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There are many optimal control problems in which it is necessary or desirable 
to constrain the range of values of state variables. When stochastic inputs are 

involved, these inequality constraint problems are particularly difficult. Some- 

times the constraints must be modeled as hard constraints which can never be 

violated, and other times it is more natural to prescribe a probability that the 
constraints will not be violated. This paper treats general problems of the latter 

type, in which probabilistic inequality constraints are imposed on the state 

variables or on combinations of state and control variables. -4 related class of 

problems in which the state is required to reach a target set with a prescribed 

probability is handled by the same methods. It is shown that the solutions to 

these problems can be obtained by solving a comparatively simple bilinear 

deterministic control problem. 

1. INTRODUCTION 

It is often necessary to constrain the range of values of state variables in 
optimal control problems when stochastic inputs are present. When the con- 
straints are imposed bv nature, they often must be modeled as hard constraints 
which can never be violated. If  instead, the constraints are ones which the control 
system designer wishes to impose, it can be more natural to pose the control 
problem so that the desired inequalities on the state are satisfied with some 
prescribed probability. 
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This paper presents a method of handling stochastic optimal control problems 
with linear systems and quadratic costs when subject to data-unconditional 
probabilistic inequality constraints on combinations of the state variables, the 

control variables, or both. Optimal control problems in which it is desired to 
reach a target set with a prescribed probability are treated as a special case, and 
an example is given. It is shown that the optimal feedback control laws for these 
stochastic problems can be found in terms of a comparatively simple bilinear 
deterministic control problem. Extension of these results to data-conditional 

probabilistic inequality constraints is discussed. 
The problem of masimizing the likelihood of reaching a specified terminal 

point treated in [l] can be compared to a special case of our target set problem, 
where the target set approaches a point by a suitable choice of probabilistic 

inequality constraints. In both cases, the a priori probability of reaching the 
terminal state is to be maximized. In [2] a specified a posteriori state mean and 
covariance are obtained at a terminal time. Deterministic control problems with 
inequality constraints have been considered by others (for example, see [3-51). 

The method presented here is immensely more tractable than solving stochastic 
optimal control problems subject to hard constraints, which can involve repeated 
solution of the Fokker-Planck equation. Not only does this method apply to 

probabilistic inequality constraint problems, but it can also be used for the 
approximate treatment of problems with hard constraints. Mith this viewpoint, 
the method can be considered as a stochastic analogue to the penalty function 
approach used for deterministic optimal control problems with inequality 

constraints [4]. 

2. STOCHASTIC CONTROL PROBLEMS WITH PROBABILISTIC STATE INEQUALITV 
CONSTRAINTS OR PROBABILISTIC TARGET SETS 

In this section two classes of stochastic optimal control problems will be 
defined. The first constrains the state of the system to remain in certain regions 
of the state space with prescribed probabilities. The second requires that the 
final value of the state be in a prescribed target set with given probability. 

PROBABILISTIC STATE INEQUALITY CONSTRAINT PROBLEM. Given the linear 
time-varying stochastic system 

dx(t) = A(t) x(t) dt + B(t) u(t) dt +f(t) dt + dv(t), 

dy(t) = C(t) x(t) dt + dw(t), 

E[x(O)] = .q) , E[(x(O) - 3,) (x(0) - Q’] = PO , 
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where x(t) E W”, u(t) E P, y(t) E 9P; m < n; and t E [0, T]. The v(t) E B’” 

and w(t) E 2’” are scaled Weiner processes with rates 

E[v(t) v’(s)] = TV(T), 

E[w(t) w’(s)] = TW(T), (2) 
Eb(t) zo’(s)] = &I(T), 

joy all t, s E [O, TJ, and where T = minft, s). W(t) is positive definite on [0, T]. 
The matrices A(t), B(t), and C(t) are continuous on [0, T]. The system (A, B) 

is totally state controllable on [0, T]. The vector f  (t) is an endogenous driving term 
continuous on [0, T], and u(t) is the control which is uaconstrained. 

Let the terminal time T be fixed, and the terminal state be free. Then find a control 
u which minimizes the functional 

j = .E 12 JO’ [x’(t) Q(t) x(t) + u’(t) R(t) u(t)] dt + $s’(T)Fx(T)/ , (3) 

where Q(t) and R(t) are continuous symmetric matrices, and Q(t) 3 0, F > 0, 
R(t) > 0 for all t E [0, T]. The minimization is subject to the following probabilistic 

inequality constraints 

P&(t) < K;(t) 44 < A(t)‘, 2 ri(t), iE Ysr 

PrMt) < K(G 44 ,< A(41 < rdt), iEYqr 

where the K,(t) ES?. K,(t), a<(t), pi(t), and yi(t) are continuously d$ferentiable 
on [0, T], and must be chosen so that the constraints are self-consistent. The 
K,(t) f  0 and yi(t) E (0, 1) for all t E [0, T]. The Yj are either the null set OY 
mutually exclusiz!e jkite sets of integers. The initial value-x(O) must be such that 
the inequality constraints (4) are satisJed at t = 0. 

The probabilistic inequality constraints cannot be overspecified in the sense 
that it becomes impossible to satisfy all constraints simultaneously. This 

meaning of the term “self-consistent” is made more precise in the sequel, and 
a test for self-consistency is given in Section 5. Note that constraints of the forms 
Pr(Kix < LY~} 3 yT and Pr{Kix < CX~} < y f  are equivalent to constraints of 
the forms associated with Y, and Y, , respectively, with yT = 1 - yi . Note also 
that observability is not required. 

PROBABILISTIC TARGET SET PROBLEM. Giz)en the time-aarying stochastic 
system of Eqs. (I), f ;  n a control u which minimizes (3) and which transfers the d 
state from x(O) to an x(T) satisfying the following probabilistic target set 
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where the K. ES? K. , , CQ , pi , and yi are bounded and must be chosen so that the 
inequalities are self-consistent; and the yi E (0, 1). The sets Yj are either the null set 

or mutually exclusivejnite sets of integers. 

In certain circumstances, the specification of a probabilistic target set is quite 
natural. It may be very difficult to require that every attempt reach the desired 

target set; and an alternative is to specify a probabilistic target set upon which 
some reasonable fraction of attempts are required to impinge. 

3. DETERMINISTIC CONTROL PROBLEMS 

Two bilinear deterministic control problems with matrix-valued state variables 
are defined and are later related to the stochastic problems of Section 2. The 
rather interesting cost functional for these problems is necessarily nonnegative 
in spite of the linear terms in state E (see Section 5). 

BILINEAR DETERMINISTIC CONSTRAINT PROBLEM. Gizlen the matrix-ealued 

d@rentiaZ equations 

9(t) = [A(t) + B(t) Y(t)] E(t) -t Z(t)[=l(t) + B(t) Y(t)]’ -+ I-(t), 

2(t) = .4(t) z(t) + B(t) w(t) +f(t), (5) 

E(O) =1 E. ( a(0) = 2” , f~ [O, Tl, 

where B and z are symmetric n x: n and n x 1 state matrices, respectizlely. &-llso, 
T(t) is symmetric, positive semidefinite, and continuous on [0, T]; and E,, is sym- 
metric and positive semidefinite. 

Let the terminal time T be fixed, and the terminal state be free. Then find an 
m x n control matrix Yf  and an m x 1 control matrix w which minimizes the 
functional 

I = ft  J’ [z’(t) Q(t) z(t) + w’(t) R(t) w(t) + trQ(t) E(t) 
0 

+ tr R(t) Y(t) E(t) Y’(t)] dt + $z’( T)Fz( T) + 4 tr FL7( T)/ . 
(6) 
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The minimization is subject to the foliowing deterministic inequality constraints 
which must be self-consistent: 

q(t) z(t) - g(t, W) 3 0, iE,&, 

K:(t) z(t) - hi@, s(t)} < 0, iE.Z2, 

K:(t) z(t) - g,(t, E(t)) >, 0 or K:(t) z(t) - h&, 3(t)) < 0, iEZ3. 

(7) 

The initial conditions E,, and z0 must satisfy1 these constraints at t = 0, and XI , 

2& , Z3 arefinite integer sets. Let each constraint be deJned on a prescribed subset Y+ C 
[0, T]. For all i E ZI u Z2 u Z3 , Ki is continuous2?, diflerentiable on 9, . For these 
same i, gi and hi are ContinuousEql dtxerentiable on 2i with respect to their first 
argument t, and twice continuously d$erentiable on the class of positive semidefinite 

matrices with respect to each element of the second argument E. The matrices -4, B, 
Q, F, R, and f satisfy the same requirements as in the Probabilistic State Inequal&?/ 
Constraint Problem. 

BILINEAR DETERMINISTIC TARGET SET PROBLEM. Given the system equations 
(5) find control matrices Y and u which minimize (6) and which transfer the system 
from r -3, &.I to a terminal state S(T), z(T) satisfying the deterministic target set 
defined b! the following inequalities which must he self-consistent. 

K;.z( T) - gT(S( T)) > 0, iE,&, 

K;a(T) - h;(E(T)) ,< 0, i E &, 

K,‘z(T) - g;@(T)) 2 0, or K;z( T) - hT(E( T)) < 0, iEZ3. 

The Z, , Z2 , Z3 areJinite integer sets, and for i E Z, v  X2 u Z3 the g? and hT are 
continuously dtgerentiable on the class of positive semidejkite matrices with respect 
to each element of the argument E(T). 

4. CONVERSION OF STOCHASTIC CONTROL PROBLE~JS TO 

DETERMINISTIC CONTROL PROBLE~,IS 

The relationships between the stochastic problems of Section 2 and the 
deterministic problems of Section 3 will be established. The following lemma 
will be used to convert the probabilistic constraints to a deterministic form. 

CONVERSION LEMMA. Let r be a Gaussianly distributed random variable with 
variance a. Let 01 and ,C? hefinite numbers, and let y  E (0, 1). Then: 
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(i) The probabilistic inequality 

Pr(r 3 a> > y  

is satisfied if and oni’y tf  the expected value 1: = E(r) satisfies 

f > a + 2lk erf-l(2y - I), 

where erf is the error function. 

(ii) The inequality Pr(r > a> < y  is satisfied if and only zf J satisfies 

f < 0: + 21/20 erf-I(27 - 1). 

(iii) Define 

Q(s) = 4 erf[(jI - ~)/2~47] - 3 erf[(ol - s)/2%], 

r* = ;(a + 18). 

Concerning the probabilistic inequalit? 

Pr(cd < r < /3} = @p(T) 2 y, (8) 

three cases apply: 

(a) If  @(r*) > y, then (8) is satisjed ;f and onZy if CY* < F ,< /3*, 
where /3* > A? are the two roots of Q(s) - y  = 0. 

(b) In@ = y, then (8) is equivazent to the equality F = r*. 

(c) If  @(r*) < y, then the probabilistic inequality (8) cannot be satisfied. 

(iv) Concerning the probabilistic inequality 

Prb < r < B> < y, (9) 

two cases apptv: 

(a) If  @(Y*) > y, then (9) is satisfied ;f and only zf F satisjes one of the 
two inequalities 

r < a*, r > p*. 

(b) If  @(r*) < y, then (9) is satisjiedfor all values of ?. 

Proof. For (i) write 

Pr{r > a> = (2fl)t,2 u am exp[-(r - F)~/~u~] dr I 

= &{l - erf[(cw - 3/2’47]} 
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or 

erf[(ol - ?)/2112~] < 1 - 2~. 

Since the error function is a monotonically increasing function of its argument, 
and since 1 - 2y is in the interval (- 1, l), the inverse error function of both 
sides can be taken while preserving the direction of the inequality. This gives 
the desired result. The proof of (ii) is analogous. 

To prove (iii), note that 

Pr{a < r d k?- = (2n;l,2 u a’ exp[-(r - r)*/2~2] dr I 

= + erf[@ - i9/21/2a] - & erf[(or - f)/2”‘u] 

= Q(f). 

Consider the continuously differentiable function @(r* + 5) as a function of 5. 
Then 

a@ -= 
a< - & exp 1 I q - 5)*/2cr*] - exp [ (K$ - 5)2/Z~2] 1 , 

which is positive for -co < 5 < 0, zero for 5 = 0, and negative for 0 < [ < 
+ CL]. Hence, @(r* + 5) is a monotonically increasing function of 5 for -co < 
4 < 0 and a monotonically decreasing function for 0 < 5 < fco, and it 
takes on a global maximum at 5 = 0. Since limlll,, @(r* + 5) = 0, the function 
@(r* + LJ assumes each value in the interval (0, @(r*)) exactly once for 5 > 0, 
and once for 5 < 0. Furthermore, using erf(5) = -erf(-.$ it is seen that 
@(r* + 5) = @(r* - [), so that the two values of 5 are identical in absolute 
value. Then Pr{or < r < /3} > y implies Q(f) - y 2 0. If @(r*) > y there are 
two values off, 01* and /3*, for which Q(f) - y = 0 and all values of r in [a*, /3*] 
satisfy the inequality. If a(~*) = y only r = r* satisfies the inequality, and if 
@(r*) < y there is no expected value of r for which the probabilistic inequality 
is satisfied. Since each of the steps can be reversed, (iii) is proved. Similarly 
Prh < r d 8) < Y implies @(a) - y < 0, and the inequality is satisfied for 
r < 01* and for p* < f, provided @(r*) > y. If @(r*) < y, then there are no 
real roots of Q(f) - y = 0, and all 7 satisfy the inequality. m 

The following theorem shows that for a restricted class of admissible controls, 
the solution to the stochastic control problem with probabilistic state inequality 
constraints can be obtained by solving a deterministic problem. 

CONVERSION THEOREM. Let the set of admissible controls in the ProbabiZistic 
State Inequality Constraint Problem be restricted to the class of afine functions 
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p(t, .C) = :V(t).E f  X(t), where p: [0, T] :- 3”’ -+ ,@, Al(t) and -j-(t) UYP 

piecewise continuous on [0, T]. Define 

2(t) -= E[.V(t) i *J, 

where Jpt is the a-field generated by) (y(r), 0 < T =; t). Then any optimal control 
u(t) satisfying the Probabilities State Inequality Constraint Problem can be ex- 

pressed as 

u(t) = w(t) i- Y($qt) - z(t)], 

where w(t) and Y(t) are optimal controls for a Bilinear Deterministic Constraint 
Problem, and z(t) is the corresponding optimal solution. 

Proof. Let the following quantities be defined: 

3(t) =-- E[x(t) ( cvo], 

f(t) == x(t) - x(t), 

if(t) = E[sf(t) i gtl, 

&t, = 5(t) - &a 

n(t) = E[u(t) / uy,l, 

zqt) = u(t) - u(t), 

n(t) = Em ml, 

p(t) = -a(t) &)I. 

One can then obtain 

u(t) = M(t) 2(t) + IV(t), 

ii(t) = M(t) i(t). 

(i) Conversion of the Cost Functional 

After the order of the expectation and the integration in (3) are interchanged, 
the cost functional can be written as 

J = If lo’ [z’Qx + u’Ru + tr QE(@‘) + tr RE(Z’)] dt 

+ 4 .F’(T)F%(T) + + trFE[[(T) c(T)]/ . 
(11) 

The remaining expectations can be expressed as I?(@‘) = 17 + P and E(Z’) = 
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MI&If’ after noting that E($$‘) = 0. Then the desired form of the cost 
functional is 

J = 14 IO’ [%‘Q% + u’Ru + tr Q(ZI + P) + tr RMIIM) dt 

+ @‘(T)FqT)+ 4 trF[IqT) + P(T)]/ ) 
(14 

which is to be minimized with respect to the control variables % and M. 

(ii) The Augmented State Equations 

Since the cost functional (12) contains 5, II, and P, differential equations for 
these quantities will now be generated. Taking the expectation of the state 
equations (1) gives the immediate result 

k(t) = A(t) a(f) + B(t) qq + f(t), 
(13) 

3(O) = To . 

To calculate 17 and P it is necessary to obtain equations for l and $. 
Standard results can be used to show that the best estimate 9 satisfies 

d$(t) = [A(t) - G(t) C(t)] a(t) dt + B(t) u(f) dt + f(t) dt + G(t) dy(t), (14) 

G(t) = [P(t) C’(t) + &)I JWt), (15) 

i(O) = To . 

Then 

d&t) = A(t) f(t) dt + G(t) C(t) t(t) dt + B(t) a(t) dt + G(t) dw(t), 

-30) = 0, 

d&t) = [A(t) - G(t) C(t)] l(t) dt + dz!(t) - G(t) dw(t), 

4(O) = ‘TO - x0 . 

(16) 

Let 5’ = [{’ j E], an d use C = M[ to express [ in integral form as 

C(t) = Z(t, 0) 5(O) + j-” z(t, 4 & (17) 
0 

where Z is the state transition matrix corresponding to the system matrix 

GC 
A-GC I 
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and q’ = [(Gw)’ I (v - Gw)‘]. Ob serve that the covariance of c(t) can be 
partitioned as 

(18) 

and can be written as 

L(t) = qt, O)L(O) .z’(t, 0) + St 2(t, s) Q(s) Z’(t, s) ds. (19) 
0 

The scaled Weiner process q(t) has the rate E[q(t,) q’(tJ] = T&!(T) for all 

t, , t, E [0, T] where T = min(t, , ts), and 

Q== I 
GWG’ GH’ - GWG’ 

HG’ - GWG GWG’ - HG’ - GH’ + I,’ I ’ 

Differentiating (19) and using (18) and( 15) gives the desired differential equations 

for II and P. 

fl(t) = 14) + B(t) ~~qq] qt) + W)[&) + B(t) M(t)]’ 

+ [P(t) c’(t) + H(t)] W-l(W’(t) C’(t) + H(t)]‘, 

II(O) = 0, 

(20) 

P(t) = A(t) P(t) + P(t) A’(t) - [P(t) C’(t) + H(t)] W’(t) 

x [P(t) C’(t) + H(t)]’ + L,?(t), (21) 

P(0) = PO . 

Since P(t) is independent of the control variables zc and IV, and can be calculated 
a priori, the state variables associated with the cost functional (12) are Y and II. 
These variables are related to the control variables by state equations (13) and (20) 

of the augmented system. 

(iii) Conversion of the InequaZity Constraints 

Equations (1) and (16) after using (lo), form a coupled set of linear equations 
driven by Gaussian processes. Hence x(t) is Gaussianly distributed, and the 
conditions of the Conversion Lemma are satisfied at each time t. The r of the 
lemma is K:(t) x(t), whose variance is 

Oi2(C H(t)) = K;(t) E[&) c?(t)1 K(t) 

= K(t) [P(t) + n(t)1 K(t)> iE(J rj. (22) 
j=l. 
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Application of parts (i) and (ii) of the lemma gives 

gE(t, uJ = q(t) + 21bi(t, II(t)) erf-l[2yi(t) - 11, 

&(t, 13~) = q(t) + 21’2ui(t, 17(t)) erf-l[2y,(t) - 11, 

Define 

i fg Y, , 

i t: Yz . 

Gii(s, t, ui) = +- erf [ 2itJTt iit)) ] - +- erf [ pi(r) - ’ 
z 9 21%i(t, l7(tj) ] , 

(23) 

(24) 

The intervals for which the converted constraints exist are 

4 = {t IO < t < T), i$J Yj, 
j=l 

=Gn(.)j = {t I 0 < t < T ,  @&i*(t), t, 4, W))) > ri(tj>, iEY4. 

Those inequalities indexed by Y4 which are not always satisfied are identified by 

Y,,(n(.)) = {i 1 i E Y4 , Of(rF(t), t, ui(t, II(t))) > yi(t) for some t E [0, T];. 

Application of parts (iii) and (iv) of the lemma gives g,(t, ui) and h,(t, UJ for 
i E Y, U Y,, as the roots s(t) of 

@i(S, t, Ui) = r&j. (25) 

with gi < & . I f  for any i E Y, , Qi(r$(t), t, uJ < yj(t) for any t E [0, T], then 
the constraints (4) are inconsistent. Since by assumption the constraints are self- 
consistent, the in Ya can be expressed as two constraints, one of the form 
associated with Zi and one associated with Zz . These sets then become 

z1 = r, u Y3; z2 = Y, u Y3; L-3 = Y,, . 

It remains to make the following identification of the variables in the Bilinear 
Deterministic Constraint Problem: 

Z(t) = n(t); c - 0; -0 - z(t) = 3(t); Y(t) = M(t); w(t) = u(t), 

qt> = [P(t) @(t) + fqt)] w-l(t) [P(t) c(t) + H(t)]‘, 

gi(t, s(t)) = gi(t7 ai(t, E(t)))9 

(26) 

&(t, E(t)) = &(t, q(t, E(t))), i E Y, U Y, U Y, u Y,, , 

and the proof of the theorem is complete. 1 

4w/W~-r7 
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-4pplication of the above Conzlersion Theorem to a one-dimensional stochastic 
system reduces the problem to that of finding the optimal control for a two- 

dimensional deterministic system. In general, an n-dimensional stochastic 
optimization problem is converted to a fn(n + 3)-dimensional deterministic 
problem. This is the dimensionality penalty one must pay for the comparative 
ease of solution of deterministic problems. 

By limiting the inequality constraint conversion to time t = T in part (iii) 
of the proof of the Conzversion Theorem, the following corollary is established. 

COROLLARY 1. Let the set of admissible controls be as specified in the Conversion 

Theorem. Then any optimal control u(t) satis-?ing the ProbabiZistic Target Set 
Problem can be expressed as 

u(t) = w(t) + Y(t$qt) - z(t)], 

where w(t) and Y(t) are optimal controls for a Bilinear Deterministic Target Set 
Problem, and z(t) is the corresponding optimal solution. 

It is instructive to view the state inequality constraint problem and the target 

set problem in z, t space, instead of in z, 8, t space. The target set as viewed in 
z space can be considered control dependent through the choice of the feedback 
gain Y which determines the value of 8. Hence the optimal control law must pick 
not only an optimal control which causes the system to reach the target set, but 

it must choose the target set as well. For the probabilistic inequality constraint 
problem in z, t space, the 0~~ and pi values produce a control dependent inequality 
constraint which might be termed the fiducial boundary. For properly chosen yi , 
increasing the feedback gain ?P will decrease the covariance of Y and cause the 
Jiducial boundary to expand, approaching the limits ai and /Ii as Y grows un- 

bounded. Hence, the optimal control not only minimizes the cost functional 
subject to inequality constraints (in X, t space) but it simultaneously chooses the 
constraints themselves (as seen in z, t space). The controller decides how much 
cost it is willing to incur to expand the jiducial boundary. The example in 
Section 7 illustrates some of these concepts. 

5. SELF-CONSISTENCY TEST FOR PROBABILISTIC CONSTRAINTS 

In the statement of the Probabilistic State Inequality Constraint Problem, it is 
required that the set of constraints be self-consistent. This concept is defined as 
follows. 

DEFINITION. The probabilistic inequality constraints (4) are said to be self- 
consistent on [0, T] for system (1) if for all t E [0, T] there exist a state vector 
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z(t) and a symmetric state matrix E(t), which are within the respective sets of 
reachable states and for which all constraints are simultaneously satisfied. 

A test for self-consistency will be developed which can be applied a priori 
without solving the optimization problem. The following Controllability Lemma 
will be needed in the development. 

CONTROLLABILITY LEMMA. The covariance state equation 

B(t) = [*4(t) + B(t) Y(t)] Z(t) + E(t)[A(t) + B(t) Y(t)]’ + P(t), 

Z(0) = 0, 

with P(t) positive definite, is totally state controllable on (0, T] relative to the 
covariance control Y(t) for E(t) restricted to the class of positive dejnite n x n 
symmetric matrices on (0, T]. That is, for every interval [tI , t2] with 0 < t, < 
t, < T, there exists a bounded Y(t) which transfers the system from any positive 
definite E(tJ to any prescribed positive definite E(t,). Furthermore, no Y(t) exists 
for which .‘E’(t)y = 0, Y # 0, for any t E (0, T]. 

Proof. The matrix E can be written as the sum of two matrices Er and Es 
which satisfy 

Qt) = A(t) q(t) + &(t) A’(t) + r(t), 

Qt) = A(t) E*(t) + &2(t) A’(t) + B(t) U(t) + U(t) B’(t), (27) 
q(o) = c”,(O) = 0, 
u(t) = Y(t) E(t) = Y(t)&(t) + &z(t)]. (28) 

As stated earlier, the system (A, B) is assumed to be totally state controllable 
on [0, T]; i.e., it is completely state controllable on every interval [tl , te] with 
0 < t, < t, < T. Therefore, the Gram matrix 

G(t, 1 tn) = I:’ -=( t, , t) B(t) B’(t) X’(t, , t) dt 

is nonsingular, where X(t, tl) is the state transition matrix for system matrix 

4) M. 
Without loss of generality, assume the final state Z2(t2) = 0. The definition 

of .Sr can always be modified to transform any E2(tz) to zero. Consider the control 

U(t) = - *B’(t) X’(t, , t) G-l@, , t2) Z&J X’(t, t,). 

E2(t2) can be written in integral form as 

W*) = X(f2 9 t1) W,) qt, > td 

+ St2 X(tz , t) [B(t) U(t) + uyt) B’(t)] xyt, , t) df. 
t1 
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Substituting U(t), using symmetry of &(tr) and G(t, , ta), using proper-tics of 
the state transition matrix, and using the definition of G(t, , tJ shows that the 
control U(t) produces Za(ta) = 0. Th ere ore, f  relative to control matrix L*[t), 
system (27) is totally state controllable on [0, T] for Ea in the class of symmetric 

71 Y 12 matrices. Then for every interval [ti , tJ with 0 5: t, < t, <- T, there 
exists a control U(t) which transfers the state Z(tr) to any prescribed .5Jtz). 

Provided E-l (f) exists for all t E [tr , t,], there exists a covariance control Y’(t) 

which generates this V(t), and it is given by 

Y(t) = U(t) E-‘(t). 

By definition, E(t) is at least positive semidefinite. It is easily shown that E(t) is 
necessarily positive definite on (0, T]. In integral form 

Z(t) = ( @(t, s) r(s) O’(t, s) ds, 

where @(t, s) is the state transition matrix associated with system matrix A4(t) + 
B(t) Y(t). Consider 

ix(t) 1, = 
F 

t v’O(t, s) r(s) O’(t, s) v  ds. 
‘0 

By assumption r is positive definite. Also, @(t, s) is necessarily nonsingular so 
that the integrand is positive for all Y f  0. Therefore v’E(t)v > 0 for all Y + 0 

and t E (0, T], and E(t) is positive definite on this interval. Hence, c’-‘(t) exists. 
Then for every interval [t i , ta] with 0 < t, < t, < T, there exists a bounded 
covariance control Y(t) which transfers the system from any positive definite 
E(t,) to any prescribed positive definite E((ta). Furthermore, no Y((t) exists for 
which E(t) can have a zero or negative eigenvalue for any t E (0, T]. 1 

SELF-CONSISTENCY THEOREM. Let Y4 be the null set, and let r(t) be positive 
de$nite on [0, T]. For all t E [0, T], let the yi(t) satisj~~ 

Dejine 

Y31 = {i I i E Y, , %(r'(t), t, aj(t, 0)) > ydt) vt E (0, T]), 

andfor t E [0, T] define 

S(t) = {z(t) 1 z(t) satisfies inequalities (29) at t}, 
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where (29) is 

K;(t) z(t) > &, O), i E Yl u Y,, ( 

lqt) x(t) < hi@, O), i E Y, u Ysl . 

Then for system (1) the probabilistic inequality constraints (4) are self-consistent 

if and on& if Yzl = Y3 and s(t) is nonemptJ!for all t E (0, T]. 

Proof. The converted forms of the probabilistic constraints are relationships 
between z(t) and E(t). From the Controllability Lemma the positive definite E(t) 
is totally state controllable on (0, T]. In particular a covariance control Y(t) 
exists which keeps E(t) arbitrarily close (in the sense of the Euclidean norm) to 
the zero matrix for all t E [0, T], although there exists no control function Y 

for which Z(t) has a zero eigenvalue for some t E (0, T]. It will be shown that, 
under the conditions of the theorem, the probabilistic inequality constraints are 
least restrictive on the set of values that z(t) can assume when E(t) approaches 

zero. 
Equation (22) with 17 = Z gives ui2 as the sum of two quadratic forms. Since 

the K,(t) # 0, the second quadratic form is positive for all t E (0, T], and there- 
fore 

44 q”(t)) > Ui(4 O), t E (0, T]. (30) 

Furthermore, by proper choice of Y(t), ai(t, Z(t)) can be made to assume any 
value satisfying this inequality. 

Constraints associated with i E Yr transform to K;(t) z(t) > gi(t, Us), where 
the gi are given by (23). By assumption n(t) > 8 for i E Y, , so that (3fi/~ui) > 0. 
Combining this and (30) shows that g,(t, Z(t)) > g,(t, 0) for B # 0. Since E(t) 
can be maintained arbitrarily close to the zero matrix, but B # 0 for t E (0, T], 
the least restrictive form of the constraints is K:(t) z(t) > g,(t, 0) for t E (0, T]. 

Since S(0) = 0, equality is allowed at t = 0. For constraints associated with 
iEY2, analogous arguments give the least restrictive form of these constraints 
as K;(t) z(t) < h,(t, 0) for t E (0, T] with equality allowed at t == 0. 

Consider constraints associated with i E Ya , and define 

1 

[ 
h(t) - %P) 

ri*k 4 = y  erf p2uj(t, qtjj I ’ 

Then (2yT/ih,) < 0 for (Y~ > 0. This together with (30) establishes that the 
stated assumption yi(t) > yr(t, ui(t, 0)) implies n(t) > $(t, ui(t, S)) for all c”. 
Note that 

@j(cq , t, ui(t, 5)) = @i(pi ) t, q(t, E)) = yi*(t, q(t, S)), 

and hence ai and ,& are roots of api(s, t, ui(t, S)) = y:(t, ui(t, E)). It was shown 
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in the proof of the Conoersion Lemma that Qpi(r,F + 4, t, gi) is a monotonicall! 
increasing function of 5 for -co < 5 < 0, and a monotonically decreasing 
function of 5 for 0 < 5 < + co. Therefore the roots g! and hi of 

must satisfy 

@i(S, t, 4, 2)) = Yi(f) (31) 

provided these roots exist. I f  the roots fail to exist for any t E [0, T], then part 
(iii, c) of the Cowersion Lemma applies, and the constraint cannot be satisfied. 

By direct calculation (%Dd/~oi) < 0 for 01, < s < & . Therefore the roots 
exist for all t E (0, T] f  or some reachable Z(“(t), provided i E Y,, . I f  i E Yar , by 
continuity arguments it is necessary that at t = 0, Qi(rT(0), 0, ~~(0, 0)) > ~~(0). 
Since E(O) = 0, equality is allowed at t = 0, and the roots gi and hi will therefore 

exist for all t E [0, 7’1. I f  there is an i such that i E Y, and i $ Y,, , then there is 
some t for which the associated probabilistic constraint cannot be’satisfied. The 
condition Ysi = Ya is therefore a necessary condition for self-consistency. 

Write s = r:(t) + 5 in (31) and differentiate with respect to cri for iE Y,, 

to obtain 

at aqau, -= 
auj -w' 

The numerator has been shown above to be negative; and the denominator is 
positive for -co < 5 < 0 and negative for 0 < &’ < + co. Therefore 

and using (30) shows that g,(t, 3(t)) > g,(t, 0) and that hi(t, Z(“(t)) < &(t, 0) 
for t E (0, T]. Since E(“(t) can be maintained arbitrarily close to the zero matrix, 
but S # 0 for t E (0, T], the least restrictive form of the constraints for i E Ysl is 

for t E (0, T]. I f  this inequality is satisfied, then by continuity g,(O, 0) < 
K:(O) z(0) < hi(O, 0). Equality is allowed at t = 0 since S(0) = 0. 

It has now been shown that if Y,, = Ya , the constraints associated with 
i E Ya can individually be satisfied. If  simultaneously s(t) is nonempty for all 
t E (0, T], then there exist a covariance control Y(t) and associated covariance Z(“(t) 
whose norm is sufficiently small that all probabilistic constraints (4) (with Y, the 
null set) are simultaneously satisfied by some x(t). Therefore the constraints 
are self-consistent. Furthermore, if Y,, f  Y, , there exists no z(t) which satisfies 
the probabilistic constraints; and similarly if A’(t) is the empty set for some 
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t E (0, T], there exists no z(t) which can satisfy the constraints (4) (with Y, 
the null set) no matter what the value of Z(t). Hence the proof is complete. 1 

The driving term r(t) is necessarily at least positive semidefinite. The require- 
ment in the theorem that r(t) must be positive definite might be relaxed, but the 
determination of the set of reachable states for E(t) becomes difficult; it may be 

possible to maintain some or all eigenvalues of E at zero. This introduces the 

possibility of equality in (29), and whether or not equality is allowed depends 
on the detailed structure of r(t), d(t), and the Ki(t). 

The limitations on the values of the yi ate necessary in order that the smallest 

variance (TV corresponds to the fiducial boundary which is least restrictive on z(t). 
I f  the yi for an i E Yi is less than 4, then the fiducial boundary is outside the 
K$ > 01~ region, and an increase in the variance oi will cause the fiducial 
boundary to recede from ai making the constraint less restrictive. This gives 

rise to the peculiar situation where increasing the uncertainty in x(t) makes it 
easier to satisfy the constraint. Since one would normally require a high proba- 
bility for constraints with i E YI u Y3 , and a low probability for constraints 
with i E Y? , the given limits on the yi are natural. 

Constraints associated with YA were not considered in the Self-Consistency 

Theorem. If yi is sufficiently small for in Y, then decreasing (TV will make the 
constraints less restrictive. However, another possibility exists, that by making 
oi sufficiently large case (iv, b) of the Conversion Lemma applies and the constraint 
then disappears. Hence, a sufficient increase in the uncertainty in x can eliminate 
these constraints while making other constraints more restrictive. Both possi- 

bilities must be considered to determine whether a probabilistic constraint set 
including constraints in Y, is self-consistent. 

6. STOCHASTIC CONTROL PROBLEMS WITH PROBABILISTICALLY 

CONSTRAINED CONTROLS AND STATES 

In stochastic control problems it is sometimes natural to impose probabilistic 
constraints on the control u(t) or on combinations of u(t) and x(t). The following 
general problem of this type can be treated by the techniques developed in 
previous sections. 

PROBABILISTIC~TATEAND CONTROLINEQUALITY CONSTRAINTPROBLEM. In the 
Probabilistic State Inequality Constraint Problem let constraints (4) be replaced by 

WW) u(t) + G(t) x(t) 3 4)} >, x(t), iEY,, 

WG(t) u(t) + K(t) x(t) b 401 < r&), ieY2, 
(32) 

Prkdt) <G(t) 40 + K(t) 44 < t%(t)) 2 r&J, iEY3, 

W4t> < G(t) u(t) + G(t) *r(t) < A(t)) < ri(t), iEYJ, 
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whereL, and Ki are not simultaneously zero. Then$nd a control u(t) which mizzimizes 

(3) subject to constraints (32). 

A second corollary to the Conversion Theorenz expresses the optimal control for 
this problem in terms of the control functions of a deterministic problem. 

COROLLARY 2. Let the set of admissible controls be as specified in the Conversion 
Theorem. Let the inequality constraints (7) of tlze Bilinear Deterministic Constraint 
Problem be replaced b?l 

L;(t) w(t) + K;(f) z(t) 3 c&s@, ai), iEZ1, 

L;(t) w(t) + K;(t) x(t) < h& o<), iEZZ, 

L;(t) w(t) + K:(t) x(t) > &(t, ui) or 

-G(t) 4) + K(t) Z(t) d w, %), iEz;, 
where 

-1 [L;(t) Y(t) + K:(t)] 3(t) [L;(t) Y(t) +- K;(t)]’ + K;(t) P(t) K,(t). 

Then any optimal control u(t) satisfJGzg the Probabilistic State and Control 
Inequality Constraint Problem can be expressed as 

u(t) = w(t) + Y(t)[iyt) - z(t)], 

where w(t) and Y(t) are optimal controls for a Bilinear Deterministic Constraint 
Problem, and z(t) is the corresponding optinzal solution. 

Proof. Parts (i) and (ii) of the Conversion Theorem apply without change. 
Since both u(t) and x(t) are Gaussian stochastic processes the Conversion Lemma 

applies to the constraints (32). After proceeding as in (12), the required variance 

q’(t, 3(t), Y(t)) = E{[L;.(u - u) + K;(x - -r)] [L;.(u - u) + K;(x - x)]‘] 

is as stated above. IVith the substitution of this cri , the definitions of gi , Iii , 
and Qi remain as in Eqs. (23)-(25), and the proof is complete. 1 

Note that the CJ~ are not only dependent on the covariance control Y(t) through 
the covariance c”(t) but now have explicit dependence on Y(t) as well. As a 
result, the Self-Consistency Theorem does not apply to this problem. 

An important special case of (32) is the probabilistic form of the constraint 
1 uj 1 ,( 1 which can be generated from the third type of constraint or as a 
combination of the first and second constraint types. 
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7. EXAMPLE 

Consider the following scalar probabilistic target set problem, 

dx(t) = u(t) dt + du(t), x(0) = x0 ) 

y(t) = X(t), 

E[zft) V(S)] = V min(t, s), 

p(t) = EL+) - G)Y, P(0) = wj, z(t) = E[x(t)]. 

The set of admissible controls 4’ is restricted to affine functions of the form 

p(t, x> = -4x + N(t) with # a constant parameter, and N(t) piecewise con- 
tinuous. The optimal cost functional is 

j* = ‘i$ E 1: jO’ [4x2(t) + u2(t)] dt + $fx2(T)I . 

Letf = $j2, and let the target set be 

Note that this problem does not lie precisely within the purview of the 
Probabilistic Target Set Problem since the observations are perfect and # is a 
constant parameter. Nevertheless, with slight modifications, the same methods 
apply to problems of this form. Use of the Conoersion Lemma produces the 
deterministic target set 

z(t) > a+ P[ P(W”, p = 2l/* erfP(2y - 1). 

A procedure analogous to that in the proof of the Conversion Theorem results 
in the converted cost functional 

J* = $$ 1: jo= b2(t> + W*(t) + c@(t) + ~2~(t>l dt + ifi* + #V)\ , 
where w(t) = E[u(t)]. D irect calculations show the system equations analogous 

to (5) are 

i(t) = w(t), z(0) = z, ) 

j(t) = -2@(t) + v, p(0) = V/2$ 

Figure 1 gives the solution to this deterministic problem when Q = f = a = 
p = T = 1 and V = 2. In region I the trajectories are free trajectories in the 
sense that they are unaffected by the target set constraint. Free trajectories can 
be calculated directly without consideration of the above converted cost func- 
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FIG. 1. Example of a probabilistic target set problem. 

tional. Hence, the control is u(t) = --fx(t), where f is the constant solution of 
the Riccati equation 

$ =v-6 4(T) =f. 

Thus, w(t) = -fz(t), # = f, and th e o pt imal trajectories are given by z(t) = 

z,, exp( -ft). The boundary of the free trajectory region is 

z(t) = [a + p(V/2f)l'*] efcT-f) = zzecff, 

which is that trajectory reaching z(T) = (Y + p[ ~(T)]lj~ where P(T) = p(t) = 
V/2f is the constant solution for p(t) when 4 = f. It is indicated by a bold line 
in Fig. 1. 

For z0 < z,* the covariance control # is adjusted to alter the size of the target 
set as seen in z space. Throughout region II strict equality will apply in the 
deterministic target set inequality, although within region I strict inequality 
holds. The dashed curve starting from Z, = 0 in the figure is an example of an 
optimal trajectory in region II and can be determined as follows. Let 4 = f  + A#, 



PROBABILISTIC INEQUALITY CONSTRAINTS 251 

and write p(t; d$) for p(t) in order to show the dependence on the control 
parameter A$. Then 

The solutions for z(t) and w(t) from the state and costate equations for this 
problem are 

z(t) = k(A+) sinhft, 

w(t) = fk(A#) coshft, 

W$) = {a + p[ p( T; AWWnhfT, 

where the boundary conditions are z(0) = 0, z(T) = ol + p[ p(T; A#)]‘/“. 
Direct substitution of p, z, and w into the converted cost functional gives 

J.+ = b,fin 1 clk2(A$) + df’ + (f + ‘+)*I - ‘+?cT’ ‘3 
I 4 2 4(f + 4) 

, 

where 

c2 = V(2f T + 1)/2f. 

The minimizing value of A# is approximately 1.5, and the optimal trajectory z(t) 
is thus determined. 

The increase in the covariance control from # = f = 1 in the free region 
decreases the covarince p(t; A#) at t = T from unity to 0.4. As a result, the 
target set boundary decreases from 01 + p[ p(T; O)]l/* = 2 in the free region, 
to 01+ p[ p(T; Az+)]~/~ = 1.63 for this trajectory in the control dependent 
target set region. 

8. EXTENSIONS 

Generalization of the data-unconditional probabilistic inequality constraints 
considered so far can include data conditioning of the constraints and proba- 
bilistic polygonal constraints. Extension of our results under these generaliza- 
tions will now be discussed. 

Consider data-conditional probabilistic inequality constraints such as 

This constraint will necessarily destroy the Gaussian property. To show this, 
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assume that x(f) is Gaussianly distributed. Then a(t), which is a linear combina- 
tion of the data, is also Gaussian. Application of the Conzwsion Lemma gives 
the inequality 

K;(t) a(t) 3 az(t) + 21%!o, erf-l[2yi(t) - 11. 

But if this inequality is satisfied, a(t) cannot be Gaussian, which is a contradiction. 
It would appear that to handle such constraints, one would first have to 

determine the distribution functions for the state variables, and determine how 

these are related to the applied control. However, it is possible to generate con- 
trols for problems with data conditional constraints by repeated application of 
the results of this paper. Pick a finite number of times t, and let u(tJ be the 
initial value of the optimal control obtained using the Coneersion Theorem with 
constraints such as 

for 7 ranging from t, to T. The control sequence u(tJ obtained in this manner 
might be described as an open loop optimal feedback control as defined in [7]. 

It is possible to pose probabilistic polygonal constraint problems and proba- 

bilistic polygonal target set problems analogous to the problems of Section 2. 
If  s*(t) is a closed polygonal set, then the probabilistic state inequality constraint 
can be written 

Pr{x(t) E s*(t)} > y(t). 

For a polygonal constraint in two dimensions this constraint can be written in 
terms of the tabulated T(h, a) function which gives the volume of an uncorrelated 

bivariate normal distribution with zero means and unit variances over the area 
0 < .x2 < axI , x1 2 k. Then the probabilistic constraint can be written in the 
form 

1 - Cx T(ki(%), aj(f)) 3 y(t), 
i j 

where the hi and aj are expressible as nonlinear functions of the coordinates of 

adjacent vertices of the polygon transformed to uncorrelated, zero mean, and 
unit variance coordinates [S, 93. 
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