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Abstract

We construct a high-order adaptive time stepping scheme for vesicle suspensions with viscosity contrast. The high-order accuracy is

achieved using a spectral deferred correction (SDC) method, and adaptivity is achieved by estimating the local truncation error with

the numerical error of physically constant values. Numerical examples demonstrate that our method can handle suspensions with

vesicles that are tumbling, tank-treading, or both. Moreover, we demonstrate that a user-prescribed tolerance can be automatically

achieved for simulations with long time horizons.
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1. Introduction

Vesicles are deformable capsules filled with an incompressible viscous fluid. Their mechanical properties are char-

acterized by bending resistance and tension that enforces local inextensibility of their membrane. We are interested in

the fluid mechanics of vesicles suspensions where the bulk fluid is a Newtonian incompressible fluid. The hydrody-

namics of vesicles play an important role in many biological phenomena1,2. For example, they are used experimentally

to understand properties of biomembranes3 and red blood cells4,5,6,7,8. Here we extend our work on high-order adap-

tive time integrators9 to vesicle suspensions with viscosity contrast; that is, the viscosity in the interior of each vesicle

is constant, but can differ from the constant viscosity of the exterior fluid. This extension is important for applications

such as, for example, simulating microfluidic devices that sort red blood cells of different viscosity contrasts. By using

an adaptive high-order time integrator, we can efficiently simulate suspensions to a user-specified tolerance without

requiring a trial and error procedure. Moreover, by using a high-order method, fewer time steps are required when the

desired tolerance is small. This paper is a key step towards a black-box solver for vesicle suspensions with long time

horizons and that exhibit dynamics of varying complexity.
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The most significant limitation of this work is that it is implemented only in two dimensions. Fortunately, the time

integrator and adaptivity strategy we introduce is independent of the dimension and we plan to extend this work to

three dimensions in the future. While we now allow for variable time step sizes, we do not address multirate time

integrators. That is, at each time step, the same time step size is applied to all the vesicles. In addition to time

adaptivity, spatial adaptivity also needs to be addressed in the future. Since vesicles may develop and smooth regions

of high curvature, allowing for only one spatial grid is inefficient. In this paper, the spatial domain is fixed for the

entire simulation but, in the numerical examples, when performing a convergence study in time, we choose a spatial

discretization that is sufficiently large that the temporal error dominates.

Vesicle suspensions in two and three dimensions have been well-studied and we refrain from doing a thorough

literature review of their physics. Instead, we focus on work related to our time integrator. The spectral deferred

correction (SDC) method was first introduced by Dutt, Greengard, and Rokhlin10. In its original form, it was a

stable method to construct high-order solutions of initial value problems. It was extended to implicit-explicit (IMEX)

methods by Minion11, where the splitting between stiff and non-stiff terms is additive. SDC has also been used

as a parallel-in-time time stepper12, but this work only considers initial value problems which are much cheaper to

solve than the integro-differential equations we solve. SDC has been used for an integro-differential equation13 that

simulates a diffusion process with moving interfaces, but their governing equations are less stiff and the interface

equations are simpler than ours. To the best of our knowledge, our work9 is the first to apply SDC to an operator-

based IMEX splitting of the equations governing vesicle suspensions. It is this work that we now extend to vesicles

with viscosity contrast.

The remainder of the paper is organized as follows. In Section 2 we present equations that govern vesicle dynamics,

reformulate them in terms of integral equations, and introduce SDC. In Section 3, the numerical schemes for the

governing equations are presented and we discuss the adaptive time stepping strategy. In Section 4, we present two

numerical results, and we make concluding remarks in Section 5.

2. Formulation

Neglecting inertial forces, the dynamics of a vesicle is fully characterized by the position of the interface x(s, t) ∈ γ,
where s is the arclength, t is time, and γ is the membrane of the vesicle. The position is determined by solving a

moving interface problem that models the mechanical interactions between the viscous incompressible fluid in the

exterior and interior of the vesicle and the vesicle membrane, all the while, requiring that the membrane maintains its

length (inextensibility condition). In addition to the position x(s, t), the other main variables are the fluid velocity u,

the fluid stress T , the pressure p, the membrane tension σ, and the stress jump across γ, f(x) = �T�n = (T+ − T−)n,

where n is the unit outward normal, and the superscripts denote limits from the interior (+) and exterior (−) of the

vesicle. The stress jump is equal to the sum of a force due to the vesicle membrane bending modulus κb and a force

due to the tension σ.

Given these definitions, the equations for an unbounded suspension of vesicles are

μ� · (�u + �uT ) = �p(x), x ∈ R2\γ, conservation of momentum,

� · u(x) = 0, x ∈ R2\γ, conservation of mass,

u(x, t) = v∞(x), |x| → ∞, far-field velocity,

ẋ(t) = u(x, t), x ∈ γ, velocity continuity,

�T�n = −κbxssss + (σ(x)xs)s, x ∈ γ, nonzero stress jump,

xs · us = 0, x ∈ γ, membrane inextensibility.

(1)

While the viscosity is taken to be constant inside each vesicle, these values can differ from the viscosity of the exterior

fluid. In particular, we define the viscosity contrast νp = μp/μ0.

We write γ j for the boundary of vesicle j, and, since the viscosity is piecewise constant with a discontinuity only

along γ j, we use an integral equation formulation using the Stokes free-space Green’s function14. We introduce the

following integral and differential operators that we use to formulate (1) in terms of unknowns that are defined only

on the vesicle boundary γ = ∪M
j=1
γ j:
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• Single- and double-layer potentials:

S(γ j, γk)f :=
1

4πμ0

∫
γk

(
−I log ρ +

r ⊗ r

ρ2

)
f dsy, x ∈ γ j,

D(γ j, γk)u :=
1 − νk
π

∫
γk

r · n
ρ2

r ⊗ r

ρ2
u dsy, x ∈ γ j,

where r = x − y, ρ = ‖r‖, n is the outward unit normal of γk, and sy is the arclength of γk.

• Bending, tension, and surface divergence:

B(γk)f := κb
d4

ds4
f, T (γk)σ := (σxs)s, Div(γk)f :=

dx

ds
·

df

ds
,

where each arclength derivative is taken with respect to xk, and κb is the bending modulus.

Note that all these operators are linear once γ j and γk are fixed.

2.1. Integral equation formulation

Let ω j, j = 1, . . . ,M, be the interior of vesicle j. An integral equation representation of the fluid velocity is15

αu(x) = v∞(x) +

M∑
k=1

S(x, xk) (−B(xk)xk + T (xk)σk) +

M∑
k=1

D(x, xk)u(xk), x ∈ R2,

where

α =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ν j x ∈ ω j,
1+ν j

2
x ∈ γ j,

1 x ∈ R2\ω j.

Applying the no-slip boundary condition on the boundary of the vesicle, we have

α j

dx j

dt
= v∞(x j) +

M∑
k=1

S(x j, xk) (−B(xk)xk + T (xk)σk) +

M∑
k=1

D(x j, xk)
dxk

dt
, α j =

1 + ν j

2
.

The tension σk acts as a Lagrange multiplier to impose the inextensibility condition Div(x j)
dx j

dt
= 0. In order to ease

the presentation, we abuse notation by dropping the subscripts and summations, and we write

α
dx

dt
= v∞(x) + S(x) (−B(x)x + T (x)σ) +D(x)

dx

dt
, α =

1 + ν

2
, (2)

with the inextensibility condition Div(x) dx
dt
= 0.

In the SDC framework, it is convenient to reformulate (2) as the Picard integral

x(t) = x0 +

∫ t

0

(αI −D(x))−1(v∞(x) − S(x)(B(x)x + T (x)σ))dτ. (3)

A similar Picard integral can be derived for confined flows by replacing v∞ with a double-layer potential with an

unknown density function defined on the solid walls9. Then, a no-slip boundary condition on the solid walls results

in a second-kind integral equation that must also be satisfied. In this work, for simplicity, we only present results for

unbounded flows.
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2.2. Spectral Deferred Correction

Spectral deferred correction (SDC) is an iterative method for solving Picard integral equations such as (3). It was

first introduced as a stable deferred correction method for solving initial value problems10. Our SDC formulation is

most closely related to the work of Minion11 who was the first to investigate the coupling of SDC with IMEX time

integrators. We first compute a provisional solution x̃ and σ̃ using some time integrator, and then form the residual

of (3)

r(t) := x0 − x̃(t) +

∫ t

0

ṽ(τ)dτ, (4)

where the provisional velocity is ṽ = (αI − D(x̃))−1(v∞(x̃) − S(x̃)B(x̃)x̃ + S(x̃)T (x̃)σ̃). We now define the errors in

position, ex := x − x̃, and tension, eσ := σ − σ̃. By substituting ex and eσ into (3), we have

ex(t) = x0 − x̃(t) +

∫ t

0

(αI −D(x̃ + ex))−1(v∞(x̃ + ex) − S(x̃ + ex)B(x̃ + ex)(x̃ + ex) + S(x̃ + ex)T (x̃ + ex)(σ̃ + eσ))dτ.

Following the usual SDC framework, we introduce the residual into the error equation

ex(t) = r(t) +

∫ t

0

{
(αI −D(x̃ + ex))−1v∞(x̃ + ex) − (αI −D(x̃))−1v∞(x̃)

}
dτ

+

∫ t

0

{
−(αI −D(x̃ + ex))−1S(x̃ + ex)B(x̃ + ex) + (αI −D(x̃))−1S(x̃)B(x̃)

}
x̃dτ

+

∫ t

0

{
(αI −D(x̃ + ex))−1S(x̃ + ex)T (x̃ + ex) − (αI −D(x̃))−1S(x̃)T (x̃)

}
σ̃dτ

+

∫ t

0

(αI −D(x̃ + ex))−1 {−S(x̃ + ex)B(x̃ + ex)ex + S(x̃ + ex)T (x̃ + ex)eσ} dτ.

(5)

Finally, the inextensibility constraint is Div(x̃ + ex)
d(x̃+ex)

dt
= 0.

3. Numerical Scheme

Several challenges arise when forming numerical solutions of (3) (and (5)). For instance, the bending operator B
introduces stiffness which is resolved by using a semi-implicit discretization of (3). Another challenge is to accurately

approximate the layer potentials S and D for vesicles that are arbitrarily close to one another which is resolved with

specialized quadrature that efficiently handles near-singular integrals. Additional complications and more details are

discussed in previous work16,17. Here we focus on the numerical aspects associated with solving (3), (4), (5), and with

computing optimal time step sizes.

SDC is an iterative method that computes successively more accurate solutions of (3). The SDC iteration is

1. Form a provisional solution x̃ and σ̃ of (3)

2. Form the residual (4) of the provisional solution.

3. Compute an approximate solution of the error equation (5).

4. Define the updated provisional solution as x̃ + ex and σ̃ + eσ.

5. If desired, return to step 2.

We have numerically shown9 that if (3) and (5) are solved with first-order methods, then after nsdc SDC iterations,

the order of accuracy of the solution is nsdc + 1, as long as this order does not exceed the order of accuracy of the

quadrature formula for r.
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3.1. Discretization of the Picard integral

A first-order approximation of (3) (or equivalently of (2)) is formed using the semi-implicit time integrator

α
xN+1 − xN

Δt
= vN

∞ + SN
(
−BNxN+1 + T NσN+1

)
+DN

(
xN+1 − xN

Δt

)
. (6)

The time integrator (6) treats both intra- and inter-vesicle interactions semi-implicitly, with the latter resolving stiffness

introduced by vesicles that are close to one another. We solve (6) with the generalized minimal residual method

(GMRES) with an exact block-diagonal preconditioner. This method has been thoroughly tested for stability, first-

order convergence, and GMRES iteration mesh-independence on a variety of vesicle suspensions17.

To compute the residual (4), we approximate (3) at p substeps of [0,Δt], and then use an appropriate quadrature

formula to compute r. To achieve high-order accuracy, avoid extrapolation, and minimize the Runge phenomenon18,

we use Gauss-Lobatto points, whose quadrature error is O(Δt2p−3). Once a provisional first-order solution and the

residual are computed, the error equation (5) is numerically solved for ex and eσ. We discretize (5) by dropping all

the terms except the first and the last

α
eN+1

x − eN
x

Δt
=

(
αI −DN+1

) (rN+1 − rN

Δt

)
+ SN+1

(
−BN+1eN+1

x + T N+1eN+1
σ

)
+DN+1

(
eN+1

x − eN
x

Δt

)
, (7)

and we have observed numerically9 that each solution of (7) results in an additional order of convergence. In (7),

the operators are discretized at x̃N+1 which is computed when the provisional solution is formed. Now, equations (6)

and (7) require inverting the same linear system; the only differences are the right hand side and the state at which the

operators are discretized. We also note that if this iteration converges, that is, ex → 0 and eσ → 0, then rN+1 = rN ,

implying that the Picard integral (3) has been solved up to quadrature error.

3.2. Discretization of the inextensibility condition

Based on our first-order discretization (6), the inextensibility condition Div(x)(dx/dt) = 0 for the provisional solu-

tion is equivalent to Div(xN)xN+1 = 1. Once the provisional solution x̃ and σ̃ have been computed, the inextensibility

condition is Div(x̃ + ex)
d(x̃+ex)

dt
= 0, which, using the first-order discretization (7) is equivalent to

DivN+1(eN+1
x ) = DivN+1(eN

x ) + DivN+1(rN+1 − rN + ΔtN ṽN+1),

where ΔtN is the size of the substep. Unfortunately, we have experimentally found that this discretization requires a

very small time step before SDC converges. As an alternative, we formulate the inextensibility constraint as

(x̃N+1 + eN+1
x )s0

· (x̃N+1 + eN+1
x )s0

= 1,

where s0 is the arclength component of the vesicle at the initial Gauss-Lobatto point. Assuming that the error ex is

much smaller than x̃, we can neglect the quadratic term and enforce inextensibility by requiring

x̃N+1
s0
· (eN+1

x )s0
=

1

2
(1 − x̃N+1

s0
· x̃N+1

s0
). (8)

Because the arclength term is discretized at s0, the inextensibility condition for the error (8) differs slightly from the

inextensibility condition for the provisional solution. However, the resulting system converges for much larger values

of Δt and, if ex → 0, then the inextensibility condition x̃N+1
s0
· x̃N+1

s0
= 1 is exactly satisfied.

3.3. Time step size selection

During the course of a vesicle simulation, it is advantageous to adjust the time step size based on the complexity

of the dynamics. For instance, when a vesicle has regions of high curvature or two vesicles are close to one another,

a smaller time step should be taken. The main advantages of an adaptive time step size are: the simulation is sped up
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since the largest allowable time step size is taken; and, no trial and error procedure is necessary to find a time step size

that achieves a desired tolerance.

We adopt the common strategy of controlling an estimate of the local truncation error19. Because of the inexten-

sibility and incompressibility conditions, vesicle suspensions have a natural estimate of the local truncation error: the

errors in area and length. The advantage of this estimate is that multiple numerical solutions do not need to be formed

to estimate the local truncation error. For a single vesicle (multiple vesicles are handled by taking the maximum

over all the errors in area and length), let the area and length at time t be A(t) and L(t), and suppose that the desired

tolerance for the global error is ε at the normalized time horizon T = 1. We compute the solution at time t + Δt using

a time stepping scheme and then compute the new area A(t+Δt) and length L(t +Δt). The solution is accepted only if

|A(t + Δt) − A(t)| ≤
A(t)Δt

1 − t

(
ε −
|A(t) − A(0)|

A(t)

)
, (9)

and a similar condition for the length. Instead of the usual condition |A(t + Δt) − A(t)| ≤ A(t)Δtε, we are adjusting the

amount of local truncation error that can be committed in [t, t + Δt] based on the error committed in [0, t]. Using this

strategy, our scheme can commit larger local truncation errors than εΔt if the error committed in [0, t] is less than εt.

Regardless of the acceptance or rejection of the solution at time t +Δt, a new time step size must be chosen. Based

on an asymptotic argument9, to make the bound in (9) tight, the optimal time step size is

Δtopt =

{
A(t)

|A(t + Δt) − A(t)|
Δt

1 − t

(
ε −
|A(t) − A(0)|

A(t)

)}1/k

Δt,

where k is the order of the time integrator. A similar optimal time step size is computed based on the length and

the smaller of these values is used to compute the next time step size. Since the choice of Δtopt assumes that the

error is in the asymptotic regime, we impose several safety factors on the new time step size Δtnew. First, we require

Δtnew/Δt ∈ [βdown, βup], where βdown = 0.6 and βup = 1.5. That is, the time step size is not allowed to change too

quickly. Next, we multiply the new time step size by a safety factor βscale =
√

0.9 to increase the likelihood of the

next time step size being accepted. These three parameters are chosen from experience and can be changed if required

by a certain application. As a final restriction, we never increase the time step size if the previous time step size is

rejected19. In summary, if the previous time step is accepted, the new time step size is

Δtnew = β
1/k

scale
min(βupΔt,max(Δtopt, βdownΔt)),

and if the previous time step is rejected, the new time step size is

Δtnew = β
1/k

scale
min(Δt,max(Δtopt, βdownΔt)).

4. Numerical Examples

We consider vesicles with reduced area 0.66, initially parameterized as x(θ, 0) = (cos θ, 3 sin θ), in the shear flow

v∞ = (y, 0). The dimensionless reduced area, defined as the ratio of the vesicle’s area to the area of a circle with the

same perimeter, is given by 4πA
L2 , where A is the vesicle’s area and L its length. We report the number of uniform time

steps, m, the error in area, eA, and the error in length, eL. To evaluate the cost of the algorithm, we report the number

of matrix-vector-multiplications, (“matvecs” for short), required to iteratively solve (6) and (7) and to compute the

provisional velocity ṽ, and the CPU time in seconds required by Matlab on a six-core 2.67GHz Intel Xeon processor

with 24GB of memory.

We first verify that our time integrator with one SDC correction provides second-order convergence. Then, we

use this time integrator with an adaptive time step size for two different problems. We use p = 5 Gauss-Lobatto

substeps which achieves 7th-order accuracy when computing the residual r(t). We set the block-diagonal precondi-

tioned GMRES tolerance to 1E-10 which, based on previous work17,9, is the smallest allowable tolerance due to the

ill-conditioning of the governing equations.
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4.1. Tank-treading and tumbling

We consider a single vesicle with two different viscosity contrasts, and discretized with N = 96 points that are ini-

tially equi-spaced in parameter space. This resolution is sufficient to guarantee that the temporal error dominates. We

use a fixed time step size to verify that one SDC correction results in second-order convergence. Table 1 corresponds

to a tank-treading vesicle (ν = 4) while Table 2 corresponds to a tumbling vesicle (ν = 15). With the prescribed time

horizon, the tumbling vesicle makes approximately 2.5 rotations. In both regimes, we achieve better than second-order

convergence but, in general, we only expect second-order convergence.

Table 1. The number (m) of uniform time steps, errors in area and length, the number of matvecs, and the CPU time in seconds for a single vesicle

in the tank-treading regime (ν = 4). We see that second-order (in fact, it is closer to third-order) convergence is achieved.

m eA eL matvecs CPU(s)

75 1.39E-2 1.43E-2 9.45E3 8.16E1

150 1.42E-3 1.68E-3 1.60E4 1.53E2

300 1.14E-4 2.03E-4 2.81E4 2.88E2

600 8.33E-7 2.46E-5 5.16E4 5.68E2

1200 3.80E-6 2.99E-6 9.56E4 1.08E3

Table 2. The number (m) of uniform time steps, errors in area and length, the number of matvecs, and the CPU time in seconds for a single vesicle

in the tumbling regime (ν = 15). Again, second-order (in fact, it is closer to 2.5-order) convergence is achieved. Also, we see that GMRES requires

fewer iterations to solve suspensions with larger viscosity contrasts, but larger global errors are incurred.

m eA eL matvecs CPU(s)

75 1.25E-1 3.80E-2 8.40E3 7.94E1

150 2.07E-2 5.22E-3 1.45E4 1.55E2

300 3.27E-3 6.28E-4 2.57E4 2.83E2

600 5.51E-4 7.88E-5 4.68E4 5.38E2

1200 1.04E-4 9.89E-6 8.73E4 1.09E3

We now test our adaptive time stepper with viscosity contrast ν = 4 (Table 3), ν = 10 (Table 4), and ν = 15

(Table 5). In all of the examples, without any a priori knowledge of the time step size, the desired tolerance is

achieved. Unsurprisingly, larger time steps can be taken when the vesicle is tank-treading (ν = 4) as opposed to

tumbling (ν = 10 and ν = 15). In all three simulations, as the tolerance decreases, the number of required time steps

grows unacceptably large. This can be resolved by taking two SDC corrections (bottom rows of Tables 3–4) at the

expense of solving (5) twice instead of once which, in theory, results in a third-order time integrator. This additional

solve is justified since the reduction in CPU time is 41% for ν = 4, 60% for ν = 10, and 63% for ν = 15. Therefore,

we conclude that as more tolerance is requested, the additional cost of using additional SDC iterations is justified. In

order to continue our development of a black-box solver for vesicle suspensions, a systematic method for choosing an

appropriate number of SDC iterations based on the requested tolerance is under investigation.

Table 3. Adaptive time stepping with ν = 4. The adaptive time step size does a good job of achieving the desired tolerance with only a few rejected

time steps. The final column used two, rather than one, SDC corrections.

Tolerance eA eL Accepts Rejects matvecs CPU(s)

1E-1 9.93E-2 4.27E-2 54 2 7.92E3 6.75E1

1E-2 9.94E-3 2.67E-3 131 4 1.45E4 1.40E2

1E-3 9.98E-4 1.10E-4 381 11 3.51E4 3.77E2

1E-4 1.00E-4 4.04E-6 1171 17 9.28E4 1.15E3

1E-4* 1.00E-4 6.65E-7 316 5 4.59E4 6.75E2

We note two abnormalities in the results. First, based on the final errors, it appears that a fixed time step size is more

efficient. For instance, when ν = 4, m = 150 fixed time step sizes has a comparable final error to m = 381 adaptive
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Table 4. Adaptive time stepping with ν = 10. While the tolerance is always achieved, the final error is not tight to the desired error. This is a result

of the error decreasing near the time horizon (see Fig. 1). The final column used two, rather than one, SDC corrections.

Tolerance eA eL Accepts Rejects matvecs CPU(s)

1E-1 4.27E-2 1.01E-2 86 36 1.39E4 1.31E2

1E-2 3.62E-3 1.10E-3 230 92 2.93E4 3.19E2

1E-3 2.67E-4 1.29E-4 678 169 6.64E4 7.76E2

1E-4 3.61E-5 2.31E-5 2079 100 1.51E5 2.16E3

1E-4* 5.87E-5 1.77E-6 310 120 5.77E4 8.73E2

Table 5. Adaptive time stepping with ν = 15. The adaptive time step size does a good job of achieving the desired tolerance, but because of the

more complicated dynamics of tumbling, there are more rejected time steps when compared to the tank-treading vesicle. The final column used

two, rather than one, SDC corrections.

Tolerance eA eL Accepts Rejects matvecs CPU(s)

1E-1 9.71E-2 6.22E-3 91 43 1.49E4 1.41E2

1E-2 9.65E-3 7.22E-4 245 95 3.02E4 3.28E2

1E-3 9.77E-4 5.50E-5 725 186 7.01E4 8.47E2

1E-4 9.82E-5 3.45E-6 2227 142 1.63E5 2.35E3

1E-4* 6.13E-5 5.11E-7 333 123 5.99E4 9.37E2

time step sizes. However, using a fixed time step size, the error actually achieves a value of 4.04E-3 near the start of

the simulation, and then decays to the final error 1.68E-3, whereas the adaptive time step error never exceeds 1E-3

(see Fig. 1). The errors for the other examples behave similarly. Second, for adaptive time stepping with ν = 10, the

final errors are much less than the requested tolerance. This is a consequence of the vesicle’s error in area increasing

and decreasing throughout the simulation; near the time horizon, the error in area is decreasing (see Fig. 1). The result

is that there is an insignificant amount of time to commit enough error to achieve the desired tolerance.
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Fig. 1. Left: The error as a function of time using a 150 uniform (dashed) and 381 adaptive (solid) time steps for a single vesicle with ν = 4. Even

though the final errors are comparable, the adaptive time stepping scheme does not incur a large error near the start of the simulation. Right: The

error as a function of time using 678 adaptive time steps for a single vesicle with ν = 10 (solid). The error happens to be decreasing near the time

horizon, and this explains why the final error is not tight to the tolerance of 1E-3. This is in contrast to the simulation with ν = 15 (dashed) whose

error is increasing near the time horizon, therefore, allowing the final error to be much tighter to the tolerance.

4.2. Two vesicles in a shear flow

We simulate two vesicles, each identical in shape to the last example, where the left vesicle’s center is slightly above

the x-axis and the right vesicle’s center is on the x-axis. We allow for larger spatial errors by using N = 64 points

per vesicle, and the inter-vesicle interactions are accelerated with the fast multipole method20. One SDC correction

is used, and the tolerance for the error in area and length at the time horizon is 1E-2. The time step size and several
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vesicle configurations are illustrated in Figs. 2–4 for different viscosity contrasts. Each vesicle is labelled with its

viscosity contrast and marked with a single tracker point to help visualize the vesicle dynamics.
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Fig. 2. Two tank-treading vesicles (ν = 4). Left: The time step size taken to achieve the desired tolerance 1.0E-2 at the time horizon. The actual

final error is 1.0E-2. Right: The vesicle configuration at the indicated labels.
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Fig. 3. Two tumbling vesicles (ν = 10 and ν = 15). Left: The time step size taken to achieve the desired tolerance 1.0E-2 at the time horizon. The

actual final error is 7.6E-3. Right: The vesicle configuration at the indicated labels. The vesicles are labelled with their viscosity contrast.
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Fig. 4. One tumbling vesicle (ν = 10) and one tank-treading vesicle (ν = 4). Left: The time step size taken to achieve the desired tolerance 1.0E-2

at the time horizon. The actual final error is 1.0E-2. Right: The vesicle configuration at the indicated labels. The vesicles are labelled with their

viscosity contrast.

In Fig. 2, both the vesicles are tank-treading (ν = 4). We observe that the time step size is nearly constant except

when the vesicles approach one another, and there, the time step size is reduced. The final error is 1.0E-2 which

requires 545 accepted and 25 rejected time steps. In Fig. 3, one vesicle has a viscosity contrast ν = 10, while the other

has a viscosity contrast ν = 15, which results in the this vesicle tumbling faster. The time step size is far less smooth,

and the final error is 7.6E-3 which requires 975 accepted and 315 rejected time steps. Finally, in Fig. 4, one vesicle is

tumbling (ν = 10), while the other is tank-treading (ν = 4). We see that the time step size is small when the tumbling
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vesicle has regions of high curvature, and when the vesicles are close. The final error is 1.0E-2 which requires 752

accepted and 158 rejected time steps.

5. Conclusion

In this paper, we have extended our work on adaptive high-order time integrators for vesicle suspensions9 to

suspensions that include viscosity contrast. We have tested a second-order adaptive time integrator on two different

suspensions with varying viscosity contrasts. Future work includes spatial adaptivity and implementing the presented

results to three dimensions.
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