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SUMMARY

Within the medial frontal cortex, the supplemen-
tary eye field (SEF), supplementary motor area
(SMA), and pre-SMA have been implicated in
the control of voluntary action, especially during
motor sequences or tasks involving rapid
choices between competing response plans.
However, the precise roles of these areas re-
main controversial. Here, we study two ex-
tremely rare patients with microlesions of the
SEF and SMA to demonstrate that these areas
are critically involved in unconscious and invol-
untary motor control. We employed masked-
prime stimuli that evoked automatic inhibition
in healthy people and control patients with lat-
eral premotor or pre-SMA damage. In contrast,
our SEF/SMA patients showed a complete re-
versal of the normal inhibitory effect—ocular or
manual—corresponding to the functional sub-
region lesioned. These findings imply that the
SEF and SMA mediate automatic effector-spe-
cific suppression of motor plans. This automatic
mechanism may contribute to the participation
of these areas in the voluntary control of action.

INTRODUCTION

Regions within the dorsal medial frontal cortex are con-

sidered to play a key role in the voluntary control of action

(Passingham, 1993). In particular, the supplementary

motor area (SMA), supplementary eye field (SEF), and

the pre-SMA have repeatedly been implicated in actions

that are ‘‘self-initiated’’ or driven by ‘‘internal goals’’

(e.g., Coe et al. [2002], Deiber et al. [1999], Isoda and

Hikosaka [2007], Lau et al. [2004], Nachev et al. [2005],

Passingham [1993], Romo and Schultz [1987], Tanji and

Shima [1994]). For example, lesions or reversible inactiva-

tion of SMA and pre-SMA in macaques have caused
deficits in simple movements and motor sequences

when they were self initiated, but not when guided by

sensory cues (Chen et al., 1995; Nakamura et al., 1999;

Shima and Tanji, 1998; Thaler et al., 1995). In humans,

lesions restricted to these areas are rare, but studies of

patient JR, who has a highly unusual focal lesion of

SEF, have revealed deficits in voluntary eye movement

control, such as the ability to switch from a previous sac-

cade plan or between prosaccades toward a stimulus and

antisaccades away from it (Husain et al., 2003; Parton

et al., 2007).

Although there are clear distinctions between voluntary

and reflexive actions, at some level all behavior must be

built on a variety of automatic mechanisms, since there

can be no homunculus to steer actions by specifying

volitional goals. To explain the contribution of the medial

frontal cortex to voluntary behavior, we seek to identify

automatic processes upon which voluntary actions are

built.

Behavior must arise through associations between

particular contexts—including internal brain states—and

particular actions and through the interplay and competi-

tion between these ‘‘condition-action associations’’

(Nachev et al., 2007; Wise and Murray, 2000). Thus all

actions—including ‘‘self-initiated’’ or ‘‘internally generated’’

ones—depend upon context. But the defining criterion for

voluntary behavior is that the stimulus environment does

not inevitably specify one particular movement. In other

words, there is choice, because more than one action

contingency may be associated with the current set of

conditions. But with choice there is always the potential

for activation of unwanted movement plans—and the

need to suppress such activity.

It is now clear that well established condition-action

associations may cause automatic subconscious motor

activation (or ‘‘priming’’), even when the participant has

no intention of making the associated movement. For

example, simply viewing objects can prime manual re-

sponses that might be used to grasp such an object

(Tucker and Ellis, 2004). Importantly, such activations

occur in the SMA (Grezes and Decety, 2002). Motor
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activation can even be elicited by established condition-

action associations without the stimuli themselves being

consciously perceived—as in the case of masked-priming

(e.g., Leuthold and Kopp [1998], Neumann and Klotz

[1994]). Thus an inevitable feature of choice, the defining

criterion of voluntary behavior, is the potential for auto-

matic coactivation of action plans (Nachev et al., 2007).

If flexible behavior is to be possible though, such auto-

matic motor activation must be inhibited so that the most

strongly established actions are not inevitably executed.

Moreover, this inhibitory mechanism can potentially be un-

derstood without invoking higher-order volitional goals. It

may simply suppress any response activation triggered

by changes in the sensory environment which would

otherwise interfere with ongoing motor plans. Such auto-

matic inhibition can be measured using a recently devel-

oped masked-prime task, outlined below (e.g., Eimer

and Schlaghecken [2003], Schlaghecken et al. [2006]).

By rapidly halting partial activation of strongly established

condition-action associations and maintaining a level

playing field on which alternative actions can occur, auto-

matic mechanisms could thus contribute to flexible volun-

tary behavior. The aim of our study is to determine whether

one of the mechanisms through which the SMA/SEF may

contribute to voluntary control is automatic inhibition of

unwanted motor plans (activated unconsciously by well-

established condition-action associations).

In the masked-prime task, which we employed here,

participants respond to stimuli associated with left or right

responses. These targets are preceded by brief primes

rendered invisible by a backward mask (Figure 1). If the

delay between prime and target is shorter than 100 ms,

there is facilitatory priming, such that responses are faster

when both prime and target indicate the same response

(compatible), compared to when prime and target pro-

duce competition by indicating opposite responses (in-

compatible). However, at longer prime-target delays,

a negative compatibility effect (NCE) is produced, such

that now responses are actually slower for compatible

primes than for incompatible primes (e.g., Eimer and

Schlaghecken [2003]; Schlaghecken et al. [2006]). As

long as potential prime-mask perceptual interactions are

controlled (Lleras and Enns, 2004; Sumner, 2007b;

Verleger et al., 2004), the NCE can be taken to index an

automatic inhibitory mechanism that suppresses the sub-

threshold motor activation evoked by the prime, stopping

it from interfering with an alternative response to the target

(Jaskowski and Przekoracka-Krawczyk, 2005; Schla-

ghecken and Eimer, 2006; Sumner, 2007a; see Supple-

mental Data available with this article online for further

details).

Note that there is no voluntary or conscious effort to

suppress responses to the prime, because the prime is

not perceived (Eimer and Schlaghecken, 2003; Sumner

et al., 2006). Therefore, unlike previous tasks employed

to study the functions of SMA and SEF, this task permits

a distinction between higher-order executive mecha-

nisms that represent volitional goals and lower-level fun-
698 Neuron 54, 697–711, June 7, 2007 ª2007 Elsevier Inc.
damental mechanisms that automatically keep response

alternatives in check. On occasions, such automatic

mechanisms might appear maladaptive, suppressing ac-

tions that are subsequently required. But the slight delay

this causes may be a small cost relative to risking the ex-

ecution of an inappropriate action. Moreover, as outlined

above, the inhibition does not occur immediately, allowing

for facilitation by the primes as long as the same action is

cued by the target at around the same time.

Critically, this automatic inhibition is effector specific,

rather than operating at a perceptual or more general

processing level (Eimer and Schlaghecken, 2003). For ex-

ample, primes associated with left or right foot move-

ments do not cause inhibition of manual responses (Eimer

et al., 2002). Likewise, many neurons in the SMA and SEF

have effector-specific activity, for hand and eye move-

ments, respectively (Chainay et al., 2004; Fujii et al.,

2002; Luppino et al., 1991). Thus, we hypothesize that

some of the activity measured in this region during voli-

tional behavior might be related to the effector-specific

Figure 1. Illustration of the Stimulus Sequence in the

Masked-Prime Task

The participants responded to the target arrows, which could point left

or right, by pressing left or right buttons. The prime, which could also

point left or right, was rendered invisible by the mask, so that partici-

pants saw only the fixation cross, the mask, and the target. If the prime

was the same as the target, as depicted, it is a ‘‘compatible’’ trial. If the

prime points in the opposite direction, it is an ‘‘incompatible’’ trial. Note

that following previous convention (e.g., Eimer and Schlaghecken

[2003]), the trial’s SOA is measured from the start of the mask until

the start of the target: in this case 150 ms.
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automatic inhibition of subconsciously activated condition-

action associations, as measured by the masked-prime

task.

It is challenging, however, to establish a causal relation-

ship between a brain area and a specific function. Docu-

menting brain activity, using fMRI for example, might sup-

port such an argument, but in order to demonstrate that

an area is essential for a function, it is necessary to study

the effects of interfering with that region. Unfortunately,

lesions in humans are usually large, spanning several dif-

ferent brain areas, therefore making it difficult to come to

any definitive conclusion. Here, we overcome these limi-

tations by studying patients with rare and serendipitously

located lesions.

The first case, CB, has a focal lesion involving the SEF

and SMA, as demonstrated using structural and func-

tional imaging (Figure 2; see Supplemental Data for clini-

cal details). The second patient, JR, has an even smaller

lesion affecting the paracentral sulcus. New functional im-

aging performed for the first time at 7T in a human with

a brain lesion indicates that the SEF is damaged (Figure 3),

consistent with previous findings demonstrating deficits

for eye—but not hand—movements in this patient (Husain

et al., 2003). CB’s and JR’s lesions are by far the smallest

ever studied in the medial frontal lobe and are on a par

with the functional granularity of cortical areas revealed

by fMRI or neurophysiology. These patients present a pre-

cious opportunity to study the specific contribution of the

SMA and SEF to the control of action. The third medial

frontal patient, AG, has a much larger lesion, which en-

compasses the pre-SMA (Figure 4). She also shows def-

icits in the voluntary control of movement, encountering

difficulty in switching from one limb movement plan to an-

other (Nachev et al., 2007). Remarkably, the caudal bor-

der of her lesion lies in the same position as the rostral

borders of the other two patient’s lesions, making AG’s le-

sion an excellent control, allowing the specific damage in

patients CB and JR to be compared to her more extensive

damage involving the pre-SMA. Finally, we also studied

two cases (RS and VC) who have very large frontal lesions

involving lateral premotor areas (Figure 4). These patients

act as further controls for comparing the consequences of

extensive premotor damage to the specific damage to

SMA and SEF in patients CB and JR.

If parts of the supplementary motor regions mediate

automatic inhibition, as we hypothesize, we would expect

them to do so in an effector-specific manner, with the

SMA responsible for inhibition of manual movements

and SEF responsible for inhibition of eye movements.

Thus, while in CB we would expect disrupted inhibition

for both saccades and manual responses, in JR we might

predict a dissociation between manual and saccadic re-

sponses. The results demonstrate precisely this pattern,

providing strong evidence that these regions are causally

involved in automatic response inhibition in an effector-

specific manner. By contrast, patients AG, RS, and VC

displayed inhibition just like healthy age-matched con-

trols, despite having lesions many times larger than those
in CB and JR. These findings support the proposal for

a dissociation between the mechanisms of control under-

taken by SMA or SEF and those undertaken by other

frontal areas such as the pre-SMA, which we consider

in more detail below (see Discussion).

RESULTS

Anatomical and Functional Imaging

The SMA is generally defined as the area of medial frontal

cortex in the superior frontal gyrus lying dorsal to the cin-

gulate sulcus, rostral to the primary motor cortex and cau-

dal to the VCA line (Picard and Strick, 1996, 2001), and

can be distinguished from the pre-SMA (rostral to the

VCA line) by its pattern of connectivity (Johansen-Berg

et al., 2004). The anatomical landmark of the SEF is gen-

erally taken to be the paracentral sulcus (Grosbras et al.,

1999). However, between individuals there is consider-

able rostrocaudal variation in these functional areas, as

shown by a meta-analysis of human imaging studies

(Mayka et al., 2006). Consequently, in order to specify

the lesion locations, we functionally localized the SEF

and SMA in our medial frontal patients as well as ten

healthy volunteers using simple tasks of voluntary eye

movements or hand movements, interleaved with rest,

during functional MRI (see Supplemental Data for details).

In the healthy participants, we confirmed that the peak

oculomotor activity representing the SEF was reliably ros-

tral to the peak manual activity representing the SMA (see

Figure 5 and Supplemental Data), and that the location of

either the SEF or SMA in one hemisphere is an excellent

guide to the location of its homolog in the other, consis-

tent with previous reports (e.g., Grosbras et al. [1999],

Picard and Strick [1996]). In our patients, therefore, the lo-

cation of the SEF and SMA in the intact hemisphere can

be used as a reasonable guide to the location of these

areas on the lesioned side. This is important because

the presence of BOLD signal around the lesion itself

may be due to the effects of task-correlated head move-

ment at the lesion boundary, which may not be com-

pletely eliminated by including head realignment parame-

ters in the design matrix (see Supplemental Data).

Conversely, the absence of signal near lesions may be

due to signal drop-out caused by hemosiderin deposition

within damaged tissue which might nonetheless be

functioning normally.

In patient CB, comparison of the eye-movement blocks

with rest blocks (both coregistered with his anatomical

image) revealed oculomotor activity in the left caudal

superior frontal gyrus (SFG) in the area expected for the

intact left SEF (Figure 2, top panels). Axial, sagittal, and

coronal views all confirm that CB’s lesion is located pre-

cisely opposite the functionally defined left SEF, indicat-

ing that the right SEF is damaged. As expected, oculomo-

tor activity was also present in the visual cortex, parietal

cortex, and frontal eye fields. Parallel analysis of the

finger-movement blocks revealed activity bilaterally in the

parietal cortex, motor, and premotor areas, as well as in
Neuron 54, 697–711, June 7, 2007 ª2007 Elsevier Inc. 699
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Figure 2. Functional Localization of CB’s

Lesion

Statistical contrasts (thresholded at p < 0.001

uncorrected) for oculomotor activity (upper

panels) or manual activity (lower panels) are

superimposed on a T1-weighted anatomical

scan. Oculomotor activity within the caudal

SFG constitutes the functionally defined SEF

and appears in the left hemisphere directly op-

posite the lesion in the right hemisphere. Like-

wise, manual activity within the caudal SFG

constitutes the functionally defined SMA and

appears opposite and caudal to the lesion.

See text for more details. See Supplemental

Data for clinical information and imaging meth-

odology.
the left caudal SFG, in the area expected for the intact left

SMA (Figure 2, lower panels). This activity is opposite the

lesion and also extends caudally, consistent with the

results from healthy participants. From the anatomical

scan, we computed the lesion volume to be 3.55 cm3

(which includes the sulcal area within the lesion and is

thus an overestimate of cortical volume damaged). By

comparison, from the Human Motor Area Template

compiled by Mayka et al. (2006), we calculated the

approximate average size of the normal supplementary

motor complex (which includes the entire somatotopic

representation in SMA and SEF) to be 9.8 cm3 in each

hemisphere.

Patient JR’s lesion was not demonstrated well using

a standard T1-weighted sequence, but the T2-weighted

anatomical image revealed a very small lesion (volume =

0.31 cm3) in the left caudal SFG at the paracentral sulcus,
700 Neuron 54, 697–711, June 7, 2007 ª2007 Elsevier Inc.
considered by some authors to be an anatomical land-

mark for the SEF (Grosbras et al., 1999). Functional local-

izers for SEF and SMA found oculomotor and manual

activity in the intact right SFG opposite the lesion (Figure 3,

left panels). The functionally defined SMA in the intact

hemisphere (as indexed by hand movement-related activ-

ity) appeared to extend caudally to the lesion, while the

SEF did not, consistent with previous reports that JR

has a volitional deficit in the oculomotor domain, but not

for manual actions (Husain et al., 2003; Parton et al.,

2007).

We obtained further functional images with 7T fMRI

(Figure 3, right panels), the first such scans on a patient

with a focal lesion. These confirmed oculomotor activity

in the region of the right SEF exactly opposite the lesion.

Thus, despite the small size of the lesion revealed by

these images, it seems clear that the left SEF is damaged.
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Figure 3. Functional Localization of JR’s

Lesion

Functional images for oculomotor activity (up-

per panels) or manual activity (lower panels)

were acquired at 1.5T (left panels) and at 7T

(right panels). For 1.5T, statistical contrasts

(thresholded at p < 0.001 uncorrected) are

superimposed on a T2-weighted sagittal image

acquired with resolution 1.6 3 0.575 3 0.575

mm. The high-resolution 7T functional maps

(1 3 1 3 3 mm) are superimposed on the

mean echoplanar image. The scale bars

indicate the very small size of the lesion (note

also that there is likely to have been signal

dropout around the true lesion due to hemosid-

erin deposition). There is clear contralesional

oculomotor activity precisely opposite the le-

sion, indicating that the ipsilesional SEF is

damaged. The extent of damage to the SMA

is less clear but is likely to be less than to the

SEF, given the rostral position and small size

of the lesion. See text for more details. See

Supplemental Data for clinical information

and imaging methodology.
The situation for the left SMA is less immediately clear

on these images. There was manual movement-related

activity opposite the lesion, corresponding to right SMA,

as well as some apparent manual activity in the lesioned

hemisphere in the region expected for the left SMA, but

note, as above, that we do not wish to draw conclusions

from presence or absence of activity around the borders

of lesions. However, given that the lesion is very small

and aligned with the rostral edge of the SEF (as defined

by contralesional oculomotor activity) and that the SMA

hand representation is caudal to the SEF (as confirmed

in healthy participants above) much of JR’s SMA must

be spared. Note also that the lesion may appear larger

than it really is because of greater susceptibility to signal

dropout from hemosiderin at 7T. Taken together, the 1.5T

and 7T imaging for JR suggest that his lesion has dam-

aged the left SEF and may involve part of the left SMA,
but far less than in CB. This interpretation is consistent

with previously reported behavioral eye-hand dissocia-

tions in JR (Husain et al., 2003; Parton et al., 2007).

For control patient AG, anatomical imaging demon-

strates a much larger lesion of right medial frontal cortex,

including rostral SFG. The oculomotor functional localizer

revealed activity corresponding to the right SEF just

caudal to the lesion in the right hemisphere (Figure 4). Be-

cause the SEF lies at the rostral boundary of the supple-

mentary motor complex (Yamamoto et al., 2004), it repre-

sents an important landmark, marking the boundary with

the pre-SMA. Thus, AG’s lesion involves the pre-SMA

(as well as part of the cingulate cortex), but not the supple-

mentary motor complex. We were unable to perform

a second scan on this patient to localize the SMA hand

area definitively as she was unkeen to participate in further

imaging studies.
Neuron 54, 697–711, June 7, 2007 ª2007 Elsevier Inc. 701
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Figure 4. Control Patients’ Lesions

Functional imaging for oculomotor activity in

patient AG (left panel) demonstrates SEF acti-

vation in the lesioned hemisphere caudal to

the lesion. Thus pre-SMA is damaged, but

not SEF and SMA. Sagittal structural images

to either side of midline (right panels) reveal

the extent of surgical resection in AG. Patient

VC and patient RS have extensive strokes in-

volving lateral frontal cortex, including ventral

and dorsal premotor regions, but no involve-

ment of medial frontal cortex. See Supplemen-

tal Data for clinical information and imaging

methodology.
We also studied two control patients, RS and VC, who

have lateral frontal lesions which spare the medial frontal

cortex but involve lateral premotor cortex (Figure 4). The

lesions in both patients involved the inferior frontal gyrus,

inferior frontal sulcus and middle frontal gyrus, as well as

the underlying white matter. Since the inferior frontal

sulcus is a guide to the boundary between dorsal premo-

tor cortex (PMd) and ventral premotor cortex (PMv) (for

a discussion see Mayka et al. [2006]), their brain damage

involves both PMv and PMd, while sparing the medial wall

of the superior frontal gyrus.

Automatic Inhibition of Manual Responses

We used a masked-prime task with manual responses,

based on the paradigm developed by Eimer and Schla-

ghecken (e.g., Eimer and Schlaghecken [2003], Schla-

ghecken et al. [2006]). Participants pressed a left or right

button as fast as possible in response to arrows that

pointed left or right (see Figure 1). Before each target ar-
702 Neuron 54, 697–711, June 7, 2007 ª2007 Elsevier Inc.
row, there occurred a prime arrow (20 ms) followed by

a mask of random lines (100 ms), which rendered the

primes nondiscriminable: No participant scored above

chance when asked to discriminate the prime arrows

(mean 52%), and all claimed not to see them. We did

not employ masks of overlapping arrows, which have

been criticized for interacting with the prime to produce

confounding priming effects (Lleras and Enns, 2004;

Sumner, 2007a; Verleger et al., 2004). See Experimental

Procedures and Supplemental Data for more details.

The primes were randomly either compatible (the same

as the target arrow), or incompatible (opposite to the

target arrow). At short prime-target intervals, primes pro-

duce facilitation, but for the longer intervals used in this

study, there is expected to be an NCE for normal partic-

ipants due to automatic motor inhibition, such that re-

sponses to targets following compatible primes are typi-

cally 10–30 ms slower than responses to targets following

incompatible primes, (e.g., Eimer and Schlaghecken
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Figure 5. Functional Localization of SEF and SMA in Healthy Participants

Oculomotor activity (red-yellow) occurred reliably just rostral to manual activity (blue-green) in the SFG, and activity was confluent across the medial

wall of the SFG. Group data (n = 10) are shown; see Supplemental Data for individual data and imaging methods.
[2003]). Control participants all showed this expected

NCE. The mean effect was �22.1 ms, with a range

of �9 to �43 ms (Figure 6A). Overall mean RT ranged be-

tween 422 and 545 ms (and was not correlated with the

size of the NCE). Mean error rate also showed an NCE,

being 2.8% on compatible trials and 1.6% on incompat-

ible trials (range 0.7%–7.5% across participants). The

pre-SMA lesion control participant AG produced entirely

normal results, with an NCE of �40 ms (Figure 6A;

mean RT = 461 ms; error rates = 2.5% and 1.3% for com-

patible and incompatible trials, respectively). The results

for lateral premotor lesion controls RS and VC, who

also showed normal NCEs, are reported below.

Our hypothesis predicts that CB’s SMA lesion should

not only reduce or eliminate the NCE, but may lead

instead to a positive compatibility effect or facilitation. Ac-

cording to our proposal, the critical role of the SMA is in

automatic inhibition, but it may not be needed for the ini-

tial prime-related activation (which presumably occurs

earlier in the processing stream). Thus, without the

SMA, the inhibition would no longer exist, but the prime-

related activation might still occur, leading to faster re-

sponses when target arrows followed compatible primes.

CB’s results conformed to these predictions, with a highly

significant positive compatibility effect of 54 ms (t = 5.9,

df = 381, p < 0.001). This result is not only a long way out-

side the normal range; it is entirely the reverse effect, in-

dexing facilitation rather than inhibition (Figure 6A). CB’s

mean RT (533 ms) was within the normal range, as were

his error rates (3.5% and 3% on compatible and incom-

patible trials, respectively). There was no significant differ-

ence between RT for left and right responses (539 versus

528 ms), and neither was there any significant asymmetry

in the compatibility effect for left and right responses

(63 versus 44 ms). Error rates were also similar for left

and right (3.5% versus 3%).

If the inhibitory mechanism is effector specific (Eimer

and Schlaghecken, 2003; Eimer et al., 2002), JR’s smaller

lesion of the SEF should affect the NCE for eye move-
ments but spare it for hand movements if his SMA is

largely spared. Consistent with this prediction, JR showed

a highly significant NCE of �34 ms (Figure 6A; t = 3.9,

df = 154, p < 0.001), with error rates of only 2.5% and

1.3% for compatible and incompatible trials. Thus, JR

showed a normal priming effect for manual responses.

Left responses were significantly faster than right re-

sponses (427 versus 467 ms; t = 4.7, df = 154, p <

0.001) and JR also made fewer errors for left responses

(1.3% versus 3.8%), but there was no significant asymme-

try in the compatibility effect for left and right responses

(�23 versus �45 ms; interaction F(1,152) = 2.0; p = 0.16).

Automatic Inhibition of Saccades

We extended the masked-prime paradigm into the eye-

movement domain so that participants made leftward

and rightward saccades, rather than button presses, in re-

sponse to the target arrows. All other aspects of the pro-

cedure were identical to the manual condition. Control

participants were predicted to show NCEs similar to those

in Figure 6A, due to automatic inhibition of partially initi-

ated saccade plans (Eimer and Schlaghecken, 2001). If

this inhibitory process is mediated by the SEF, it should

be reduced or absent in both CB and JR. If prime-related

response activation still occurs in the absence of inhibi-

tion, we would predict positive compatibility effects for

both these patients.

As expected, every control participant showed an NCE,

ranging from �6.4 to �27.0 ms (mean = �19.6 ms;

Figure 6B). This confirms that the saccadic task indexes

automatic response inhibition in an analogous way to

the manual task. Mean saccadic latency for each control

participant ranged from 290–463 ms (and was not corre-

lated with the size of the NCE), while error rates ranged

from 1.3%–13% (group mean, 8% for compatible and

3.9% for incompatible trials). The lesion control partici-

pant, AG, also produced an NCE (�16 ms; see Figure 6B),

with normal mean latency and error rate (381 ms and 9%).
Neuron 54, 697–711, June 7, 2007 ª2007 Elsevier Inc. 703
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CB’s results displayed a pattern opposite to normal,

with a significant positive compatibility effect of 13.6 ms

(t = 2.5, df = 384, p = 0.01). Thus, as predicted, CB showed

facilitation rather than inhibition on this eye movement

task (Figure 6B), as well as on the previous hand-move-

ment task. His mean latency (445 ms) was within the nor-

mal range, as were his error rates (3% on both compatible

and incompatible trials). There was no significant differ-

ence between latencies for leftward and rightward sac-

cades (450 versus 440 ms), and neither was there any sig-

nificant difference in the compatibility effect for leftward

and rightward saccades (15.1 versus 12.1 ms).

Figure 6. Results for Manual and Saccadic Responses

The compatibility effect is the difference between response time on in-

compatible and compatible trials (and error bars are the standard error

of this difference). For all control subjects, there was a negative com-

patibility effect—i.e., responses were longer on compatible trials—for

both manual (A) and saccadic (B) responses, indexing inhibition (open

circles for neurologically healthy controls; gray circle for AG, the lesion

control patient). CB, however, showed a strong positive compatibility

effect, indicating that the inhibitory process is disrupted for both man-

ual and saccade responses. JR, whose smaller lesion appears to

largely spare SMA, showed a normal negative effect for manual re-

sponses (A) but a positive effect for saccadic responses (B). See text

for more details.
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JR’s results also displayed a significant positive com-

patibility effect of 16.4 ms (t = 3.6, df = 533, p < 0.001;

Figure 6B). Error rates were 6% on compatible trials,

and 9% on incompatible trials. Thus, although JR showed

normal results for manual responses, his results were op-

posite to normal for saccades—a dissociation that mirrors

the greater involvement of SEF than SMA in his lesion and

confirms the effector-specific nature of the inhibitory

mechanism. There was no overall difference between la-

tencies for leftward and rightward saccades (359 versus

358 ms), but there was an asymmetry in the compatibility

effect (26.2 versus 6.6 ms; interaction F(1,531) = 5.7. p =

0.018). This pattern of results was also reflected in the er-

ror rates, which were 7.7% overall for both left and right

saccades, with an asymmetric compatibility effect (7.3%

for left; �0.7% for right).

Delayed or Absent Inhibition for Hand Movements?

Above, we reported a striking reversal of the manual com-

patibility effect for CB, as predicted if the SMA is respon-

sible for automatic inhibition of manual response initiation.

However, these results leave open the possibility that

inhibition may be delayed rather than being altogether ab-

sent. That is, we have shown only that inhibition is absent

at a prime-target interval of 150 ms. Now, we extend this

to examine longer intervals, testing whether inhibition de-

velops late in CB, or whether it is absent altogether, and

we also increased the duration of the prime in case a stron-

ger signal was needed to trigger the inhibitory mechanism

in CB. First, we tested aged-matched control subjects

over a range of onset asynchronies (SOAs), from 150–

500 ms (see Experimental Procedures), in order to

measure how long the inhibition normally lasts. We

also examined AG and JR, to test whether their results

remained normal over this range. Lastly, as further con-

trols, we measured compatibility effects for patients RS

and VC, who have extensive damage to lateral premotor

areas.

At SOAs of 150 and 200 ms, every healthy control partic-

ipant showed NCEs, ranging between�11 ms and�36 ms

(see Figure 7, top left panel). At 300 ms, most participants

still showed a negative effect, while at 500 ms there was no

longer any effect; i.e., responses for compatible trials were

not longer than for incompatible trials. Mean RT for each

participant ranged from 423–609 ms. Error rates ranged

between 1% and 7% and showed slight NCEs at each

SOA (group means, �1.7%, �1.6%, �0.8%, �2.3%).

The pre-SMA lesion control participant, AG, produced a

similar pattern of results, with NCEs of �48 ms (t = 5.0,

p < 0.01), �27 ms (t = 2.9, p < 0.01), �17 ms (t = 1.7,

p = 0.08) and �8 ms (t = 0.9), respectively, for SOAs of

150, 200, 300, and 500 ms (Figure 7, top right panel). Her

mean RT was 443 ms, and error rate was 2%. Lateral pre-

motor cortex patient VC also produced entirely normal

results, with NCEs of �17 (t = 2.0, p < 0.05) and �27 ms

(t = 3.3, p < 0.01) for SOAs of 150 and 200 ms, respectively

(SOAs of 300 and 500 ms were not tested). Mean RT was

475 ms and error rate was 9.1%. Patient RS had difficulty
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Figure 7. Results for Manual Responses

with Varying Prime-Target Intervals

The target arrows occurred 150, 200, 300, or

500 ms after the onset of the mask (the SOA).

Results for healthy controls are individually

plotted in the first panel (open circles), and their

mean is shown as a black line. Results for AG,

VC, and RS, the lesion control patients, are

plotted in the top right panel (note that patients

VC and RS did not complete all conditions, but

showed NCEs nevertheless). Results for CB

are shown in the bottom left panel, with right

and left responses plotted separately. The

compatibility effect remains reliably positive

for both left and right at all SOAs, showing no

sign of any inhibitory process. The last panel

shows JR’s results, which indicate normal inhi-

bition. Error bars are the standard error of the

difference between compatible and incompat-

ible trials. See text for more details.
with the button responses required by the task, and we

therefore concentrated on an adapted version of one con-

dition (SOA 200 ms; see Experimental Procedures). He

showed relatively long RTs (mean 639 ms) and made

many errors (21%), but despite this, we found an NCE

within the normal range (�21 ms; t = 1.8, p = 0.07; 95%

confidence interval �44 to +2 ms).

CB produced reliable positive compatibility effects at

every SOA (Figure 7, bottom left panel). These were

43 ms (t = 3.1, p < 0.01), 53 ms, (t = 3.7, p < 0.001),

25 ms (t = 2.0, p < 0.05), and 26 ms, (t = 2.4, p < 0.05) for

SOAs of 150, 200, 300, and 500 ms, respectively. This

pattern clearly remains outside the normal range for all

SOAs tested, and there is no sign that a negative phase de-

velops at all. Mean RT was normal (524, 493, 492, 480 ms

for each SOA). CB’s overall error rates were also normal,

but unlike controls, they showed positive compatibility

effects (1.3 versus 8.8% for compatible versus incompat-

ible at 150 ms SOA; 0 versus 2.5% for 200 ms SOA; 1.3 ver-

sus 2.5% for 300 ms SOA; 0 versus 1.3% for 500 ms SOA).

There was no reliable difference between left and right

responses or left and right compatibility effects.

JR’s results also replicated and extended those of the

initial experiment. He displayed clear NCEs of �37 ms

(t = 3.8, p < 0.001), �48 ms (t = 4.5, p < 0.001), and

�37 ms (t = 4.4, p < 0.001) at SOAs of 150, 200, and

300 ms, respectively (Figure 7, bottom right panel). Like

controls, the effect had dissipated at an SOA of 500 ms.

JR’s left responses were faster than right responses

(427 versus 449 ms), which may possibly indicate some

damage to the left SMA, but note that some control partic-

ipants showed equally large asymmetry in left and right

response times. JR showed no asymmetry in the NCE.
Delayed or Absent Inhibition for Saccades?

Lastly, we tested saccadic responses with varying inter-

vals between prime and target. Above, we reported an

unusual dissociation between manual and saccadic re-

sponses for JR. When tested with manual responses,

there was a normal NCE. For saccadic responses, there

was a reverse effect, like that in CB. We then replicated

JR’s normal NCE for manual responses at several

SOAs. Now, we aimed to replicate the reversed effect

for saccades and to test longer SOAs to discover whether

inhibition is delayed or entirely absent.

Results from controls mirrored those of the manual ver-

sion of the task. At SOAs of 150 and 200 ms, every control

participant showed NCEs ranging between �11 ms and

�46 ms. At 300 ms, most participants had a reduced neg-

ative effect, and by 500 ms there was no longer any overall

effect (see Figure 8, left panel). For the shorter SOAs, the

negative effect was present for both leftward and right-

ward saccades in every subject. Mean latency for each

subject ranged between 329 and 397 ms. Errors rates

ranged between 0.5% and 12% and showed negative

compatibility effects at all SOAs (groups means, �6%,

�4.4%, �2%, �2.5%).

JR’s results were clearly opposite to those of controls

at SOAs of 150 ms and 200 ms (Figure 8, right panel).

There was no reliable sign of inhibition at any SOA. There

was also an asymmetry in the compatibility effects for

leftward and rightward saccades (ANOVA interaction

F(1,521) = 10.2, p < 0.05). For rightward saccades, any pos-

itive compatibility effect dissipated by 300 ms. For left-

ward saccades, the positive compatibility effect remained

large and reliable for SOAs of 150, 200, and 300 ms

(respectively, 24 ms, t = 3.0, p < 0.01; 31 ms, t = 3.9,
Neuron 54, 697–711, June 7, 2007 ª2007 Elsevier Inc. 705
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Figure 8. Results for Saccadic Re-

sponses with Varying Prime-Target

Intervals

Left panel: individual (open circles) and mean

(black line) results for healthy controls, who

all show NCEs for SOAs shorter than 300 ms.

Second panel: Results for right and left re-

sponses from JR (error bars are the standard

error of the compatibility effects for left and

right responses). The compatibility effect for

right responses is not reliably positive, but for

SOAs of 150 and 200 ms it is clearly outside

the normal negative range showed by controls.

For left responses, the compatibility effect re-

mains reliably positive until an SOA of

500 ms. See text for more details.
p < 0.001; 26 ms, t = 2.8, p < 0.01). Mean latency was

within normal range (369 and 380 ms for leftward and

rightward saccades, respectively). Error rates were rela-

tively low (2.5%) and showed a positive compatibility ef-

fect of around 2.5% at each SOA, without any consistent

left-right asymmetry. Thus, these results replicated and

extended the striking dissociation between manual and

saccadic responses in JR.

DISCUSSION

Following functional localization of the small lesions in CB

and JR to the SMA and SEF, we tested whether this dam-

age affected manual and oculomotor negative compatibil-

ity effects (NCE) in the masked-prime task—a measure of

unconscious automatic motor inhibition. While healthy

control participants showed entirely normal NCEs, CB

and JR demonstrated reversed effects consistent with

the extent of their lesions. The disruption occurred in an

effector-specific manner, such that damage to the SMA

affected performance on the manual task (Figures 6A

and 7), while damage to the SEF disrupted the oculomotor

task (Figures 6B and 8). When the SMA and SEF were

spared in control patients AG (pre-SMA lesion), VC, and

RS (lateral premotor cortex damage), responses were

normal despite the fact that their lesions are many times

larger than the lesions in CB or JR (Figure 4). Clearly, brain

damage per se—even if it is extensive—does not lead to

disruption of the NCE. Critically, the deficits observed in

CB and JR on these tasks were restricted to abnormalities

in the NCE and cannot be accounted for by general re-

sponse impairments, simple perceptual deficits, or any

response-accuracy tradeoff. Overall, response time and

error rate were within the normal range, while diminished

perceptual processing of the subliminal primes does not

explain the results, because the primes actually caused

robust facilitation in these two individuals.

Automatic Inhibition in SMA and SEF

The results of this study were thus consistent with our

hypothesis that one of the roles of the SMA and SEF is

to contribute automatic inhibition of primed actions.
706 Neuron 54, 697–711, June 7, 2007 ª2007 Elsevier Inc.
Although our hypothesis may appear paradoxical for a

region associated with voluntary actions, we consider

automatic inhibition to be an important component of flex-

ible, volitional behavior. It is now evident that well estab-

lished condition-action associations can cause automatic

subconscious motor activation—priming—even when the

observer has no intention of making the associated move-

ment (e.g., Tucker and Ellis, 2004). Importantly, previous

studies have linked activity within the SMA and SEF with

condition-action associations, although their focus was

on the volitional activation of such associations, rather

than automatic suppression of unconsciously triggered

movement plans (Boettiger and D’Esposito, 2005; Chen

and Wise, 1995; Lu et al., 2002; Olson et al., 2000; Rush-

worth et al., 2004; Sakai et al., 1999; Wise and Murray,

2000). According to our hypothesis, partial activations

of movement plans can indeed be useful to facilitate

actions. However, if the associated movements are not

intended to be immediately executed, automatic inhibi-

tory mechanisms within the SMA and SEF halt their further

progress.

Finding specific deficits in patients with small lesions

such as the ones described here is essential for establish-

ing causal relationships between brain areas and func-

tions. Imaging or neurophysiological studies establish

associations between behavior and neuronal activity,

rather than the behavioral consequences of interfering

with activity. But, on the other hand, human lesion studies

are usually limited by the fact that brain damage invariably

extends well beyond the boundaries of any particular cor-

tical area. This has been the case in the few studies of

other patients with SMA lesions (e.g., Gaymard et al.

[1993], Heide et al. [1996]). Crucially for this study, CB’s

and JR’s lesions are—to the best of our knowledge—

the smallest ever studied involving the SMA or SEF and

on a par with the granularity of cortical areas revealed

by fMRI or neurophysiology. The remarkable size of these

lesions, combined with their effects on a simple behav-

ioral task, allows us to advance the argument that there

might be a causal relationship between the SMA and

SEF and automatic inhibition of effector-specific condi-

tion-action associations.
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Such automatic inhibition would act to restore balance

whenever established condition-action associations au-

tomatically cause partial activation of a response, as

they are known to do (Grezes and Decety, 2002; Leuthold

and Kopp, 1998; Neumann and Klotz, 1994; Tucker and

Ellis, 2004). The inhibition may be triggered entirely within

the motor system by an automatic loop resulting directly

from any partial activation that is not supported, for exam-

ple, by further perceptual evidence and the intention to

carry out that action (Eimer and Schlaghecken, 2003;

Schlaghecken et al., 2006). Alternatively, the inhibition

may be triggered by subsequent stimuli—an emergency

break to favor a response to new stimuli instead of the re-

sponse partially activated by the initial stimulus (Jaskow-

ski and Przekoracka-Krawczyk, 2005; Lleras and Enns,

2006; Sumner, 2007a; see Supplemental Data for further

details). Either way, automatic inhibition is likely to occur

during many types of internally generated behavior be-

cause volitional actions, by definition, allow choice be-

tween several alternative condition-action possibilities,

each of which may cause automatic response activation

(Passingham, 1993; Rushworth et al., 2004; Tanji, 1996).

We suggest that some activity in the SMA and SEF may

be a low level consequence of this potential for uncon-

scious response activation, rather than necessarily repre-

senting volitional planning or conscious goals.

Previously, automatic motor inhibition has been associ-

ated with the basal ganglia rather than the medial frontal

cortex. Reduced or variable NCEs have been reported

in patients with Parkinson’s or Huntington’s disease

(Aron et al., 2003; Seiss and Praamstra, 2004). However,

a more recent study extending the tested time course, as

we have done here, reported no difference in the inhibitory

pattern between Parkinson’s disease patients and con-

trols (Seiss and Praamstra, 2006). An fMRI investigation

with healthy subjects has associated the inhibitory effect

with deactivation of the striatum and thalamus (Aron

et al., 2003). Thus, while the basal ganglia do not appear

to be the source of inhibition, they may be subject to it,

and such findings may be related to interactions with

the SMA via cortico-striato-thalamic connections (Aron

et al., 2003).

Interestingly, the unilateral lesions in CB and JR appear

to have disrupted automatic inhibition of both left and

right responses, consistent with the known bilateral repre-

sentation of saccades and hand movements in the SEF

and SMA (Fujii et al., 2002; Tehovnik et al., 2000). CB

showed no evidence for asymmetrical effects in any part

of the study (e.g., Figure 7). JR did show a larger facilita-

tory effect for leftward saccades than rightward saccades

(Figure 8), consistent with previous findings in this patient

of bilateral effects that were worse to the left (Husain et al.,

2003; Parton et al., 2007). Note, however, that this asym-

metry in facilitation was not accompanied by any large

asymmetry in overall latency, which is what asymmetrical

disruption of the inhibitory process would predict, rather

than an asymmetric compatibility effect (see Figure S2

for further explanation).
Role of SMA and SEF in Volitional Tasks

Many previous studies have implicated the supplemen-

tary motor complex (SMA and SEF) in the voluntary con-

trol of movement (for reviews, see Passingham [1993],

Tanji [1996], Tehovnik et al. [2000]). For example, the

SMA is associated with ‘‘self-initiated’’ actions that are

not supported by visual guidance. Thus, monkeys with le-

sions involving the SMA are impaired when they have to

initiate actions themselves or perform sequential move-

ments, but not when each action is cued by sensory sig-

nals (Mushiake et al., 1990; Passingham, 1993; Shima and

Tanji, 1998; Thaler et al., 1995). Neuronal recording and

functional imaging studies are consistent with this view

(Deiber et al., 1999; Romo and Schultz, 1987; Tanji and

Shima, 1994). Similarly, the SEF has been implicated in

the control of self-paced eye movements, saccade se-

quences, and antisaccades (Amador et al., 2004; Gay-

mard et al., 1993; Isoda and Tanji, 2002; Lu et al., 2002;

Schlag-Rey et al., 1997). Moreover, patient JR has been

found to have clear deficits in voluntary eye movement

control, such as the ability to switch from a previous sac-

cade plan or between pro- and antisaccades (Husain

et al., 2003; Parton et al., 2007). Taken together, these

findings demonstrate convincingly that both the SMA

and SEF play crucial roles in volitional tasks, although

the exact mechanisms underlying these roles remain

debated.

Can any of the activity shown in SMA and SEF during

paradigms used to test voluntary action, or any of the def-

icits in these tasks following brain damage, be related to

the kind of automatic inhibitory mechanisms we have

studied here? We have argued that inhibition of response

alternatives can, paradoxically, be both an intrinsic com-

ponent of volition and also automatic, as the masked-

prime paradigm shows (Schlaghecken and Eimer, 2006;

Sumner, 2007a). We would predict automatic inhibition

to be most important in tasks containing stimuli strongly

or recently associated with actions that now need to be

discarded. Stop paradigms, change of plan, or rule rever-

sal tasks, for example, all associate a stimulus with a cer-

tain response but require that response to be halted or

changed on occasions. JR has shown volitional deficits

only in tasks like these, in which one oculomotor plan is

put in direct competition with another or a learned condi-

tion-action association has to be discarded, but not in

pure blocks of saccades of all the same type, or in un-

speeded saccade sequences that emphasize spatial se-

quence memory rather than rapid online control of action

(Husain et al., 2003; Parton et al., 2007).

Tasks involving arbitrary condition-action associations

may also engage automatic inhibition of partially activated

responses. For example, when an animal learns a new set

of arbitrary stimulus-response rules, the correct condi-

tion-action associations must be activated, while compet-

ing partially activated responses must be simultaneously

inhibited. Neurones within the SEF show learning depen-

dent changes (Chen and Wise, 1995, 1996), which might

in part be related to such inhibitory effects. Patient JR
Neuron 54, 697–711, June 7, 2007 ª2007 Elsevier Inc. 707
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also shows deficits in learning new stimulus-response

mappings for eye—but not hand—movements, consis-

tent with this account (Parton et al., 2007).

Automatic inhibition of unwanted responses is likely to

be important also when we need to make speeded motor

sequences or switch between sequences. Such tasks

require selection either between components within a se-

quence or between old and new sequences. There is now

considerable evidence that the SMA and SEF are both in-

volved in aspects of sequence production (e.g., Isoda and

Tanji, 2002; Lu et al., 2002; Mushiake et al., 1990; Naka-

mura et al., 1999; Shima and Tanji, 1998). Some studies

suggest that the pre-SMA may be more important for ac-

quisition of sequences (Nakamura et al., 1999). It is possi-

ble that one crucial role of the SMA/SEF in the execution

of sequences is to inhibit responses that form part of a se-

quence but are not required at this point in the sequence,

i.e., partially primed actions that need to be inhibited until

the correct point (condition) in the sequence.

Another potential role for the SMA/SEF in sequence

control might be inhibition of previously learned condi-

tion-action associations in old sequences. Thus in a given

sequence, when presented with two targets—one above

and one to the right of fixation—an animal may have to

select a rightward saccade. However, in a different se-

quence, when confronted by the same stimuli, the correct

response might be to make an upward eye movement (Lu

et al., 2002). Under these two circumstances, competing

stimulus-response activations are likely to occur, and it is

crucial that previous condition-action associations are

now automatically inhibited.

These examples illustrate how some of the activity

documented in the supplementary motor complex in rela-

tion to a range of voluntary tasks may be related to the

automatic inhibition mechanism we have described

here. But note that the focus of previous studies was

very different and those experiments were not specifically

designed to address suppression of unwanted re-

sponses. Moreover, we would not claim that all deficits

following lesions of the SMA complex can be accounted

for by loss of automatic inhibition. The important point is

that any SMA/SEF involvement in automatic inhibition

by no means contradicts previous studies showing these

areas to be important for a range of volitional behaviors.

However, the approach developed here of examining po-

tential automatic mechanisms has the virtue of attempting

to decompose ‘‘volition’’ into precise and low-level com-

ponent parts, as well as mapping such mechanisms

onto discrete brain regions.

Role of Pre-SMA in Volitional Tasks

The pre-SMA has been associated with voluntary control

in a range of tasks requiring subjects to generate or freely

select movements, execute action sequences, change

from a preexisting movement plan to another, learn new

condition-action associations or switch between them

(Boettiger and D’Esposito, 2005; Garavan et al., 2003;

Isoda and Hikosaka, 2007; Isoda and Tanji, 2004; Lau
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et al., 2006; Matsuzaka and Tanji, 1996; Nachev et al.,

2005; Nakamura et al., 2005; Picard and Strick, 1996;

Rushworth et al., 2002, 2004; Schlag-Rey et al., 1997;

Shima et al., 1996; Stuphorn and Schall, 2002; Thaler

et al., 1995; Ullsperger and von Cramon, 2001). Consis-

tent with these observations, patient AG, whose large le-

sion includes the pre-SMA but spares the SEF and SMA,

has difficulty rapidly changing from one motor plan to an-

other (Nachev et al., 2007). Although this deficit in chang-

ing plan appears similar to one reported for patient JR

(Husain et al., 2003), for the masked-prime task AG’s re-

sults were normal throughout the study for both eye and

hand. Thus, her volitional deficit cannot be explained on

the basis of a loss of the automatic inhibitory mechanisms

described here. In fact, AG’s performance suggests that

the masked-prime paradigm may tap an important dis-

tinction between the roles of SMA/SEF and the pre-SMA.

While the masked-prime task is effector specific, for

eye or limb, many neural responses recorded in macaque

pre-SMA are ‘‘amodal’’; they are not specific to an effec-

tor (Fujii et al., 2002; Isoda and Tanji, 2004; Picard and

Strick, 1996). Similarly, functional imaging studies in hu-

mans reveal that pre-SMA activation may occur in situa-

tions of either oculomotor or manual response conflict

(Garavan et al., 2003; Nachev et al., 2005; Rushworth

et al., 2002; Ullsperger and von Cramon, 2001). Thus,

the contribution of the pre-SMA may not be at the level

of particular effector-specific plans but rather at the level

of a more general amodal competition between action

goals (Isoda and Tanji, 2004; Picard and Strick, 1996),

or it may play a role in switching from automatic to con-

trolled action, as some very recent findings have sug-

gested (Isoda and Hikosaka, 2007). By contrast, the

SMA and SEF may deal with more tightly-linked stimu-

lus-response representations, with automatic inhibition

generated at a specific motor command level for these

relatively simple condition-action associations.

Although such a distinction between pre-SMA and SMA/

SEF is attractive, and SMA and SEF have been treated in

parallel in our study, this is likely to be a simplification.

The SEF, which is situated between the SMA and pre-

SMA, has been reported to display some connectivity

and activity patterns resembling pre-SMA and therefore

appears to be more than just the oculomotor equivalent

of the SMA (e.g., Chen and Wise [1995], Fujii et al. [2002],

Johansen-Berg et al. [2004], Tehovnik et al. [2000]). Given

that pre-SMA is not mapped in an effector-specific manner

like SMA, the SEF may be considered to incorporate ocu-

lomotor populations of neurons from both rostral SMA and

caudal pre-SMA. However, such a supposition is far from

established and will require further investigation. From

the point of view of the findings reported here though,

the SEF and SMA appear to be crucial for effector-specific

automatic inhibition, while pre-SMA does not.

Conclusions

In summary, while the SMA and SEF have previously been

associated with a range of voluntary, or ‘‘internally
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driven,’’ actions, our findings suggest that small lesions of

these areas cause disruption to automatic effector-spe-

cific motor inhibition. Such automatic mechanisms may

explain some of the activity in the SMA and SEF during

‘‘volitional’’ tasks. Automatic mechanisms have tradition-

ally been considered distinct from goal-directed volitional

behavior (e.g., Schneider and Shiffrin [1977]), but we sug-

gest that automatic response inhibition plays an intrinsic

role in efficient voluntary actions by keeping unwanted re-

sponse activations in check to allow alternative actions to

occur.

EXPERIMENTAL PROCEDURES

Participants

Clinical details of the patients are given in Supplemental Data. Ten

right-handed neurologically normal volunteers participated in the func-

tional imaging. For the behavioral experiments, nine neurologically

normal control participants were tested in experiment 1 (5 male,

4 female, aged 56–74, mean 67), while eight neurologically normal

control participants were tested in each of experiments 2, 3, and 4.

In experiment 2 there were 4 male, 4 female, aged 56–74 (mean age

66). In experiment 3 there were 3 male, 5 female, aged 59–75 (mean

age 68). In experiment 4 there were 3 male, 5 female, aged 59–75

(mean age 69).

Masked-Prime Behavioral Study

Apparatus

Stimulus presentation was performed by a PC-controlled Cambridge

Research Systems (CRS) ViSaGe directly connected to a 21’’ Sony

GDM-F520 Trinitron monitor. Stimulus presentation was synchronized

with the screen refresh rate of 100 Hz, and timings were controlled and

measured by the CRS clock and thus not subject to the errors pro-

duced by normal PC operating systems. Manual responses were

made with a CRS CB6 button box. Eye movements were measured

using an Applied Science Laboratories (ASL) model 504 high speed

remote infra-red eye-tracker with an ASL 5000 series controller, which

samples eye position at 240 Hz (chin and head rest also by ASL). Both

vertical and horizontal displacement was recorded.

Automatic Inhibition of Manual Responses

The task was simply to respond to leftward or rightward pointing

arrows as quickly as possible by pressing a left or right button. The

arrow stimuli, >> or <<, were 1 deg by 1.5 deg and displayed in the

center of the screen for 100 ms (see Figure 1). Before each target ar-

row stimulus, there occurred a prime arrow and a mask. The prime

was either identical to the target arrow stimulus (compatible), or it

was the opposite arrow stimulus (incompatible). The mask was

made up of 30 lines. Each one was a random length (between limits),

randomly oriented and positioned so that the centers of the lines

made a 6 3 5 grid covering the prime stimulus. The prime was dis-

played for two frames (20 ms), then after a blank frame (10 ms) the

mask appeared for ten frames (100 ms). This mask was sufficient to

render the prime stimulus invisible to the participants (they were not

aware of its presence and were at chance discriminating its direction

when informed about it and asked to guess following the experiment).

The target followed the mask after five frames (50 ms). These timings

are similar to those used previously (e.g., Aron et al. [2003]; Eimer and

Schlaghecken [2003]), and note that we have adopted the convention

used in previous studies that the SOA is measured from the start of the

mask to the start of the target, i.e., 150 ms. The target was displayed

for 100 ms. Following the response there was 1000 ms pause, and

then a fixation cross was displayed for 500 ms to signal the beginning

of the next trial. This was followed by a blank of 300 ms, and then the

prime-mask-target sequence as described above.
There were four types of trial: (1) leftward target with compatible

prime; (2) rightward compatible; (3) left target with incompatible (right-

ward) prime; (4) rightward incompatible. There was always an equal

number of each trial type, randomly ordered. Control participants per-

formed 160, 200, or 240 experimental trials with a rest every 40 trials.

JR performed 160 trials; CB and AG performed 400 trials. The exper-

imental trials were preceded by 40 practice trials. Reaction times (RT)

below 100 ms or above 800 ms were considered anticipations or lap-

ses, respectively, and deleted from the analysis. Error responses were

also removed from the RT analysis.

Automatic Inhibition of Saccades

The procedure was identical to that for manual responses, except as

explained below. Saccadic responses were made instead of button

presses and gray circles were displayed 8 deg to the left and right of

the central arrow stimuli to act as targets for the leftward and rightward

saccades. These circles were displayed continuously from the onset of

the fixation cross until 800 ms after the arrow targets. The criterion for

saccade detection was a velocity of 60�s�1, and saccadic onset was

defined by a velocity > 22�s�1. Eye-position traces were inspected

for all trials to check that the custom Matlab routine had correctly

located saccades, and trials were discarded in which fixation was

not maintained preceding target presentation. Trials in which the initial

saccade was in the wrong direction were scored as errors. Saccades

with latencies between 100 and 800 ms were accepted as responses

to the target arrows (for some control subjects, stable eye tracking

proved difficult and trials had to be rejected where the onset of the sac-

cade was not clear). Controls performed 160 trials each, AG performed

240 trials, CB performed 400 trials, and JR performed 600 trials.

Delayed or Absent Inhibition?

The procedure was identical to that described above, except as

explained below. In separate blocks, the SOA was 150, 200, 300, or

500 ms. Note that following Eimer and Schlaghecken (e.g., Eimer

and Schlaghecken [2003]), the SOA is measured from the start of

the mask to the start of the target. The prime duration was 30 ms

(instead of 20 ms), which was followed as before by a blank frame

(10 ms) and then the mask (100 ms). The SOA was manipulated by

changing the number of blank frames between mask offset and target

onset. Most participants performed 8 blocks of 80 trials each, includ-

ing 2 blocks of each SOA in a counterbalanced order. Exceptions were

VC, who performed 8 blocks of 48 trials for SOA of 200 ms and 7

blocks of 48 trials for SOA of 150 ms, and RS who performed 15

blocks of 48 trials only for 200 ms SOA.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/54/5/697/DC1/.
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