incurred the cost of drugs, needles, hypoglycaemia and serious adverse events.

The prices of drugs and needles were accounted by Chinese market retail price.

The costs of hypoglycaemia, serious adverse events and weight loss were obtained from data. All costs were discounted to 2012 China Consumer Price Index. Results were calculated as the difference of total expenditures of Liraglutide versus Insulin Glargine divided by the difference of patients achieving target. One-way sensitivity analyses were performed. RESULTS: The total cohort cost was CNY 1,658,112 (Liraglutide 1.8mg), 1,101,812 (Liraglutide 1.2mg), and 881,326 (Insulin Glargine). Number of patients successfully achieving the composite endpoint was 40 (Liraglutide 1.8mg), 12 (Liraglutide 1.2mg), and 15 (Insulin Glargine). Thus incremental cost per successfully treated patient was CNY 12,970 and CNY 31,071 for Liraglutide 1.2mg and 1.8mg versus Insulin Glargine respectively. Sensitivity analyses of the model were performed. RESULTS: Incremental costs were less than CNY 37,784 of estimated China GDP per capita in 2012.

The results of hypoglycaemia, serious adverse events and weight loss were obtained from data. All costs were discounted to 2012 China Consumer Price Index. Results were calculated as the difference of total expenditures of Liraglutide versus Insulin Glargine divided by the difference of patients achieving target. One-way sensitivity analyses were performed. RESULTS: The total cohort cost was CNY 1,658,112 (Liraglutide 1.8mg), 1,101,812 (Liraglutide 1.2mg), and 881,326 (Insulin Glargine). Number of patients successfully achieving the composite endpoint was 40 (Liraglutide 1.8mg), 12 (Liraglutide 1.2mg), and 15 (Insulin Glargine). Thus incremental cost per successfully treated patient was CNY 12,970 and CNY 31,071 for Liraglutide 1.2mg and 1.8mg versus Insulin Glargine respectively. Sensitivity analyses of the model were performed. RESULTS: Incremental costs were less than CNY 37,784 of estimated China GDP per capita in 2012.

The results of hypoglycaemia, serious adverse events and weight loss were obtained from data. All costs were discounted to 2012 China Consumer Price Index. Results were calculated as the difference of total expenditures of Liraglutide versus Insulin Glargine divided by the difference of patients achieving target. One-way sensitivity analyses were performed. RESULTS: The total cohort cost was CNY 1,658,112 (Liraglutide 1.8mg), 1,101,812 (Liraglutide 1.2mg), and 881,326 (Insulin Glargine). Number of patients successfully achieving the composite endpoint was 40 (Liraglutide 1.8mg), 12 (Liraglutide 1.2mg), and 15 (Insulin Glargine). Thus incremental cost per successfully treated patient was CNY 12,970 and CNY 31,071 for Liraglutide 1.2mg and 1.8mg versus Insulin Glargine respectively. Sensitivity analyses of the model were performed. RESULTS: Incremental costs were less than CNY 37,784 of estimated China GDP per capita in 2012.

The prices of drugs and needles were accounted by Chinese market retail price.

The costs of hypoglycaemia, serious adverse events and weight loss were obtained from data. All costs were discounted to 2012 China Consumer Price Index. Results were calculated as the difference of total expenditures of Liraglutide versus Insulin Glargine divided by the difference of patients achieving target. One-way sensitivity analyses were performed. RESULTS: The total cohort cost was CNY 1,658,112 (Liraglutide 1.8mg), 1,101,812 (Liraglutide 1.2mg), and 881,326 (Insulin Glargine). Number of patients successfully achieving the composite endpoint was 40 (Liraglutide 1.8mg), 12 (Liraglutide 1.2mg), and 15 (Insulin Glargine). Thus incremental cost per successfully treated patient was CNY 12,970 and CNY 31,071 for Liraglutide 1.2mg and 1.8mg versus Insulin Glargine respectively. Sensitivity analyses of the model were performed. RESULTS: Incremental costs were less than CNY 37,784 of estimated China GDP per capita in 2012.

The prices of drugs and needles were accounted by Chinese market retail price.

The costs of hypoglycaemia, serious adverse events and weight loss were obtained from data. All costs were discounted to 2012 China Consumer Price Index. Results were calculated as the difference of total expenditures of Liraglutide versus Insulin Glargine divided by the difference of patients achieving target. One-way sensitivity analyses were performed. RESULTS: The total cohort cost was CNY 1,658,112 (Liraglutide 1.8mg), 1,101,812 (Liraglutide 1.2mg), and 881,326 (Insulin Glargine). Number of patients successfully achieving the composite endpoint was 40 (Liraglutide 1.8mg), 12 (Liraglutide 1.2mg), and 15 (Insulin Glargine). Thus incremental cost per successfully treated patient was CNY 12,970 and CNY 31,071 for Liraglutide 1.2mg and 1.8mg versus Insulin Glargine respectively. Sensitivity analyses of the model were performed. RESULTS: Incremental costs were less than CNY 37,784 of estimated China GDP per capita in 2012.

The prices of drugs and needles were accounted by Chinese market retail price.

The costs of hypoglycaemia, serious adverse events and weight loss were obtained from data. All costs were discounted to 2012 China Consumer Price Index. Results were calculated as the difference of total expenditures of Liraglutide versus Insulin Glargine divided by the difference of patients achieving target. One-way sensitivity analyses were performed. RESULTS: The total cohort cost was CNY 1,658,112 (Liraglutide 1.8mg), 1,101,812 (Liraglutide 1.2mg), and 881,326 (Insulin Glargine). Number of patients successfully achieving the composite endpoint was 40 (Liraglutide 1.8mg), 12 (Liraglutide 1.2mg), and 15 (Insulin Glargine). Thus incremental cost per successfully treated patient was CNY 12,970 and CNY 31,071 for Liraglutide 1.2mg and 1.8mg versus Insulin Glargine respectively. Sensitivity analyses of the model were performed. RESULTS: Incremental costs were less than CNY 37,784 of estimated China GDP per capita in 2012.
discounting rate of 3% was used for both costs and health outcomes simulation. One-way sensitivity analysis was performed. RESULTS: Therapy conversion to IAsp was associated with improved long-term QALYs per patient (3.93 vs. 3.12) and QALY by 1.44 QALYs per person (0.84 vs. 1.34), due to reduced incidences of diabetes-related complications. Treatment and management costs of diabetes were increased by CNY (Chinese Yuan) 11,690 (48,850 vs. 37,160) and 1,982 (39,924 vs. 37,942) respectively. However, the costs of complications, including cerebrovascular disease, renal complications, ulcer/amputation/ neuropathy, eye complications, and hypoglycemia events, were reduced by CNY 199,580 (801,590 vs. 301,610), resulting in total direct medical cost saving of CNY 185,357. Sensitivity analyses demonstrated robustness of the results.

CONCLUSIONS: Switching from HI to IAsp in T2DM patients in China was associated with not only improvement of life expectancy and QALYs, but also significantly reduced direct medical costs. Therapy conversion from HI is a cost-saving treatment strategy for T2DM patients in a Chinese setting.

SHORT-TERM COST-EFFECTIVENESS OF STARTING INSULIN DETEMIR IN NIAE-NAIPPE WITH TYPE-2 DIABETES

OBJECTIVES: To assess the cost-effectiveness (CE) of starting insulin detemir (IDet) ± oral glucose-lowering drugs (OADs) in people with type 2 diabetes (T2D) in comparison to continuing on basal bolus regimen in the economic circumstances of countries with a comorbid condition gathered in routine clinical practice. METHODS: The Achieve® study assessed safety and outcomes over 24 weeks in 66,726 people with T2D starting insulin analog therapy. The CE analyses included people switching from HI is a cost-saving treatment strategy for T2DM patients in a Chinese setting.

SHORT-TERM COST-EFFECTIVENESS OF STARTING INSULIN GLARGINE TO BIPHASIC INSULIN ASPART 30 IN PEOPLE WITH TYPE-2 DIABETES

OBJECTIVES: To assess the cost-effectiveness (CE) of switching therapy from insulin glargine (IGlar) ± oral glucose-lowering drugs (OADs) to biphasic insulin aspart 30 (BIAsp 30) ± OADs in people with type 2 diabetes (T2D) in Saudi Arabia and India. RESULTS: Prespecified 1-year ICERs were: Saudi Arabia (SAR 10,741; USD 2,864; GDP 0.14), Mexico (MXN 1,982; USD 57,422; GDP 1.00), in 4 ASEAN countries (n=430) and in Algeria based on people in 7 Gulf countries (n=103) and in India (n=191). Data were collected on clinical effectiveness, adverse events, and patient reported outcomes using the EQ-5D questionnaire. CE analyses used the IMS CORE diabetes model with 1 and 30 year time horizons, with country-specific costs for complications and therapies and country-specific background mortality rates. Incremental cost-effectiveness ratios (ICERs) were expressed as cost/QALY in local currencies, USD and in fractions of local GDP per capita based on switching from IGlar to BIAsp 30. CE was pre-defined as <3*GDP.

RESULTS: For all 30 year time horizon the switch was found to be less costly and have better outcomes. 1-year ICERs were: Saudi Arabia (SAR 8,958; USD 2,388; GDP 0.12) and India (INR -60,194; USD 1,086; GDP -0.73). 30-year ICERs were: Saudi Arabia (SA 14,242; USD 3,798; GDP 0.19) and India (INR 45,038; USD 10,499; GDP 0.40). Sensitivity analyses on the 30 year time horizon showed the findings to be robust. CONCLUSIONS: Switching from IGlar to BIAsp 30 in T2D as performed in the Achieve® study was found to be cost-effective across all country settings based on a 1 and 30 year time horizon.

SHORT-TERM COST-EFFECTIVENESS OF SWITCHING BIPHASIC INSULIN ASPART 30 IN SAUDI ARABIA AND INDIA

OBJECTIVES: To assess the cost-effectiveness (CE) of starting biphasic insulin aspart 30 (BIAsp 30) therapy a oral glucose-lowering drugs (OADs) in people with type 2 diabetes (T2D) in different economic circumstances based on observational data gathered in routine clinical practice. METHODS: The Achieve® study assessed safety and outcomes over 24 weeks in 66,726 people with T2D starting insulin analog therapy. The CE analyses included people switching to BIAsp 30 in Saudi Arabia (n=903), India (n=7,540), Indonesia (n=153), in 4 ASEAN countries (n=430) and in Algeria based on people in 3 countries in North-West Africa (n=279). Data were collected on clinical effectiveness, adverse events, and patient reported outcomes using the EQ-5D questionnaire. CE analyses used the IMS CORE diabetes model with 1 and 30 year time horizons, with country-specific costs for complications and therapies and background mortality rates. Incremental cost-effectiveness ratios (ICERs) were expressed as cost/QALY in local currencies, USD and in fractions of local GDP per capita based on starting BIAsp 30. CE was pre-defined as <3*GDP.

RESULTS: 1-year ICERs were: Saudi Arabia (SAR 10,741; USD 2,864; GDP 0.14), India (INR 35,182; USD 635; GDP 0.43), Indonesia (IDR 8,038; USD 2,627; GDP 0.46), Malaysia (MYR 10,499; USD 3,432; GDP 0.80). Sensitivity analyses on the 30 year time horizon showed the findings to be robust. CONCLUSIONS: Starting BIAsp 30 in T2D as performed in the Achieve® study was found to be cost-effective across all country settings based on a 1 and 30 year time horizon.

SHORT-TERM COST-EFFECTIVENESS OF SWITCHING TO BIPHASIC INSULIN ASPART FROM HUMAN SOLUBLE INSULIN IN CHINESE PATIENTS WITH TYPE-2 DIABETES ON A BASAL-BOLUS REGIMEN

OBJECTIVES: To assess the cost-effectiveness of switching human soluble insulin (HI) to insulin aspart (IASp) on a basal-bolus regimen in type 2 diabetes mellitus (T2DM) patients in a Chinese setting. METHODS: The previously published and validated IMS Core Diabetes Model was used to project long-term health economic outcomes of switching from human soluble insulin (HI) to insulin aspart (IASp) on a basal-bolus regimen in type 2 diabetes mellitus (T2DM) patients in a Chinese setting. RESULTS: For all 30 year time horizon the switch was found to be less costly and have better outcomes. 1-year ICERs were: Saudi Arabia (SAR 8,958; USD 2,388; GDP 0.12) and India (INR -60,194; USD 1,086; GDP -0.73). 30-year ICERs were: Saudi Arabia (SA 14,242; USD 3,798; GDP 0.19) and India (INR 45,038; USD 10,499; GDP 0.40). Sensitivity analyses on the 30 year time horizon showed the findings to be robust. CONCLUSIONS: Starting BIAsp 30 in T2D as performed in the Achieve® study was found to be cost-effective across all country settings based on a 1 and 30 year time horizon.