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1. Preliminaries and notations

In this paper, we follow the terminology and notation used in [1,3-6]. Let D = (V, E) denote a digraph (directed graph)
with vertex set V = V(D), arc set E = E(D), and order n. Loops are permitted but multiple arcs are not. A walk from x to y
in a digraph D is a sequence of vertices x, vy, ..., v,y € V(D) and a sequence of arcs (X, v1), (vq, v2), ..., (v:,y) € E(D),
where the vertices and arcs are not necessarily distinct. A closed walk is a walk from x to y where x = y. A cycle is a closed
walk from x to y with distinct vertices except for x = y.

The length of a walk W is the number of arcs in W. The notation x £ y is used to indicate that there exists a walk from
x to y of length k. The notation x — y indicates that there exists an arc (x, ¥). The distance from vertex x to vertex y in D is
the length of the shortest walk from x to y, and it is denoted by dp(x, y). An I-cycle is a cycle of length I.

A digraph D is called strongly connected if for each pair of vertices x and y in V (D), there exists a walk from x to y. For a
strongly connected digraph D, the index of imprimitivity of D is the greatest common divisor of the lengths of the cycles in
D, and it is denoted by I(D). If D is a trivial digraph of order 1, I(D) is undefined. For a strongly connected digraph D, D is
primitive if (D) = 1.

If D is a primitive digraph of order n, there exists some positive integer k such that there exists a walk of length exactly k
from each vertex x to each vertex y. The smallest such k is called the exponent of D, and it is denoted by exp(D). For a positive
integer m where 1 < m < n, we define the m-competition index of a primitive digraph D, denoted by k,, (D), as the smallest

positive integer k such that for every pair of vertices x and y, there exist m distinct vertices vy, v, ..., vy such thatx — v;

andyi> vifor1 <i<minD.

Kim [7] introduced the m-competition index as a generalization of the competition index presented in [6]. Akelbek and
Kirkland [1,2] introduced the scrambling index of a primitive digraph D, denoted by k(D). In the case of primitive digraphs,
the definitions of the scrambling index and competition index are identical. Furthermore, we have k(D) = k(D).
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For a positive integer k and a primitive digraph D, we define the k-step outneighborhood of a vertex x as
NFDK 2 x) = lv c V(D)|x = v] .

We define the k-step outneighborhood of a vertex set X as N*(D* : X) = U,ex NT(D¥ : x). We define the k-step common
outneighborhood of vertices x and y as N*(D* : x, y) = N*(D* : x) N N+t (D* : y).

We define the local m-competition index of vertices x and y as k(D : x, ¥) = min{k : [IN*(D' : x, y)| > m where t > k}.
We also define the local m-competition index of x as k(D : X) = maxyev){km(D : x,y)}. Then, we have

kn(D) = max k(D :x) = max ky(D:x,y).
xeV (D) x,yev(D)

From the definitions of k;;,(D), k(D : x), and k(D : x,y), we have k(D : x,¥) < kn(D : x) < ky(D). On the basis of
the definitions of the m-competition index and the exponent of D of order n, we can write k,,(D) < exp(D), where m is a
positive integer with 1 < m < n. Furthermore, we have k,(D) = exp(D) and

k(D) = k1(D) = kz(D) < --- < kn(D) = exp(D).

This is a generalization of the scrambling index and exponent. There exist many researches about exponents and their
generalization; for example, [9].

An n-tournament T, is a digraph with n vertices in which every pair of vertices is joined by exactly one arc. Assigning an
orientation to each edge of a complete graph results in a tournament.

Proposition 1 (Moon and Pullman [8]). An n-tournament T, is primitive if and only if T, is irreducible (strongly connected) and
n> 3.

Theorem 2 (Moon and Pullman [8]). Each vertex of a strongly connected tournament T,, when n > 3, is contained in at least
one simple cycle of each length between 3 and n, inclusive.

Some results about k;(T,,) and k,(T,,) have been presented in [6,8].

Theorem 3 (Kim [6]). For a primitive n-tournament T, where n > 5, we have
ki(Tp) <3
and the bound is sharp for alln > 5.
Proposition 4 (Kim [6]). Let n > 5. For a positive integer k where 2 < k < 3, there exists a primitive n-tournament T,, with
ki(T,) = k.
Theorem 5 (Moon and Pullman [8]). For a primitive n-tournament T,, we have

kn(Ty) <n+2.

Proposition 6 (Moon and Pullman [8]). Let n > 6. For a positive integer k where 3 < k < n + 2, there exists a primitive
n-tournament T, such that k,(T,,) = k.

2. Main results

Some results on the generalized exponents of tournaments have been presented in [9]. In this paper, we study k;,(T,) for
a strongly connected n-tournament T, where n > 5 and 1 < m < n as another generalization of an exponent.

Definition 7. Suppose A, B C V(D) and x € V(D). We define the following notation:
A= B:a— bforanya € Aand forany b € B.
X = B:x — bforanyb € B.
A= x:a— xforanya € A.

Lemma 8. Let T, be a primitive n-tournament and A be a nonempty subset of V(T,). Then, [NT(T, : A)| > |A| and [NT(T, :
A NAl > A — 1.

Proof. IfA = V(T,), then N* (T, : A) = V(T,). We have the result. Suppose A # V(T,). Then, [IN* (T, : A) \ A| > 1since T, is
strongly connected, and |A\ N (T, : A)| < 1.Therefore, [INT(T, : A)| > |A| and [NT (T, : A) NA| > |A| — 1. This establishes
theresult. O

Lemma9. Let T, be a primitive n-tournament where n > 5. Then,
kZ(Tn) <4
Proof. Let x and y be two vertices in V (T,). Then, N* (T3 : x,y) # ¢ by Theorem 3.If IN¥(T? : x,y)| > 2, then we have

INT(T? : x,y)| > 2 by Lemma 8. Then, ky(T, : X, y) < 4.Suppose that N*(T3 : x,y) = {u}. Then there exists a vertex v
such that u — v since T, is strongly connected. Denote A = V(T,,) \ {u, v} and B = N (T, : v) N A. In this notion, we have
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A= u,u— v,v = B,and A\ B = v. By Theorem 2, we also have

3 4
A=u—->u and u— u.

We will show that v 4 u. Note that |A| > 3 and B # ¢ because T, is strongly connected.
Case 1. |B| = 3.
There exists a walk of length 2 in B since T, is a tournament. Let a, 3 a, be such walk where a;, a, € B. Then,

vV — —2> a, — Uu.
Case 2. |B| = 2.

Let B = {a, b} where a — b. Then, |A \ B| > 1since |A| > 3.IfA\ B = {a, b}, then T is not strongly connected because
there exists no walk from a to a vertex in A \ B. Therefore, it is impossible that A \ B = {a, b}.
Subcase 2.1.N*(T, : b) N (A\ B) = ¢.

There exists a vertex c € N*(T, : a) N (A \ B) such thata — ¢ — b.Then,v - a— ¢ — b — u.
Subcase 2.2. Nt (T, : b) N (A \ B) # ¢.

There exists a vertex c € N*(T, : b) N (A \ B) suchthata — b — c.Then,v - a — b — ¢ — u.
Case 3. |B| = 1.

Let B = {a}. Then, |A \ B| > 2 since |A| > 3. We also have N*(T,, : a) N (A \ B) # ¢ since T, is strongly connected.
Subcase 3.1. IN*(T, : @) N (A\ B)| > 2.

There exist two vertices b, c € N¥(T, : a) N (A \ B) such thata — b — c.Then,v - a — b — ¢ — u.
Subcase 3.2. INY(T, : @) N (A\ B)| = 1.

Let N (T, : @) N (A \ B) = {b}. It is impossible that A \ {a, b} = b since T, is strongly connected. Therefore, there exists
avertex c € A\ {a, b} such thata — b — c because A\ {a, b} # ¢.Then,v - a — b — c — u.
In all cases, v A u. Then,u € N““(T,j1 : X, y). Therefore, {u, v} C NJr(T,jl :x,y) and k(T,, : x,y) < 4. This establishes the
result. O

Lemma 10. Let T, be a primitive n-tournament where n > 5. Then,
k3 (Tn) =< 5.

Proof. Let x and y be two vertices in V(T,). By Lemma 9, we have |N+(T,j1 x,y)| = 2.0f |N+(T;1 1 X,y)| = 3, then we have
INT(T? : x,y)| > 3 by Lemma 8. Then, k3(T, : X, ¥) < 5.Suppose that N* (T3 : x,y) = {u, v}.If INT(T, : {u, v})| > 3, then
ks(T, : x,¥) < 5.Suppose that N* (T, : {u, v}) = {v, w} for avertex w. Denote A = V(T;)\{u, v, w}and B = N (T, : w)NA.
In this notion, we have A = {u, v},u - v - w, w = B,and A \ B = w. By Theorem 2, we have

4 5 3
A= u—>uu—>u and w—> w=B=u.

Note that B # ¢ because T, is strongly connected.

Case 1.n = 5.
Let A = {a, b} where a — b. Then, we have w — a since T, is strongly connected.

Subcase 1.1. w — u.
We have v = v — w — 1. Then, u € NT(T? : x,y) and {u, v, w} C N*(T? : x, y). Therefore, k3 (T, : x,¥y) < 5.
Subcase 1.2.u — w.
There are two cases such as w — b or b — w. In these cases, we can check k3(T;;) = 5.
Case2.n > 6.
We have |A| > 3. We will show that v 2 u.
Subcase 2.1. |B| > 3.

There exists a walk of length 2 in B since T;, is a tournament. Let a, A a, be such walk where a{,a, € B. Then,

v—>w—>a1—2>a2—>u.
Subcase 2.2. |B| = 2.

Let B = {a, b} where a — b. Then, |A \ B| > 1since |A| > 3.IfA\ B = {a, b}, then T is not strongly connected because
there exists no walk from a to a vertex in A \ B. Therefore, it is impossible that A \ B = {a, b}.
Subcase 2.2.1.NT(T,, : b) N (A\ B) = ¢.

There exists a vertex c € N (T, : a) N (A \ B) such thata — ¢ — b.Then,v > w - a—>c — b — u.
Subcase 2.2.2. N (T, : b) N (A\ B) # ¢.

There exists a vertex c € N*(T, : b) N (A \ B) such thata — b — c.Then,v > w - a— b — ¢ — u.
Subcase 2.3. |B| = 1.

Let B = {a}. Then, |A \ B| > 2 since |A| > 3. We have N™ (T}, : @) N (A \ B) # ¢ since T, is strongly connected.
Subcase 2.3.1. [NT(T, : a) N (A\ B)| > 2.

There exist two vertices b, c € N*(T, : a) N (A \ B) such thata — b — c.Then,v - w - a— b — ¢ — u.
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Subcase 2.3.2. [NT(T, : a) N (A\ B)| = 1.
Let N*(T, : a) N (A \ B) = {b}. It is impossible that A\ {a, b} = b since T, is strongly connected. Therefore, there exists
avertex c € A\ {a, b} such thata — b — c because A\ {a, b} # ¢.Then,v > w - a—>b —>c — u.

If n > 6, then we have v > u. Therefore, u € N+(T,f’ :x,y)and {u, v, w} C N+(T,f :X,¥). We have k3(T, : x,y) < 5.
This establishes the result. O

Lemma 11. Let T, be a primitive n-tournament where n > 5 and m be a positive integer such that 3 < m < n — 2. If
km(Ty) < m + 2, then we have

ki1 (Ty) < m + 3.
Proof. Suppose that there exists a primitive n-tournament T, such that k,(T,) < m 4+ 2 and kp,1(T,) > m + 3 for a
positive integer m. Then, we can find two vertices x and y such that |N+(T,',T’Jr3 :x,¥)] <m+ 1and |N+(T,'111+2 X, Y)| > m.
Let NT(T"+2 @ x,y) = V. If|V/| > mor [NT(T, : V')| > m, then we have [N*(T™3 : x,y)| > m + 1. Therefore, we
have |V/| = mand [N (T, : V')| = m. Because T, is strongly connected, N*(T,, : V') \ V' # ¢. In addition, we have
INT(T, : V)NV’'| = m—1by Lemma 8. Then, there exists a vertex u € V' such thatu = V’\ {u}. Furthermore, there exists
avertex v(# u) such that N*(T, : V) \ V' = {v}.

Denote C = V' \ {u},C’ = {x|x - v} NC,A=V(T,) \ V' \ {v},and B = N*(T, : v) N A. Note that B # ¢ and C # ¢
because T, is strongly connected. In this notion, we have

A=V, u=C, v =B, A\B=v, and C' =v.
Let b € B. For each vertex ¢ € C, we have
I
c—v —]> b,

where | < m — 1because |C| = m — 1. Then, we have dr, (c, b) < m.In addition, we haveA = ' = v —» b,u = (' =
v — b,and v — b. In all cases, we have dr, (z, b) < m for each vertex z € V(T,) because m > 3.

By Theorem 2, there exists a g-cycle containing b where ¢ = m + 3 — dr,(z, b) > 3. Then, we have z mts b for each
vertex z € V(Ty). Therefore, we have {b, v} U C C N*(T"*3 : x, y). This is contrary to [IN*(T™*3 : x,y)| < m + 1. This
establishes the result. O

Theorem 12. Let T, be a primitive n-tournament where n > 5. For a positive integer m such that 1 < m < n, we have
km(Tn) <m+2,
and the bound is sharp for alln > 5.
Proof. By Theorems 3 and 5, Lemmas 9-11, we have
kin(Ty) <m+2
where 1 < m < n. Consider an n-tournament F = (V, E) for n > 5, as follows.
V ={v1,va,..., v},
E={(w,viyu1 <i<n—13U{(wp, v)}U{(vi, )12 <j+1<i=<n}h

Because there exists an n-cycle, F is primitive. We have NT(F> : vy, v;) = ¢ and for a positive integer p such that
3 <p<n+2 wehave NF(FP : vj,vp) = {v1, v2, ..., vp_p}. Therefore, we have k,(F) > m+2for1 < m < n.
This establishes the result. O

Example 13. The condition n > 5 in Theorem 12 is essential. Consider the strongly connected 4-tournament T, whose
adjacency matrix is given as

0 0 1 1
1 0 0 O
01 0 O
01 10

Then, we have k{(Ty) = 4, k,(T4) = 6, k3(T4) = 8 and, k4(T4) = 9. We have k,,(Ty) > m+2form =1, 2, 3, 4.

Theorem 14. Let n > 6 and 1 < m < n. For a positive integer k where 3 < k < m + 2, there exists a primitive n-tournament
T, such that k,,(T,) = k.

Proof. If m = 1 or m = n, this holds by Propositions 4 and 6, respectively. Suppose2 <m <n—1land3 <k < m+ 2. Let
p=n—3—m+k
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Case 1.p > 4.
Consider an n-tournament F for n > 6 as follows.

V(F) = {vq,v2, ..., Un},

E(F) ={(vipr, )1 <i<n—1}U{(v, v} U{(, vplp <j<i<nfU{(u, )|l <i<p—-1,i+2=<j=<nj}.
We have Nt (F? : Up, Upt1) =@.For1 <x <y <nand1<i<p+ 1, wehave

NTFF2 2 vy, Ups1) = (Upsa—is Uprs—is - -+ Unbs

INT(F2 v, v)| >n—p+i—1.
Therefore, we have k,,(F) = m+p+3 —n=kbecausen—m <p <n-—1.

Case2.p < 3.
We have

{(k, )Ip<3}={3,n—-3),3,n—-2),3,n—1),4,n—-2),4n—1),5,n—1}.

We will find tournaments with this condition. Consider n-tournaments F;, and F, for n > 6, and F; for n > 7 as follows.
V(F) = V() =V(F) ={v1,v2,..., U},

and

E(F1) = {(wip, w1 <i<n—11U{(w, v} U{w, v)3 <j<i<nfU{(v, )1 <i<2,i+2=<j<n}
U{(vs, vn)} \ {(vn, va)},

E(F) = {(vir, )1 <i<n—1U{(w, v)}U{(, )2 <j<i<npU{(v,vli=13=<j<n}
U{(v3, v} \ {(vn, v3)},

E(F3) = {(vi, vix )1 =i <n— 1} U {(vn, v} U {(vi, v)|2 <j+ 1 < i = n} U {(v2, va)} \ {(vn, v2)}.

Subcase 2.1. k, (Fy).

We have
NT(F} 1 vz, v3) = {v3, v, ..., Vo),
NT(F] vy, v3) = {v2, v3, ..., Unh.

For 1 <i <j < n,wehave [NT(F{ : v;, vj)| > n — 1. Therefore, we have k,_(F;) = 4.
Subcase 2.2. k, (F5).

We have
N*(F5 : v, va) = {vn),
N*(F3 @ vz, va) = {v2, 03, ..., Va).

For 1 <i <j < n,we have |N+(F23 1 v, v5)| = n — 1. Therefore, we have k;,_3(F;) = kn_2(F,) = k,—1(F;) = 3.
Subcase 2.3. k;, (F3).
We have
NT(F5 : vy, v3) C {v1, v3, v6},
NY(F] :v1, v3) = {v1, v2, - .o, Una)s
and k,(F3) = 5.For 1 <i <j < n,we have |N+(F§l : vj, vj)| > n — 2. Therefore, we have k,_,(F3) = 4 and k,_;(F3) = 5.

Subcase 2.4. k,, (Fy).
Let F4 be 6-tournament whose adjacency matrix is given as

0 0 00 0 1
1 0 0 0 1 1
1 1 0 0 1 1
1 1 1.0 0 O
1 0 01 0O
0 0 01 10

We have k4(F4) = 4 and k5(F4) = 5.
This establishes the result. O
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Example 15. Let Fy, F>, F3, and F4 be 5-tournaments whose adjacency matrices are respectively given as

01000] (01000
00 100[|00T110
100 10[,[10010],
1100 1| |1 00 01
(11100 [1 110 0
0 1.0 0 0] [0 1 0 1 0]
0011 1[]|00 101
100 10[,[1 0010
1000 1| [0 10 0 1
(1 01 00| [1 010 0

Then, we have

ka(F3) = k3(F3) = ka(F3) = 3,

ka(F1) = k3(F2) = ka(F4) = ks(Fg) = 4,
k3(F1) = kq(F2) =5,

kq(F1) = ks(F,) = 6,

ks(F) = 7.

By Proposition 4, there exists a 5-tournament whose 1-competition index is 3. Let m be a positive integer such that
2 < m < 4. For a positive integer k such that 3 < k < m + 2, there exists a 5-tournament Ts such that k,;,(Ts) = k.
Also, there exists a 5-tournament whose 5-competition index is 4, 6 or 7. However, we cannot find a 5-tournament whose
5-competition index is 3 or 5.

3. Closing remark

Akelbek and Kirkland [1] provided the concept of the scrambling index of a primitive digraph. Kim [7] introduced a
generalized competition index k(D) as another generalization of the exponent exp(D) and scrambling index k(D) for a
primitive digraph D. In this paper, we study k,,(T,) as an extension of the results presented in [6,8].
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