i ≤ p − 1, i + 2 ≤ j ≤ n}.

We have N+(F 2
: vp, vp+1) = φ. For 1 ≤ x < y ≤ n and 1 ≤ i ≤ p + 1, we have

N+(F i+2
: vp, vp+1) = {vp+2−i, vp+3−i, . . . , vn},

|N+(F i+2
: vx, vy)| ≥ n − p + i − 1.

Therefore, we have km(F) = m + p + 3 − n = k because n − m ≤ p ≤ n − 1.

Case 2. p ≤ 3.
We have

{(k,m)|p ≤ 3} = {(3, n − 3), (3, n − 2), (3, n − 1), (4, n − 2), (4, n − 1), (5, n − 1)}.

We will find tournaments with this condition. Consider n-tournaments F1, and F2 for n ≥ 6, and F3 for n ≥ 7 as follows.

V (F1) = V (F2) = V (F3) = {v1, v2, . . . , vn},

and

E(F1) = {(vi+1, vi)|1 ≤ i ≤ n − 1} ∪ {(v1, vn)} ∪ {(vi, vj)|3 ≤ j < i ≤ n} ∪ {(vi, vj)|1 ≤ i ≤ 2, i + 2 ≤ j ≤ n}
∪{(v4, vn)} \ {(vn, v4)},

E(F2) = {(vi+1, vi)|1 ≤ i ≤ n − 1} ∪ {(v1, vn)} ∪ {(vi, vj)|2 ≤ j < i ≤ n} ∪ {(vi, vj)|i = 1, 3 ≤ j ≤ n}
∪{(v3, vn)} \ {(vn, v3)},

E(F3) = {(vi, vi+1)|1 ≤ i ≤ n − 1} ∪ {(vn, v1)} ∪ {(vi, vj)|2 ≤ j + 1 < i ≤ n} ∪ {(v2, vn)} \ {(vn, v2)}.

Subcase 2.1. km(F1).
We have

N+(F 3
1 : v2, v3) = {v3, v4, . . . , vn},

N+(F 4
1 : v2, v3) = {v2, v3, . . . , vn}.

For 1 ≤ i < j ≤ n, we have |N+(F 4
1 : vi, vj)| ≥ n − 1. Therefore, we have kn−1(F1) = 4.

Subcase 2.2. km(F2).
We have

N+(F 2
2 : v2, v4) = {vn},

N+(F 3
2 : v2, v4) = {v2, v3, . . . , vn}.

For 1 ≤ i < j ≤ n, we have |N+(F 3
2 : vi, vj)| ≥ n − 1. Therefore, we have kn−3(F2) = kn−2(F2) = kn−1(F2) = 3.

Subcase 2.3. km(F3).
We have

N+(F 3
3 : v1, v3) ⊂ {v1, v3, v6},

N+(F 4
3 : v1, v3) = {v1, v2, . . . , vn−2},

and kn(F3) = 5. For 1 ≤ i < j ≤ n, we have |N+(F 4
3 : vi, vj)| ≥ n − 2. Therefore, we have kn−2(F3) = 4 and kn−1(F3) = 5.

Subcase 2.4. km(F4).
Let F4 be 6-tournament whose adjacency matrix is given as

0 0 0 0 0 1
1 0 0 0 1 1
1 1 0 0 1 1
1 1 1 0 0 0
1 0 0 1 0 0
0 0 0 1 1 0

 .

We have k4(F4) = 4 and k5(F4) = 5.
This establishes the result. �
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Example 15. Let F1, F2, F3, and F4 be 5-tournaments whose adjacency matrices are respectively given as
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
1 1 0 0 1
1 1 1 0 0

 ,


0 1 0 0 0
0 0 1 1 0
1 0 0 1 0
1 0 0 0 1
1 1 1 0 0

 ,


0 1 0 0 0
0 0 1 1 1
1 0 0 1 0
1 0 0 0 1
1 0 1 0 0

 ,


0 1 0 1 0
0 0 1 0 1
1 0 0 1 0
0 1 0 0 1
1 0 1 0 0

 .

Then, we have

k2(F3) = k3(F3) = k4(F3) = 3,
k2(F1) = k3(F2) = k4(F4) = k5(F4) = 4,
k3(F1) = k4(F2) = 5,
k4(F1) = k5(F2) = 6,
k5(F1) = 7.

By Proposition 4, there exists a 5-tournament whose 1-competition index is 3. Let m be a positive integer such that
2 ≤ m ≤ 4. For a positive integer k such that 3 ≤ k ≤ m + 2, there exists a 5-tournament T5 such that km(T5) = k.
Also, there exists a 5-tournament whose 5-competition index is 4, 6 or 7. However, we cannot find a 5-tournament whose
5-competition index is 3 or 5.

3. Closing remark

Akelbek and Kirkland [1] provided the concept of the scrambling index of a primitive digraph. Kim [7] introduced a
generalized competition index km(D) as another generalization of the exponent exp(D) and scrambling index k(D) for a
primitive digraph D. In this paper, we study km(Tn) as an extension of the results presented in [6,8].
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