A new existence result for nonlinear first-order anti-periodic boundary value problems

Kaizhi Wang

College of Mathematics, Jilin University, Changchun 130012, People’s Republic of China

Received 14 October 2006; received in revised form 20 October 2007; accepted 11 December 2007

Abstract

In this paper we consider the existence of solutions to boundary value problems (BVPs) involving systems of nonlinear first-order ordinary differential equations and two-point, anti-periodic boundary conditions. A new existence result for the BVPs above is obtained by using fixed-point theory.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: Existence of solutions; Anti-periodic BVPs; Fixed-point methods; Homotopy theory; Leray–Schauder degree

1. Introduction

In this article we will consider the existence of solutions to the nonlinear first-order system of anti-periodic boundary value problems

\[x' = f(t, x), \quad t \in [0, T], \]
\[x(0) = -x(T), \]

where \(f : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) is continuous, and \(T \) is a positive constant.

The main tools employed herein are fixed-point methods; homotopy theory; and Leray–Schauder degree.

Anti-periodic problems have been studied extensively in the last ten years. For example, for first-order ordinary differential equations, a Massera’s type criterion is presented in [11] and in [17,27,29] the validity of the monotone iterative technique is shown. Also for higher-order ordinary differential equations existence and uniqueness results based on a Leray–Schauder type argument are presented in [1,2]. Anti-periodic boundary conditions for partial differential equations and abstract differential equations are considered in [4–6,8,12,18,21,22,24,28]. For recent developments involving the existence of anti-periodic solutions of differential equations, inequalities, and other interesting results on anti-periodic boundary value problems, the reader is referred to [3,7,9,10,13–16,19,20,23,25,26].

E-mail address: kaizhiwang@163.com.
2. Main results

Note that we may rewrite the BVPs (1.1) and (1.2) in the following form

\[x' - x = f(t, x) - x, \quad t \in [0, T], \]
\[x(0) = -x(T). \]
(2.1)

(2.2)

We may also regard the BVPs (2.1) and (2.2) as a special case of the following problem

\[x' + a(t)x = \varphi(t, x), \quad t \in [0, T], \]
\[x(0) = -x(T), \]
(2.3)

(2.4)

where \(a : [0, T] \to \mathbb{R}^1 \) and \(\varphi : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n \) are both continuous.

Therefore, attention is now turned to (2.3) and (2.4). First, a lemma will be given for later use.

Lemma 2.1. The BVPs (2.3) and (2.4) are equivalent to the integral equation

\[x(t) = e^{-\int_0^t a(u)du} \left(\frac{\int_0^T \varphi(s, x(s))e^{\int_0^s a(u)du} ds}{1 + e^{\int_0^s a(u)du}} + \int_0^t \varphi(s, x(s))e^{\int_0^s a(u)du} ds \right) \]
(2.5)

for \(t \in [0, T] \).

Proof. The result can be obtained by direct computation. \(\square \)

Remark 2.2. Indeed, (2.5) implies the expression of Green’s function for the linear anti-periodic boundary value problem

\[x'(t) + a(t)x = b(t), \quad x(0) = -x(T). \]

And (2.5) can be written in the following form:

\[x(t) = \int_0^T G(s, t)b(s)ds, \]

where \(G \) is Green’s function

\[G(s, t) = \begin{cases}
1 + \frac{1}{1 + e^{\int_0^s a(u)du}} e^{\int_0^t a(u)du}, & 0 \leq s < t \leq T, \\
1 - \frac{1}{1 + e^{\int_0^s a(u)du}} e^{\int_0^t a(u)du}, & 0 \leq t \leq s \leq T.
\end{cases} \]

Theorem 2.3. If there exist a nonnegative constant \(\gamma \) and an integrable function \(j : [0, T] \to \mathbb{R}^1 \) with \(\int_0^T j(t)dt > 0 \), and a \(C^1 \) function \(W : \mathbb{R}^n \to [0, +\infty) \) with \(W(p) = W(-p) \) for all \(p \in \mathbb{R}^n \) such that, for each \(\lambda \in [0, 1] \),

\[\lambda \|\varphi(t, p)\|e^{\int_0^t a(u)du} \leq \gamma (\lambda W(p), \lambda \varphi(t, p) - a(t)p) + j(t), \]
(2.6)

for all \((t, p) \in [0, T] \times \mathbb{R}^n \), where \(\langle \cdot, \cdot \rangle \) denotes the usual inner product and \(\| \cdot \| \) denotes the Euclidean norm on \(\mathbb{R}^n \), then the BVPs (2.3) and (2.4) have at least one solution.

Proof. The BVPs (2.3) and (2.4) are equivalent to the integral equation (2.5) from Lemma 2.1.

Define the map \(A : C([0, T]; \mathbb{R}^n) \to C([0, T]; \mathbb{R}^n) \) by

\[Ax(t) = e^{-\int_0^t a(u)du} \left(\frac{\int_0^T \varphi(s, x(s))e^{\int_0^s a(u)du} ds}{1 + e^{\int_0^s a(u)du}} + \int_0^t \varphi(s, x(s))e^{\int_0^s a(u)du} ds \right), \]

for each \(t \in [0, T] \).
Thus, our problem is reduced to proving the existence of at least one fixed point of A. Let

$$B_{R+1} = \left\{ x \in C([0, T]; \mathbb{R}^n) \mid \max_{t \in [0, T]} \|x(t)\| < R + 1 \right\}.$$

$$R = \max_{t \in [0, T]} \left(\frac{1}{e^{\int_0^t a(u)du}} \left(1 + \frac{1}{e^{\int_0^t a(u)du} + 1} \right) \right) \int_0^T j(t)dt.$$

Set for each $\lambda \in [0, 1]$

$$h_{\lambda}(x) = I - \lambda Ax, \quad x \in C([0, T]; \mathbb{R}^n),$$

where I is the identity.

If we can prove that

$$0 \in C([0, T]; \mathbb{R}^n) \setminus h_{\lambda}(\partial B_{R+1}) \quad (2.7)$$

for each $\lambda \in [0, 1]$, then we have

$$\text{deg}_{\text{LS}}(h_{\lambda}, B_{R+1}, 0) = \text{deg}_{\text{LS}}(I - \lambda A, B_{R+1}, 0) = \text{deg}_{\text{LS}}(I - A, B_{R+1}, 0) = \text{deg}_{\text{LS}}(I, B_{R+1}, 0) = 1,$$

where deg_{LS} denotes Leray–Schauder degree. Since $\text{deg}_{\text{LS}}(I - A, B_{R+1}, 0) = 1 \neq 0$, then there exists at least one fixed point of A in B_{R+1} such that

$$x = Ax.$$

Therefore, we only need to prove that (2.7) holds under the assumptions.

Consider the following BVPs

$$x' + a(t)x = \lambda \varphi(t, x), \quad t \in [0, T], \lambda \in [0, 1],$$

$$x(0) = -x(T). \quad (2.8)$$

$$x(0) = x(T) = x. \quad (2.9)$$

Note that if there is a point $x \in C([0, T]; \mathbb{R}^n)$ such that

$$x = \lambda Ax$$

for some $\lambda \in [0, 1]$, then x must be a solution of (2.8) and (2.9). Assume that

$$x = \lambda_0 Ax$$

for some $x \in C([0, T]; \mathbb{R}^n)$ and $\lambda_0 \in [0, 1]$. Now for each $t \in [0, T]$, we have

$$\|x(t)\| = \lambda_0 \|Ax(t)\| \leq \left(\frac{\int_0^T \lambda_0 \|\varphi(s, x(s))\| e^{\int_0^t a(u)du} ds}{e^{\int_0^t a(u)du} \left(1 + e^{\int_0^t a(u)du} \right)} + \frac{\int_0^T \lambda_0 \|\varphi(s, x(s))\| e^{\int_0^t a(u)du} ds}{e^{\int_0^t a(u)du} \left(1 + e^{\int_0^t a(u)du} + 1 \right)} \right) \int_0^T \lambda_0 \|\varphi(s, x(s))\| e^{\int_0^t a(u)du} ds \leq \max_{t \in [0, T]} \left(\frac{1}{e^{\int_0^t a(u)du} \left(1 + e^{\int_0^t a(u)du} + 1 \right)} \right) \int_0^T (\gamma(DW(x(s)), \lambda_0 \varphi(s, x(s)) - a(s)x(s)) + j(s))ds \leq \frac{R}{\int_0^T j(s)ds} \int_0^T (\gamma(DW(x(s)), x'(s)) + j(s))ds.$$
Thus, we have
\[
\max_{t \in [0, T]} \|x(t)\| \leq R < R + 1,
\]
and so (2.7) holds. \[\square\]

Example 2.4. Consider
\[x'(t) - t^2x = \varphi(t, x),\]
where
\[
\varphi(t, x) = (\varphi_1(t, x), \ldots, \varphi_n(t, x)), \quad \varphi_i(t, x) = \sin \left(t \prod_{j \neq i, j=1}^n x_j\right) \text{ for } 1 \leq i \leq n.
\]
Take \(W(p) \equiv 0\) and \(j(t) = \sqrt{\kappa t}\) for \(p \in \mathbb{R}^n\) and \(t \in [0, T]\), respectively. Then it is easy to see that (2.6) holds.

Corollary 2.5. If there exist a nonnegative constant \(\gamma\) and an integrable function \(j : [0, T] \rightarrow \mathbb{R}^1\) with \(\int_0^T j(t)dt > 0\), and a \(C^1\) function \(W : \mathbb{R}^n \rightarrow [0, +\infty)\) with \(W(p) = W(-p)\) for all \(p \in \mathbb{R}^n\) such that, for each \(\lambda \in [0, 1]\),
\[
\lambda \|f(t, p) - p\| \leq \gamma(DW(p), \lambda f(t, p) + (1 - \lambda)p) + j(t),
\]
for all \((t, p) \in [0, T] \times \mathbb{R}^n\), then the BVPs (1.1) and (1.2) have at least one solution.

Proof. This is a special case of Theorem 2.3 with \(a(t) \equiv -1\) and \(\varphi(t, p) = f(t, p) - p\). \[\square\]

3. A more concrete condition

In this section we will discuss a more concrete condition than the one in Theorem 2.3.

Theorem 3.1. If there exist a nonnegative constant \(\gamma\) and an integrable function \(j : [0, T] \rightarrow \mathbb{R}^1\) with \(\int_0^T j(t)dt > 0\), such that, for each \(\lambda \in [0, 1]\),
\[
\lambda \|\varphi(t, p)\|e^{\int_0^T a(t)dt} \leq 2\gamma(p, \lambda \varphi(t, p) - a(t)p) + j(t),
\]
for all \((t, p) \in [0, T] \times \mathbb{R}^n\), then the BVPs (2.3) and (2.4) have at least one solution.

Proof. From the proof of Theorem 2.3, we only need to show that (2.7) holds. Let \(x = \lambda_0 Ax\), for some \(\lambda_0 \in [0, 1]\). Then for each \(t \in [0, T]\), we have
\[
\|x(t)\| = \lambda_0 \|Ax(t)\|
\leq \frac{R}{\int_0^T j(s)ds} \int_0^T \left(\gamma(2x(s), \lambda_0 \varphi(s, x(s)) - a(s)x(s)) + j(s)\right)ds
= \frac{R}{\int_0^T j(s)ds} \int_0^T \left(2\gamma(x(s), x'(s)) + j(s)\right)ds
= \frac{R}{\int_0^T j(s)ds} \int_0^T \left(2\gamma \frac{d}{ds}\|x(s)\|^2 + j(s)\right)ds
= R.
\]
So (2.7) holds. \[\square\]
Remark 3.2. In fact, Theorem 3.1 is a special case of Theorem 2.3 with $W(p) = \|p\|$. However, the condition in Theorem 3.1 is easily verifiable in practice.

Example 3.3. Consider the following ordinary differential equation

$$x'(t) - t^{2k}x = \frac{t x}{T|\|x\| + 1},$$

where k is an arbitrary natural number. (3.1) is immediate if we take $j(t) \equiv n$ for $t \in [0, T]$.

Corollary 3.4. If one of the following two conditions

(1) $a < 0$ and there exist a nonnegative constant γ and an integrable function $j(t) : [0, T] \to \mathbb{R}^1$ with $\int_0^T j(t)dt > 0$, such that

$$\|\varphi(t, p)\| \leq 2\gamma(p, \varphi(t, p)) + j(t),$$

for all $(t, p) \in [0, T] \times \mathbb{R}^n$;

(2) φ is bounded on $[0, T] \times \mathbb{R}^n$ holds, then the BVPs (2.3) and (2.4) have at least one solution.

Proof. This is a direct consequence of Theorem 3.1. □

Remark 3.5. Let $a(t) \equiv -1$ and $\varphi(t, p) = f(t, p) - p$. From Theorem 3.1 and Corollary 3.4, we can obtain some similar existence results for BVPs (1.1) and (1.2). We will omit them for brevity.

Acknowledgements

I am grateful to my advisor, Professor Yong Li, who deserves special thanks for his guidance and enthusiasm about my work. I also thank the anonymous reviewers for their careful reading of the paper and for many useful suggestions.

References